Using Recurrence Relations to Evaluate the Running Time of

Recursive Programs

by Peter Strazdins, Computer Systems Group
Overview:

® review from lectures 1-3:

® recursive definition, recursive functions
® revisit induction proof with recursive summation definition
m relationship between induction, recursion and recurrences

® (review) big-O notation and running time for iterative programs
® big-O as an abstraction
® using recurrence relations and induction for the running time of recursive:

® logarithm, factorial, Fibonacci
m list length and split, mergesort

COMP1130 Lecture: Running Time for Programs (3) 2011 «a<4 < p)

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/systems

Recursive Definition and Recursive Functions

recursion: (now rare or obsolete, 1616) a backward

movement, return

— The Shorter Oxford English Dictionary

a recursive definition has one or more ‘base’ rules

and one or more ‘inductive’ rules (lectures 1-3 p18)

a recursive function is one that uses itself in its

definition (i.e. it calls itself; see lectures 1-3 p21)

® (to be well defined) it definition must have at
least 2 parts Q: what kind?

e.g. factorial function

fact 0 = 1
fact n = n x fact (n—1)

how is recursion implemented on a computer?
notion of a stack

call

fact O C
fact 1 <
fact 2 C

fact:
n=0
Result=1

fact:
n=1
Result=1

fact:
n=2
Result=2

fact:
n=3
Result=6

return

COMP1130 Lecture: Running Time for Programs (3)

2011 << 4 h p)>

2

http://cs.anu.edu.au/student/comp1130/comp1130_weeks1_3_2011.pdf
http://cs.anu.edu.au/student/comp1130/comp1130_weeks1_3_2011.pdf

Induction Proof with a Recursive Definition of Summation

e we can define the standard summation recursively:

. £(0) ifn=0 -(S1)
0T fMm+ (LT (@) otherwise (S2)

e in the proof of X1 2l =21 _ 1 (lectures 1-3 p4):
. .50 50 _ ol
Base Case: show J0): 2;_,2" =2"—1
50,20 = 29 , by -S(1)
= 211
Inductive Case: assuming S(n): ZiL, 2l =21 _ 1 show §n+1):
N+1 ol _ oN+2
stlol=2Mm2 1
sitlol = 2Miy @ 2y by -S(2)
= 2M14y @™l _1) | by the Induction Hypothesis
= 2M2_1
e i.e. we have used the definition of summation to formally make the step in our
inductive proof

COMP1130 Lecture: Running Time for Programs (3) 2011 «a<4 < p)

http://cs.anu.edu.au/student/comp1130/comp1130_weeks1_3_2011.pdf

Relationship between Induction, Recursion and Recurrence S

a recurrence relation is simply a (mathematical) function (or relation) defined in

terms of itself
1 ifn=0
m e.. = .
e.g- f(n) { 1+ f(n—1) , otherwise
m also, our definition of summation

® not all formulations yield meaningful definitions, e.g. f(n) = f(n)+1,
f(n)=f@2n)+1

recurrence relations on the natural numbers (N) can be used to characterized
running times of programs with some (possibly derived) numerical input parameter

(n)
induction shares the same structure, but with a proposition instead: from §0), and
Sn) = Yn+1) we establish §n) forallne N

® note: we could equivalently define f(n) above as f(0)=1, f(n+1)=1+ f(n)

COMP1130 Lecture: Running Time for Programs (3) 2011 «a<4 < p) 4

Big-O Notation and Running Time for Programs
e recall T(n) € O(f(n)) means d constants cand ng > 0s.t. VN> ng: T(n) <cf(n)

e.g. T(n)=3n+5, f(n) =n, we can choose c=4 and ng =3
forn>3,4n>2Nn+2%x3 > 2N+5

e let T(N) represent the running time of a program

e s the number of statements executed a realistic estimate of actual running time?
s = 0; t = 0;
for (i=0; i < mn; i++) {
s = s + sqrt(alil); t =t + s;

