
Approaches to Performance Evaluation On Shared
Memory-Supporting Architectures

Peter Strazdins,
Alistair Rendell and the CC-NUMA Team,

CC-NUMA Project,
Department of Computer Science,
The Australian National University

seminar at High Performance Computing System Lab, Tsukuba University,
20 September 2005

http://cs.anu.edu.au/∼Peter.Strazdins/seminars

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/CC-NUMA
http://cs.anu.edu.au
http://www.anu.edu.au
http://www.hpcs.is.tsukuba.ac.jp/index.html.en
http://cs.anu.edu.au/~Peter.Strazdins/seminars#PerfEvalShMem

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 1

1 Overview

• approaches to performance evaluation in the CC-NUMA Project

• UltraSPARC SMP simulator development

• overview

• detailed memory system modelling

• validation methodology

• OpenMP NAS Parallel Benchmarks: a performance evaluation method-
ology using hardware event counters

• preliminary ideas: performance instrumentation infrastructure for clus-
ters supporting shared memory

• conclusions and future work

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 2

2 Approaches to Performance Evaluation in the CC-NUMA Project

• Sun Microsystems donated a 12 CPU (900 MHz) UltraSPARC V1280 to
the ANU

• 32KB I-Cache, 64KB D-Cache, 8MB E-cache
• relies on hardware/software prefetch for performance
• Sun FirePlane interconnect (150 MHz)

• tree-like address network, some NUMA effects

• benchmarks of interest: SCF Gaussian-like kernels in C++/OMP (by
Joseph Antony)

• primarily user-level, with memory effects of most interest
• parallelize with special emphasis on data placement & thread affinity
• use libcpc (CPC library) to obtain useful statistics
• use simulation for more detailed information (e.g. E-cache miss hot-

spots & their causes), or for analysis on larger/variant architectures

• OMP version of NAS Parallel Benchmarks also of interest

◭◭ ◭ • ◮ ◮◮ ×

http://www.sun.com/desktop/whitepapers.html
http://developers.sun.com/prodtech/cc/articles/pcounters.html
http://www.openmp.org
http://www.nas.nasa.gov/Software/NPB
http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 3

3 Sparc-Sulima: an accurate UltraSPARC SMP simulator

• execution-driven simulator with Fetch/Decode/Execute CPU simulator

• captures both functional simulation and timing simulation

• (almost) complete-machine

• an efficient cycle-accurate CPU timing module is added

• emulate Solaris system calls at the trap level (Solemn, by Bill Clarke),

including LWP traps for thread support

permits simulation of unmodified (dynamically linked) binaries

• the CPU is connected to the memory system (caches and backplane)
via a ‘bridge’

• can have a plain (fixed-latency) or fully pipelined Fireplane-style back-
plane

• simulator speed: slowdowns in range 500–1000 ×
• (old) source code available from Sparc-Sulima home page

◭◭ ◭ • ◮ ◮◮ ×

http://cs.anu.edu.au/techreports/2005/
http://cs.anu.edu.au/techreports/2004/
http://cap.anu.edu.au/cap/projects/sulima
http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 4

4 Sparc-Sulima: Accurate Memory System Design

(Andrew Over’s PhD topic)
• minimum latency between effect and impact on foreign CPU in the Fire-

Plane is 7 bus cycles

•
Processor

MMU

Bridge

Store Buffer

Prefetch Queue

Caches

Backplane
Foreign
Bridge

Foreign
Caches

BP

CPU 0

CPU N

... BP

CPU 0

CPU N

...

Timeslice N Timeslice (N+1)

Time

bridge-based structure run-loop (timeslice = 7*6 CPU cycles)

• asynchronous transactions facilitated by retry of load/store instructions,
CPU event queues, and memory request data structures

• simulating the prefetch-cache and store buffer was particularly problem-
atic

• added simulation overhead us typically 1.20 – 1.50

• scope for parallelization when running on an SMP host

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 5

5 Simulator Validation Methodology

• verifying simulator accuracy is critical for useful performance analysis

• validation is an ongoing issue in field of simulation

• microbenchmarks: verify timing of single events (written in assembler)

• e.g. D/E Cache load/store hit/miss, atomic instr’n latency, etc

• provided valuable data; several surprising & undocumented effects

• application-level: by the OpenMP version of the NAS Parallel Benchmarks

• use of hardware event counters (via UltraSPARC CPC library)√
permits a deeper-level of validation than mere execution time√
also provides breakdown of stall cycles (e.g. D/E-cache miss, store buffer)

× hardware counters are not 100% accurate;
also ambiguously/incompletely specified (e.g. stall cycle attribution)

◭◭ ◭ • ◮ ◮◮ ×

http://www.openmp.org
http://www.nas.nasa.gov/Software/NPB
http://developers.sun.com/prodtech/cc/articles/pcounters.html
http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 6

6 Validation: NAS Benchmarks (S-class)

• p threads; number of cycles target: simulator (% of Total) (new)

Metric (p) BT FT IS LU LU-hp MG SP
DC miss 0.88 5% 0.44 12% 0.97 18% 0.44 10% 1.01 13% 1.13 31% 0.91 22%

SB stall 1.20 27% 0.93 41% 1.15 54% 0.80 4% 0.84 14% 1.17 2% 0.72 14%

Total (1) 1.06 0.85 1.11 1.03 1.00 0.93 0.97
Total (2) 1.05 0.78 1.10 1.00 1.00 0.89 0.93
Total (4) 1.03 0.72 1.17 1.01 1.28 1.02 0.85
EC miss 0.16 3% 0.13 4% 0.33 5% 0.12 8% 0.27 19% 0.28 11% 0.20 9%

