
Using Recurrence Relations to Evaluate the Running Time of

Recursive Programs

by Peter Strazdins, Computer Systems Group

Overview:

● review from lectures 1–3:

■ recursive definition, recursive functions

■ revisit induction proof with recursive summation definition

■ relationship between induction, recursion and recurrences

● (review) big-O notation and running time for iterative programs

■ big-O as an abstraction

● using recurrence relations and induction for the running time of recursive:

■ logarithm, factorial, Fibonacci

■ list length and split, mergesort

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 1

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/systems

Recursive Definition and Recursive Functions

● recursion: (now rare or obsolete, 1616) a backward

movement, return

– The Shorter Oxford English Dictionary

● a recursive definition has one or more ‘base’ rules

and one or more ‘inductive’ rules (lectures 1–3 p18)

● a recursive function is one that uses itself in its

definition (i.e. it calls itself; see lectures 1–3 p21)

■ (to be well defined) it definition must have at

least 2 parts Q: what kind?

● e.g. factorial function

fact 0 = 1

fact n = n ∗ fact (n−1)

● how is recursion implemented on a computer?

notion of a stack

fact:

fact:

fact:

fact:

n=0

Result=1

n=2
Result=2

n=3
Result=6

Result=1

n=1

1

1

2

fact 0

fact 1

fact 2

call return

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 2

http://cs.anu.edu.au/student/comp1130/comp1130_weeks1_3_2011.pdf
http://cs.anu.edu.au/student/comp1130/comp1130_weeks1_3_2011.pdf

Induction Proof with a Recursive Definition of Summation

● we can define the standard summation recursively:

Σn
i=0 f (i) =

{

f (0) if n = 0 -(S1)

f (n) + (Σn−1
i=0 f (i)) , otherwise -(S2)

● in the proof of Σn
i=0 2i = 2n+1−1 (lectures 1–3 p4):

Base Case: show S(0): Σ0
i=0 20 = 21−1

Σ0
i=0 2i = 20 , by -S(1)

= 21−1

Inductive Case: assuming S(n): Σn
i=0 2i = 2n+1−1 , show S(n + 1):

Σn+1
i=0 2i = 2n+2−1

Σn+1
i=0 2i = 2n+1 + (Σn

i=0 2i) , by -S(2)
= 2n+1 + (2n+1−1) , by the Induction Hypothesis
= 2n+2−1

● i.e. we have used the definition of summation to formally make the step in our

inductive proof

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 3

http://cs.anu.edu.au/student/comp1130/comp1130_weeks1_3_2011.pdf

Relationship between Induction, Recursion and Recurrence s

● a recurrence relation is simply a (mathematical) function (or relation) defined in

terms of itself

■ e.g. f (n) =

{

1 if n = 0
1 + f (n−1) , otherwise

■ also, our definition of summation

■ not all formulations yield meaningful definitions, e.g. f (n) = f (n) + 1,

f (n) = f (2n) + 1

● recurrence relations on the natural numbers (N) can be used to characterized

running times of programs with some (possibly derived) numerical input parameter

(n)

● induction shares the same structure, but with a proposition instead: from S(0), and

S(n) ⇒ S(n + 1) we establish S(n) for all n ∈ N

■ note: we could equivalently define f (n) above as f (0) = 1, f (n + 1) = 1 + f (n)

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 4

Big-O Notation and Running Time for Programs
● recall T (n) ∈ O(f (n)) means ∃ constants c and n0 > 0 s.t. ∀ n > n0: T (n) ≤ c f (n)

■ e.g. T (n) = 3n + 5, f (n) = n, we can choose c = 4 and n0 = 3
for n > 3, 4n > 2n + 2∗3 > 2n + 5

● let T (n) represent the running time of a program

● is the number of statements executed a realistic estimate of actual running time?
s = 0; t = 0;

for (i=0; i < n; i++) {
s = s + sqrt(a[i]); t = t + s;