}

printf ("t=", sqrt(t));
Are all of the executed 2n+ 3 statements equal? We can at least say T (n) € O(n)

e principles of deriving (an upper bound estimate to) T(n)

composition: if a program has (sequential) parts A; B, we can write

T(n) = Ta(N) + Ta(n)

abstraction: we approximate any term (not including T(...) by its (simplest)
big-O order (e.g. 3 becomes 1, 2n+5 becomes N etc)

e the big-O notation provides an abstraction from both the (structural) complexities in
computer programs, and the (complex) details of modern computer architectures

COMP1130 Lecture: Running Time for Programs (3) 2011 «a<4 < p) 5

Example: the Factorial Program

e the classic example:

fact 0 = 1
fact n = n * fact (n—1)

e for Haskell programs, we take elementary operations as having a running time of 1
e.g. x, —, access constant/variable, apply function definition, :, take head/tail of list

e then the execution time follows the recurrence relation:
T(O) = 1 -(T1)
Tn) = 1+T(h—1) -(T2)
e we can prove by induction §n): T(N) =n+1, and hence T(N) € O(N)

Base Case: show: §0): T(0)=1
follows immediately from -(T1)

Inductive Case: given §n), show §n+1): T(n+1)=n+2:
T(n+1) = 1+T(n) ,by-(T2)

= 1+n+1 , bythe Induction Hypothesis

= Nn+2

COMP1130 Lecture: Running Time for Programs (3) 2011 «a<4 < p) 6

Example: the Logarithm Program

0
1 + log2 (n ‘div‘ 2)

® log2 1
log2 n

e here we can similarly derive:
T(1) = 1 -(T1)
T(n) = 1+T(n/2) -(T2)

e using the example T(8)=1+T(4)=2+T(2) =3+T(1), we conjecture Jn):

T(n) =1+log,(n), i.e. T(n) € O(log,(Nn)

(this program is evidently faster!)

e proof by induction is similar to before, except we restrict n to powers of 2:

Base Case: prove §1): T(1) = 1+log,(1)

TA)=1=1+0=1+log,(1)
Inductive Case: given Jn), show J2n): T(2n) = 1 +log,(2n)
T(2n) = 1+T(n) , by -(T?2)
= 1+1+logy(n) , by the Induction Hypothesis
= 1+logy(2n) , using log,(2X) = 1 +log,(X)

® |s this a valid form of induction? Why (not)?

e how do we show T (n) =1+log,(n) for all N?

COMP1130 Lecture: Running Time for Programs (3) 2011 «a<4 < p) 7

Example: the Fibonacci Program

e direct Haskell implementation of the Fibonacci recurrence:
fib 0 = 1
fib 1 =1
fib n = fib(n—-1) + fib(n—2)

e as before, we can similarly derive:

TO) = TAQ)=1 -(T1)
TN = 1+T(h—1D+T(h—2) -(T2)

e this time, we expect an exponential running time:
T@)=1+T(7)+T(6)=2+2T(6)+T(5)=4+3T(5)+2T(4)
and conjecture Yn): T(n) < 2", which will mean that T (n) = O(2")

Base Case: show S0): T(0) < 29 (also 1))
Follows directly from -(T1).
Inductive Case: given §n) (and §n— 1) and n > 0), show

Sn+1): T(n) < 2™t
T(n+1) = 1+T(M+T(h—1) ,by-(T2),asn+1>1

< 1+2M420-1 , by the Induction Hypothesis
< 2Ny 2N as2">1+2"1forn>0
— 2n+1

note use of Generalized Principle of Induction, with inequalities
COMP1130 Lecture: Running Time for Programs (3) 2011 «a<4 < p) 8