SB stall 1.22 27% 0.67 36% 1.22 47% 0.64 9% 0.69 19% 0.45 11% 0.64 19%

• simulator accuracy reasonable (p = 1), but less accurate as p increases

• E-cache miss cycles consistently underestimated (possibly target is
including cycles in atomic operations and store buffer stalls)
• but, copy-back and invalidate event counts agreed much more closely

suspect inaccurate simulation of barrier code to blame
• inaccuracies in D-cache probably due to random replacement policy

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 7

7 Performance Evaluation Methodology for the OMP NPB

(Nic Jeans’s Honours topic)
• hardware event counters are widely used in performance analysis for

aiding understanding of results

• with OpenMP, obvious approach to use them on the main thread only

• may not be representative of overall workloads

• time spent in barriers represents application load imbalance

• not the fault of the architecture! causes pollution of event counts

• on Solaris OpenMP, barriers are implemented relatively simply:
master: (serial region) → (|| region) → EndOfTaskBarrier() → . . .
slave: WaitForWork() → (|| region) → EndOfTaskBarrier() → . . .

• methodology: collect event counts in all threads, separating events as-
sociated with barriers

• $omp parallel ... cpc take sample(event(iam))

• binary edit of EndOfTaskBarrier() etc to turn off/on sampling at entry/exit

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 8

8 Performance Evaluation of the OMP NPB - Results

• totalled cycles over all threads: (note: slaves have significantly different counts)

1 2 4 8
Threads

0.0

2.0×10
10

4.0×10
10

6.0×10
10

C
yc

le
 c

ou
nt

Rstall_storeQ

Rstall_IU_use
Rstall_FP_use
Re_RAW_miss
Re_PC_miss
Re_EC_miss
Re_DC_missovhd
Synth_Re_DC_EC_hit

lu.W.mt.20050914.1202

Barrier cycles

Work cycles

Wed Sep 14 12:38:09 2005

1 2 4 8
Threads

0.0

1.0×10
8

2.0×10
8

3.0×10
8

4.0×10
8

C
yc

le
 c

ou
nt

Rstall_storeQ

Rstall_IU_use
Rstall_FP_use
Re_RAW_miss
Re_PC_miss
Re_EC_miss
Re_DC_missovhd
Synth_Re_DC_EC_hit

is.W.mt.20050830.1345

Barrier cycles

Work cycles

Sun Sep 11 22:04:53 2005

LU.W: increasing store buffer & IS.W: increasing imbalance &
and E-cache stalls CPU stalls from algorithm

• issues: results for each event must be counted on separate runs

• must always measure CPU cycles on each run
• slave threads sometimes have much smaller total cycles!

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 9

9 Performance Evaluation of the OMP NPB -
Extending the Methodology

• use the results to determine which feature of the architecture could be
modified to improve performance

• promising candidates include:

• reducing floating point instruction latency (BT, LU, SP)

• increasing D-cache size and improving replacement policy (most)

• using Cachegrind with a fully-associative LRU cache model (LRU)
• can very efficiently determine cache size: cache miss ‘sweet spots’

• modifying the store buffer (prefetch on entry) (LU-HP, FT, SP, IS, BP)

• modifying cache coherence protocols

• a (modified) UltraSPARC simulator will be the main tool

◭◭ ◭ • ◮ ◮◮ ×

http://valgrind.org/info/tools.html
http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 10

10 Performance Instrumentation for Clusters: Motivations

• performance evaluation methodologies have been largely successful for
improving applications and architectures for SMPs

• clusters can be more easily reconfigured than SMPs!

• to what extent can we extend such methodologies to OpemMP bench-
marks when run on clusters (with distributed shared memory)?

• “there are no existing tools that monitor interprocessor traffic in large
scale SMP or cluster systems” (Cvetanovic, Cluster 2004)

• Xmesh (HP) is a tool partially redressing this

• gathers information from hardware event counters (on CPU and pos-
sibly PCI and interconnect chipsets)

• has GUI showing CPU, System & PCI utilization, cache/TLB miss
rates, and interconnect bandwidth over time

• implemented so far on the Alpha GS1280 / Quadrics cluster

• not publically available (AFAIK)

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 11

11 Supporting (Hardware) Event Counters in DSM Clusters: Ideas

• idea: implement the equivalent of SMP hardware event counters in a
cluster with a page-based DSM:

• what SMP E-cache related events have a useful analogy here?

• E-cache read / write misses and associated stall cycles
• E-cache invalidate / write-backs and associated stalls
• counts of memory bank accesses, stall cycles due to bank contention
• remote memory bank R/W accesses (per CPU)

• interested to add a libcpc style intrastructure to DSM’s such as SCASH

• apply similarly methodology as used on SMPs to the OMP NPB

• extend to events gnerally useful for analysing cluster communication

• i.e. CPU cycles spent related to data sent/received
• direct (message processing) and indirect (waiting for message; how

much was due to contention?)
• issues: processing of NIC and kernel data, transferring to user space

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

HPCS Lab, 09/05 Performance Evaluation on ShMem Arch 12

12 Conclusions and Future Work

• accurate and reasonably efficient simulation of a modern NUMA mem-
ory system can be achieved

• entails hard work, and limited by lack of accurate and complete doc-
umentation of the target system

• hardware event counter based validation methodology was reason-
ably successful, but issues remains & more work needs to be done

• plan to parallelize simulator in order to analyse larger workloads

• methodology for analysing OMP NPB has yielded some useful results

• per-thread based analysis with separation of barrier events (caused
by application load imbalance) has proved fruitful

• architectural variation experiments still to be done

• need to improve cluster performance instrumentation infrastructure

• would like to extend SMP methodologies to DSM clusters
• requires significant low-level and network-specific work

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