}
printf("t=", sqrt(t));

Are all of the executed 2n + 3 statements equal? We can at least say T (n) ∈ O(n)

● principles of deriving (an upper bound estimate to) T (n)

■ composition: if a program has (sequential) parts A; B, we can write
T (n) = TA(n) + TB(n)

■ abstraction: we approximate any term (not including T (. . .) by its (simplest)
big-O order (e.g. 3 becomes 1, 2n + 5 becomes n etc)

● the big-O notation provides an abstraction from both the (structural) complexities in
computer programs, and the (complex) details of modern computer architectures

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 5

Example: the Factorial Program

● the classic example:

fact 0 = 1

fact n = n ∗ fact (n−1)

● for Haskell programs, we take elementary operations as having a running time of 1

e.g. ∗, −, access constant/variable, apply function definition, :, take head/tail of list

● then the execution time follows the recurrence relation:

T (0) = 1 -(T1)
T (n) = 1 + T (n−1) -(T2)

● we can prove by induction S(n): T (n) = n + 1, and hence T (n) ∈ O(n)

■ Base Case: show: S(0): T (0) = 1

follows immediately from -(T1)

■ Inductive Case: given S(n), show S(n + 1): T (n + 1) = n + 2:
T (n + 1) = 1 + T (n) , by -(T2)

= 1 + n + 1 , by the Induction Hypothesis
= n + 2

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 6

Example: the Logarithm Program
● log2 1 = 0

log2 n = 1 + log2 (n ‘div ‘ 2)

● here we can similarly derive:

T (1) = 1 -(T1)
T (n) = 1 + T (n/2) -(T2)

(this program is evidently faster!)

● using the example T (8) = 1 + T (4) = 2 + T (2) = 3 + T (1), we conjecture S(n):

T (n) = 1 + log2(n), i.e. T (n) ∈ O(log2(n)

● proof by induction is similar to before, except we restrict n to powers of 2:

■ Base Case: prove S(1): T (1) = 1 + log2(1)

T (1) = 1 = 1 + 0 = 1 + log2(1)
■ Inductive Case: given S(n), show S(2n): T (2n) = 1 + log2(2n)

T (2n) = 1 + T (n) , by -(T2)
= 1 + 1 + log2(n) , by the Induction Hypothesis
= 1 + log2(2n) , using log2(2x) = 1 + log2(x)

● is this a valid form of induction? Why (not)?

● how do we show T (n) = 1 + log2(n) for all n?

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 7

Example: the Fibonacci Program

● direct Haskell implementation of the Fibonacci recurrence:
fib 0 = 1

fib 1 = 1

fib n = fib(n−1) + fib(n−2)
● as before, we can similarly derive:

T (0) = T (1) = 1 -(T1)
T (n) = 1 + T (n−1) + T (n−2) -(T2)

● this time, we expect an exponential running time:

T (8) = 1 + T (7) + T (6) = 2 + 2T (6) + T (5) = 4 + 3T (5) + 2T (4)

and conjecture S(n): T (n) ≤ 2n, which will mean that T (n) = O(2n)

■ Base Case: show S(0): T (0) ≤ 20 (also S(1))

Follows directly from -(T1).

■ Inductive Case: given S(n) (and S(n−1) and n > 0), show

S(n + 1): T (n) ≤ 2n+1

T (n + 1) = 1 + T (n) + T (n−1) , by -(T2), as n + 1 > 1
≤ 1 + 2n + 2n−1 , by the Induction Hypothesis
≤ 2n + 2n , as 2n ≥ 1 + 2n−1 for n > 0
= 2n+1

