
A Fault-Tolerant Framework for Large-Scale
Simulations

J. W. Larson1 P. E. Strazdins 2 M. Hegland 1

B. Harding 1 S. Roberts 1 L. Stals 1 A. P. Rendell 2

M. Ali 2 J. Southern 3

1Mathematical Sciences Institute, The Australian National University

2Research School of Computer Science, The Australian National University

3Fujitsu Laboratories, Europe

17 Nov 2013

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

outline

Background

Faults and Fault-Tolerant Techniques (FT)

Sparse Grids

The Sparse Grid Combination Technique

Complexity Metrics

Developing the Framework

Building Sparse Grid Solvers

Requirements

Numerical MapReduce Framework (NuMRF)

Parallel SGCT Implementation

Future Plans

Integration into GENE

Extension to Handling Soft Faults
J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

fault recovery and fault-tolerance

Technological approaches:

Replication/redundancy

Runtime checkpointing with
recovery through restart/task
reassignment

Runtime recreation of lost data
using neighboring data

“...computational techniques for one
mill...BILLION processing elements!”

Algorithm-based FT (ABFT):

Huang and Abraham (1984):
row/column checksums to correct
for computational errors

Du et al. (2012): checksum-based
fail/stop in to LU & QR
decompositions

Liu (2002); Geist and Engleman
(2007): chaotic relaxation

Dean and Ghemawat (2004):
MapReduce

Our group: sparse grid
combination method with built-in
runtime fault-tolerance

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

what is a sparse grid?

A solution to a complexity problem:

The number of gridpoints on a
d-dimensional isotropic grid grows
exponentially w.r.t. d

This is the curse of dimensionality

A sparse grid provides fine-scale
resolution in each dimension, but
not combined fine scales from all
multidimensional subspaces

Constructed from a number of
coarser component grids that are
fine-scale in some dimensions but
coarse in others

Developed to solve problems in
high dimensions

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

sparse grids reduce problem size dramatically

|F | ∝ 2Ld |S | ∝ 2LLd−1
RC =

|F |
|S |

∝
(

2L

L

)d−1

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

geometric definition of sparse grid

a simple sparse grid

∪ =

sparse grid in frequency / scale space

∪ =

captures fine scales in both dimensions but not joint fine scales

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

general combination formulae

The classic combination solution f CL (~x) for level L in d dimensions
is, in terms of the component grid solutions f~l(~x)

f CL (~x) =
d−1∑
q=0

(−1)q
(
d − 1

q

) ∑
|~l |1=L−q

f~l(~x)

Possible to include m ≤ L− 1 hyperplanes’ worth of “spare”
component grids for FT.

These spare grids are used only in scenarios of loss of one ore
classic combination component grids due to fault(s)

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

classic combination and example ft scenarios

classic combination loss of (3, 4) loss of (2, 5)

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

building solvers on sparse grids

algorithm

1 Pick a set G of multidimensional, coarser component grids

2 Solve on each component grid G~l (interpolate to S)

3 (Linear) Combination of component grids’ solutions for
solution on S

4 Optional: interpolate solution from S to F

5 Time Evolution/Iteration: propagate solution on S back to
each G~l ∈ G

Error bounds for solutions on the sparse grid can be computed
based on the scheme used on the component grids and the
combination method

Each combination involves an M × N transfer

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

what is an M × N transfer?

Data connections for the 2D level 5 SGCT
J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

implications for a parallel sgct

complexity analysis tells us. . .

Lossy ABFT overhead is low compared to replication

High values of (L, d) will engender

numerous component grid tasks
high grid data volumes
many (parallel) data connections routing data to/from the
sparse grid

Further modeling required using application- and
platform-specific information

application performance data
hardware characteristics: processor speed, switch
latency/bandwidth

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

implications for a parallel sgct, cont’d. . .

requirements for a parallel sgct system

Low-level automation:

Distributed grid/field data description
Parallel M × N transfer G~l ↔ S
Data transformation (specifically, interpolation)
Performance measurement/timing
Fault detection/reporting

High-level automation:
Scheduling of iterative execution of large numbers of tasks

Load balance based on task cost model (TCM)
Probabilistic Fault Detection (PFD) through
predicted/elapsed runtime comparison

Automatic coordination of large numbers of M × N transfers
Monitoring/ explicit fault detection
Self-steering using an error quality of service (QoS) model to
compute alternative solutions in the event of faults

Compatibility with legacy science/engineering codes

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

numrf

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

python grids and fields toolkit (PyGrAFT)

PyGrAFT is the data language for NuMRF. It is a system for

Representing logically Cartesian grids CartGrid class)

Arbitrary dimensionality supported

Field data residing on these grids (GriddedScalarField)
Implemented using NumPy ndarray

Arbitrary dimensionality supported
Any NumPy base type supported

Any number of fields may be associated with a CartGrid
Complete flexibility regarding storage order

Expressing multi-resolution relationships (FullGrid and
ComponentGrid subclasses)

Performing combinations involving component grids.

