
Performance Analysis of Large-scale Simulations on
Supercomputers and Clouds

Peter Strazdins
Computer Systems Group,

Research School of Computer Science

Institute of Advanced Studies,
Technical University of Munich,

13 July 2012

(slides available from http://cs.anu.edu.au/∼Peter.Strazdins/seminars)

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/systems
http://cs.anu.edu.au
http://cs.anu.edu.au/~Peter.Strazdins/seminars

IAS TUM, July 2012 Performance of Large-scale Simulations 1

1 Overview

• the MetUM and Chaste projects
• supercomputers: the vayu cluster, the K supercomputer

• issues in large-scale, memory-intensive simulations

• techniques and tools for understanding scalability
• identifying communication overhead & load imbalance, sections
• tools: internal profilers, Integrated Performance Monitoring tool

• efficient performance analysis methodologies
• accounting for variability of measurements; affinity effects
• obtaining representative ‘sub-benchmarks’

• results on MetUM and Chaste on vayu

• comparison on the private and public clouds
• motivations and setup
• results: microbenchmarks and applications

• conclusions and future work

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 2

2 The Unified Model in Aust. Weather and Climate Simulations

• the Met Office Unified Model (MetUM, or just UM) is a (global) atmo-
spheric model developed by the UK Met Office from early ’90s

• for weather, BoM recently used a N144L50 atmosphere grid

• wished to scale up to a N320L70 (640 × 481 × 70) then a N512L70
(1024× 769× 70) grid

• operational target: 24 hr simulation in 500s on < 1K cores (10-day
‘ensemble’ forecasts)

• doubling the grid resolution increases ‘skill’ but is ≤ 8× the work!

• climate simulations currently use a N96L38 (192× 145× 38)

• ACCESS project to run many (long) runs for IPCC

• common infrastructure: atmosphere: UM (96 cores);
ocean: NEMO, sea ice: CICE, coupler: OASIS (25 cores)

• next-generation medium-term models to use N216L85 then N320L70

• note: (warped) ‘cylindrical’ grids are easier to code but problematic . . .

◭◭ ◭ • ◮ ◮◮ ×

http://www.bom.gov.au
http://www.accessimulator.org.au
http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 3

3 The MetOffice Unified Model

• configuration via UMUI tool
creates a directory with
(conditionally-compiled) source
codes + data files (for a particular
grid)

• main input file is a ‘dump’ of
initial atmospheric state (1.5GB
for N320L70)

• ‘namelist’ files for ≈ 1000 run-
time settable parameters

• in operational runs, periodi-
cally records statistics via the
STASH sub-system

• partition evenly the EW & NS di-
mensions of the atmosphere grid
on a P ×Q (MPI) process grid

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 4

4 Unified Model Code Structure and Internal Profiler

• codes in Fortran-90 (mostly F77; ≈ 900 KLOC) with cpp (include com-
mon blocks, commonly used parameter sub-lists, etc)

• main routine u model(), reads dump file & repeatedly calls atm step()

• dominated by Helmholtz P -T solver (GCR on a tridia. linear system)

• internal profiling module can be activated via ‘namelist’ parameters

• has ‘non-inclusive’ +‘inclusive’ timers (≈ 100 of each)
• the top-level non-inclusive timer is for u model();

sum of all non-inclusive timers is time for u model()

• reports number of calls and totals across all processes, e.g.
ROUTINE MEAN MEDIAN SD % of mean MAX ...

1 PE_Helmholtz 206.97 206.98 0.05 0.02% 207.02 ...
3 ATM_STEP 36.39 38.53 9.46 25.99% 44.60 ...
4 SL_Thermo 25.38 26.60 3.45 13.58% 31.15 ...
5 READDUMP 24.18 24.36 1.12 4.62% 24.37 ...
...