■ note use of Generalized Principle of Induction, with inequalities

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 8

Running Times of Programs Operating on Lists

● lists are a recursive data structure; can model running time on n =length xs

● e.g. the length of a list function itself can be defined as
length [] = 0

length (x:xs) = 1 + length xs

● we can similarly derive the running time T (n) for this program:
T (0) = 1
T (n) = 1 + T (n−1)

which we can solve as T (n) = n
● we can ‘split’ a list into sublist of odd and even elements:

split [] = ([], [])

split [x] = ([x], [])

split (x1:x2:xs) = (x1:x1s , x2:x2s)

where (x1s ,x2s) = split xs

● noting that length (x1:x2:xs) − 2 = length xs, we can derive:

T (0) = 1
T (1) = 1
T (n) = 1 + T (n−2)

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 9

The Mergesort: An Efficient Sorting Algorithm

8 5 2 1 7 3

8 5 2 1 7 3

8 5 2 1 7 3

8 5 2 1 7 3 4 6

4 6

4 6

4 6

5 8 1 2 3 7 4 6

1 2 5 8 3 4 6 7

1 2 3 4 5 6 7 8

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 10

The Mergesort in Haskell

● note: the use split ‘shuffles’ items before merge begins
mergesort [] = []

mergesort [x] = [x]

mergesort (x:xs) = merge (mergesort l) (mergesort r)

where (l, r) = split x:xs

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| x<=y = x : merge xs (y:ys)

| otherwise = y : merge (x:xs) ys

● assuming the execution time for split and merge are TS(n) = TM(n) = n/2:

T (0) = T (1) = 1 -(T1)
T (n) = TS(n) + 2T (n/2) + TM(n) (we ignore O(1) terms)

= n + 2T (n/2) -(T2)

● we conjecture that T (n) ∈ O(n log2(n)

(the induction proof of this is not trivial!)

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 11

Review: Recursion Recurrences and Running Time

● induction is a valuable tool for solving the recurrences

■ why is form proving for powers of 2 valid?
■ sometimes need the Generalized Principle
■ forming the correct hypothesis takes experience (or attempting a proof)
■ using the big-O abstraction simplifies the proofs (validity?)

● review of algorithms and their (upper bounds) on running times:

example: recurrence: running time:
logarithm T (n) = 1 + T (n/2) O(log2(n))
factorial T (n) = 1 + T (n−1) O(n)
mergesort T (n) = n + 2T (n/2) O(n log2(n))
Fibonacci T (n) = 1 + 2T (n−1) O(2n)

(the Master Theorem gives a general relationship (COMP3600))

● why is T (n) ∈ O(f (n)) useful? Where is it not useful?

■ if a program with T (n) = a2n takes 103s for n = 32, what will it take for n = 64?

● recursion (and recurrence relations in the more general sense) often give a simple
but powerful of algorithms (and many natural phenomena)

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 12

Addendum: Proof of T (n) ∈ O(n log2(n)) for the Mergesort

● the non-trivial part is actually in finding a workable inductive hypothesis . . .

■ initial guess T (n) = n log2(n) works for the inductive but not the base case

■ attempted fix T (n) = n log2(n) + 1 no longer works for the inductive case!

■ strategy: try to do proof on T (n) = n log2(n) + f (n) and see what properties of f
are needed, yielding:

◆ f (1) = 1 and 2 f (n) = f (2n) – satisfiable by the humble identity function!

● as for the log2 example, the induction proof is limited to powers of 2, with the

hypothesis: S(n): T (n) = n log2(n) + n

■ Base Case: prove S(1): T (1) = 1 log2(1) + 1

T (1) = 1 = 0 + 1 = 1∗0 + 1 = 1 log2(1) + 1

■ Inductive Case: given S(n), show S(2n):
T (2n) = 2n + 2T (n) , by -(T2)

= 2n + 2(n log2(n) + n) , by the Inductive Hypothesis
= 2n(1 + log2(n)) + 2n , rearranging terms
= 2n log2(2n) + 2n , using log2(2x) = 1 + log2(x)

● compare this with the proof in Aho & Ullman Ch 3.10!!

COMP1130 Lecture: Running Time for Programs (3) 2011 ◭◭ ◭ • ◮ ◮◮ × 13