Running Times of Programs Operating on Lists

lists are a recursive data structure; can model running time on Nn=length xs

e.g. the length of a list function itself can be defined as

length [] = 0
length (x:xs) = 1 + length xs

we can similarly derive the running time T (n) for this program:
TO) =1
T(N) = 1+T(n—1)

which we can solve as T(n) =n

we can ‘split’ a list into sublist of odd and even elements:

split [1 = ([, [J1)

split [x] = ([x], [])

split (x1:x2:xs) = (xl:x1ls, x2:x2s8)
where (xls,x2s) = split xs

noting that length (x1:x2:xs) — 2=1length xs, we can derive:
T0O) =1

TR = 1

T(N) = 1+T(n—2)

COMP1130 Lecture: Running Time for Programs (3) 2011 «a<4 < p)

The Mergesort: An Efficient Sorting Algorithm

8 5 2 1 7 3 4 6
8 5 2 1 7 3 4 6
8 5 2 1 7 3 4 6
5 8 1 2 3 7 4 6
1 2 | 5 8 3 4 | 6 7

COMP1130 Lecture: Running Time for Programs (3) 2011 <4< <4 ¢ > pp 10

The Mergesort in Haskell

e note: the use split ‘shuffles’ items before merge begins

mergesort [] = []

mergesort [x] = [x]

mergesort (x:xs) = merge (mergesort 1) (mergesort r)
where (1, r) = split x:xs

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)
| x<=y = x : merge xs (y:ys)
| otherwise =y : merge (x:xs) ys

e assuming the execution time for split and merge are Tg(n) = T\y(N) =n/2:

TO) = TA)=1 -(T1)
T(n) = Tgn)+2T(N/2)+Ty(n) (we ignore O(1) terms)
= n+2T(n/2) -(T2)

e we conjecture that T (n) € O(nlog,(N)

(the induction proof of this is not trivial!)

COMP1130 Lecture: Running Time for Programs (3) 2011 <4< <4 ¢ > pp

Review: Recursion Recurrences and Running Time

e induction is a valuable tool for solving the recurrences

®m why is form proving for powers of 2 valid?

® sometimes need the Generalized Principle

®m forming the correct hypothesis takes experience (or attempting a proof)
®m using the big-O abstraction simplifies the proofs (validity?)

e review of algorithms and their (upper bounds) on running times:

example: recurrence: running time:
logarithm T(n)=1+T(n/2) O(log,(N))
factorial T(N)=1+T(n—1) O(Nn)
mergesort T(n)=n+2T(n/2) O(nlog,(n))
Fibonacci T(M)=1+2T(n—1) O2"

(the Master Theorem gives a general relationship (COMP3600))

e why is T(n) € O(f(n)) useful? Where is it not useful?
= if a program with T(n) = a2" takes 103s for n = 32, what will it take for n = 64?

e recursion (and recurrence relations in the more general sense) often give a simple
but powerful of algorithms (and many natural phenomena)

COMP1130 Lecture: Running Time for Programs (3) 2011 <4< <4 ¢ > pp 12

Addendum: Proof of T(n) € O(nlog,(Nn)) for the Mergesort

e the non-trivial part is actually in finding a workable inductive hypothesis ...

initial guess T (N) = nlog,(N) works for the inductive but not the base case
attempted fix T(n) = nlog,(N) +1 no longer works for the inductive case!
strategy: try to do proof on T(n) = nlog,(n) + f(n) and see what properties of f
are needed, yielding:

[1 f(1)=1and 2f(n) = f(2n) — satisfiable by the humble identity function!

e as for the 1log2 example, the induction proof is limited to powers of 2, with the
hypothesis: §n): T(n) =nlog,(N)+n

Base Case: prove §1): T(1) =1log,(1)+1
T(1)=1=0+1=1+%0+1=1log,(1)+1
Inductive Case: given §n), show §2n):
T(2n) = 2n+2T(n) , by -(T2)
2n+2(nlog,(N)+n) , by the Inductive Hypothesis
= 2n(1+logy(N))+2n , rearranging terms
= 2nlog,(2n)+2n , using log,(2X) = 1 +1og5,(X)

e compare this with the proof in Aho & Ullman Ch 3.10!!

COMP1130 Lecture: Running Time for Programs (3) 2011 <4< <4 ¢ > pp 13