Parallelization currently underway

At present, there are numerous test examples. Including generation
of most of the sparse grid pictures in this talk.

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

PyGrAFT: Comparison of FT Techniques on 3D Advection
Problem size L = 21, truncation parameter 5, combine 4
times; MTF: 25. . . 1000s
Local checkpoint: each process saves copy of component grid
Global checkpoint: each process keeps copy of last combined
grid
Recombine: avoid using data from failed processes

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

c++ parallel sgct implementation

Implemented in three C++ classes:
GridCombine2D: Overall combination method
Vec2D: Supports fundamental calculations
ProcGrid2D: Domain decomposition for each grid

Level of abstraction reduced code complexity dramatically!
Assumptions:

Each component grid G~l is distributed over a 2D grid of MPI
PE’s P~l
Algorithm uses gather-scatter within each grid’s pool
Load balance computed with an awareness of computational
cost; based on component grids’ respective (fixed) ∆t

Implemented using aggressive defensive programming
techniques (cross-checking 2D vector calculations, etc)

Robustness (simplest L = 4 case requires 32 processes!)
Rapid development

Source only about 1000 lines of code

Interoperable with NuMRF via CTypes

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

c++ parallel sgct performance

Cores

Execution Time (sec)
Normalized
Efficiency

(%)

simulateAdvection SGCT Total

11 54.95 42.40 97.35 100.00
22 28.38 20.95 49.33 98.67
44 14.66 10.41 25.07 97.08
88 6.93 5.36 12.29 99.01

176 3.73 2.44 6.17 98.61
352 1.81 1.32 3.13 97.19
704 0.92 0.80 1.73 87.92

1408 0.45 0.59 1.04 73.13
2816 0.33 1.09 1.42 26.78

Fixed Dt, Level 4, grid points (212 + 1)× (212 + 1), number of
combinations 100, number of time-steps 212, RAIJIN cluster.

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

c++ parallel sgct performance (II)

Cores

Execution Time (sec)
Normalized
Efficiency

(%)

simulateAdvection SGCT Total

17 27.87 22.36 50.24 100.00
34 14.60 11.21 25.81 97.33
68 7.31 5.54 12.84 97.82

136 3.63 2.70 6.33 99.21
272 1.79 1.67 3.46 90.75
544 0.92 1.07 1.99 78.89

1088 0.50 0.72 1.22 64.34
2176 0.41 1.19 1.60 24.53
4352 0.69 3.46 4.15 4.73

Non-fixed dt, Level 4, grid points (212 + 1)× (212 + 1), number of
combinations 100, number of time-steps 212, RAIJIN cluster.

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

c++ parallel sgct performance analysisSheet1

Page 1

0 0.001
20 0.001
40 0.001
60 0.001
80 0.001

100 0.001
120 0.001
135 0.001

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
3

5

0

0.2

0.4

0.6

0.8

MPI rank

ti
m

e
 in

 s
e

c
o

n
d

s

YWIV
W]WXIQ
[EPP
QTM

Sheet1

Page 1

0 0.001
20 0.001
40 0.001
60 0.001
80 0.001

100 0.001
120 0.001
135 0.001

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
3

5

0

0.05

0.1

0.15

0.2

0.25

MPI rank

ti
m

e
 in

 s
e

c
o

n
d

s

14-C'SQQCWM^I
14-C7IRH
14-C-VIGZ
14-C'SQQCVERO
14-C6IHYGI
14-C&GEWX
14-C;EMX
14-C;EMXEPP
14-C6IGZ
14-C&EVVMIV
14-C-WIRH
14-C;EMXER]

Application total task Application MPI task

Load balance for level 4, grid points (210 + 1)× (210 + 1),
non-fixed dt, number of combinations 1, number of time-steps 210,
OPL cluster

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

conclusions

Parallel SGCT has considerable complexity!

NuMRF, a MapReduce variant: numerical-analysis-friendly,
error/fault aware calling framework

Implementation of NuMRF’s data model (PyGrAFT) is well
underway, with encouraging preliminary results

SGCT has considerably less overhead than in-memory local or
global checkpointing

A robust parallel SGCT has been built

Scaling is reasonable: depends on frequency of grid
recombination and # cores

Careful management of software complexity has been an
essential part in the design of the framework.

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

future work

Fault-Tolerant GENE gyro-kinetic plasma application

Using L = 4 3-D SGCT on x × ky × z = 1024× 512× 32 grid
Robust to process failure using ULFT on MPI 3.1

Develop Infrastructure to deal with node failures.

Completion of PyGrAFT: Parallelization, M × N services,
interpolation services, and sparse grid representation

Integration of parallel SGCT C++ codes
Bandwidth-reducing optimization using hierarchical basis
sub-grids

Major follow-up project: soft error detection and avoidance

Based on wavelet analysis on SG hierarchical basis grids
Advantage: general technique, oblivious of details of simulation
Limitation: MTF must be > period of check + partial SGCT

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

end

THANK YOU!

QUESTIONS?

J. Larson et al. A Fault-Tolerant Framework for Large-Scale Simulations