• due to global sync. when a timer starts, can estimate load imbalance

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 5

5 The Chaste Cardiac Simulation Project

• Chaste: software infrastructure for
modelling the electro-mechanical
properties of the heart

• large system of C++ code, many
dependencies

• also has internal profiler

• required resolution necessitates
parallelization via MPI

• most computationally-intensive
part is solution of a large sparse
linear system once per timestep

• workload uses a high resolution
rabbit heart (Oxford University) (2
× 1 GB files – 4 million nodes, 24
million elements)

◭◭ ◭ • ◮ ◮◮ ×

http://www.comlab.ox.ac.uk/chaste/
http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 6

6 The Vayu Cluster at the NCI National Facility

• 1492 nodes: two 2.93 GHz X5570 quad-core
Nehalems (commissioned Mar 2010)

• memory hierarchy: 32KB (per core) / 256KB
(per core) / 8MB (per socket); 24 GB RAM

• single plane QDR Infiniband: latency of 2.0µs
& 2600 MB/s (uni-) bandwidth per node

• jobs (parallel) I/O via Lustre filesystem

• jobs submitted via locally modified PBS; (by default) allocates 8 consec-
utively numbered MPI processes to each node

• typical snapshot:
1216 running jobs (465 suspended), 280 queued jobs, 11776 cpus in use

• estimating time and memory resources accurately is important!

• allocation for our work was a few thousand CPU hours, max. core count
2048 . . .

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 7

7 Issues in Large-scale Memory-Intensive Simulations

• simulations of scientific interest run over many timesteps

• ‘realistic’ benchmarks are resource-intensive: may be difficult on a
‘premiere facility’

• variability of results problematic for accurate performance analysis

• resolution for state-of-the-art science pushes memory limits, even on a
‘premiere facility’

• Chaste on 4M node mesh needs more memory than N320L70 atmo-
sphere!

• running MetUM on vayu required:

• removing limit on stack size
• redefining internal message buffer size (< 8 cores)
• ‘pinning’ more (1 GB) physical memory for Infiniband (> 900 cores)
• specifying memory limit to be physical (rather than virtual) (> 900

cores, wide process grid aspect ratios)

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 8

8 Techniques for Understanding Scalability:
Communication Overhead and Load Imbalance

• measure time spent in communication library (MPI) separately

• ideally, break-down per different communication operations
(2 major categories: point-to-point and collective)

• and (major categories of) buffer size

• load imbalance is more tricky to measure

• differences in computation times across processes
• and/or differences in times taken at barriers

• i.e. the averaged time (over each process) spent in barriers, minus
the estimated overhead of barriers (when perfectly balanced)

• ideally, should do this for other collectives as well (e.g. small all-
reduce operations)

• note: problems are not solvable by a faster network!
must be addressed at the application level

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 9

9 Case Sudy: Load Imbalance Across Cores in MetUM (32× 32
process grid)

• over ‘warmed period’; Red = 0%,
Black = 15% of run-time

• from time spent in barriers within
UM internal profiler

• large value indicates a lighter
load

Note that this will be an underesti-
mate!

• clear indication of especially latitu-
dinal variations

• solution: less regular data distri-
bution to take load off the polar ar-
eas

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 10

10 Tech. for Understanding Scalability: Section-Based Analysis

• consider latitudinal load imbalance in global atmosphere simulation

• simulation at each timestep proceeds in a number of ‘sections’
polar filtering, thermal radiative transfers, convection, advection, etc

• some require more work in high latitude, others in lower

• understanding of issues can be sharpened if considered separately

• in particular, aggregate load imbalance is better estimated from weighted
sum of per-section imbalances (triangle inequality)

• e.g. in the MetUM atm step() routine:

If (Ltimer) Call timer (’PE_Helmholtz’,3) ! 3: start non−inclusive timer

! code to call main PE Helmholtz routine

...

If (Ltimer) Call timer (’PE_Helmholtz’,4) ! 4: end non−inclusive timer

by calling at a barrier at the start of each (!) timer, can estimate per-
section load imbalance by using variation in total times

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 11

11 Tools for Understanding Scalability

• desirable properties of any tool collecting scalability-related data

• have minimum impact on computation time and memory footprint
• communication vs. computation time breakup, load imbalance

• provide further information indicating likely causes (i.e. hardware
event counts: e.g. cache misses)

• breakdown of these over component parts of the computation ,

• range from internal profilers to the heavy-weight SunStudio collect

• the works! Pertinent sections derived automatically from the subrou-
tine call-graph – combined with MPI & hardware event count profiling

• Integrated Performance Monitoring tool (IPM) in middle of the range
• supports profiling of the MPI library and hardware event counters
• support sections easily from internal profiler, e.g. from MetUM timer():

if (timer type == 3) call mpi pcontrol (+1, current timer name)

if (timer type == 4) call mpi pcontrol(−1, current timer name)

◭◭ ◭ • ◮ ◮◮ ×

http://ipm-hpc.sourceforge.net/
http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 12

12 Methodologies: Minimizing Measurement Variability

• to analyze large-scale and long-running simulations over 1000’s of cores,
potentially need vast computing resources!

• compounded with fact that repeated experiments on a facility may give
significant variability: many need to run many times!

• on a cluster such as vayu:

• each node has 2 quad-core sockets; 8 processes given to each node

the following effects were found to be important:

• process affinity: once a node is assigned to a core, ensure that it
stays there

• NUMA affinity: memory used by a process must only be allocated on
the socket of the core that it is bound to

• input/output requires (on vayu) access to the shared Lustre file system

• exposes experiments to other users’ using the file system
• remains an open problem!

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 13

13 Case Study: Effect of Affinity on Variability of MetUM

• use the normalized error
from the average Σn

i=1|ti−t̄|

nt̄

• noting number of mea-
surements (n = 5)
only sufficient to observe
general trends

• no clear correlation of
error and number of
cores

• process affinity re-
duces variability by
20%

• NUMA affinity re-
duces this further by
a factor of 4!

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 16 32 64 128 256 512 1024 2048
N

or
m

al
iz

ed
 E

rr
or

Number of Cores

p aff. (avg err=.098)
none (avg err=0.124)

p+m aff. (avg err=0.029)

(for ‘warmed time’ of PS24/N512L70)

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 14

14 Effect of (no) NUMA Affinity – Exposed by IPM Profiles

• MetUM N320L70 (no STASH) output, 32× 32 process grid

• no NUMA affinity: groups of 4 processes (e.g. socket 0) – spikes in
compute times

• other runs: spikes occur on differing numbers & positions of nodes

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 15

15 Methodologies: Obtaining Representative Sub-Benchmarks

• standard 24 hour atmosphere benchmarks used by BoM are deemed to
represent 10-day operational runs

• how much of this actually needs to be done for an accurate and repre-
sentative performance analysis?

• basic idea: reduce number of iterations and select representative itera-
tions for extrapolation for a larger simulation

• works well when simulation’s computational profile is time-invariant

• cardiac simulation is more problematic:

• simulations of interest comprise applying an electric stimulation (e.g.
0.25 ms) and awaiting response over a longer interval (e.g. 30 ms)

• depolarization are repolariztion wavefronts travel back and forth across
the model over the response time

• in such cases, detailed performance analysis is required across all po-
tentially different intervals to see if computational profiles (significantly)
change

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 16

16 Validation of Sub-benchmark Methodology - MetUM

• methodology: run for 3 hours, taking the 12 iterations on hours 2–3
(‘warmed period’) as representative

• projected run time for 24 hour operational job (960 cores) is:
t′ = (t− t2:24) + 11.5t2:3

run t t2:24 t2:3 t′ anomalies
N512L70 527 39.12 6.5 524.3 −
N320L70− 1 224 163.8 13.7 214.8 iter. 59 (7.9s)
N320L70− 2 237 174.9 14.9 233.6 iter. 134 (4.2s)

• defensive programming check: sum of ‘non-inclusive’ timers matched
total to less than 0.1%

• to reduce overhead, 1st hour was used to determine which sections
were ‘important’ enough to perform barriers to estimate load imbalance

• reduced number of such barriers by a factor of 10
• measured profiler overhead (gather data, barriers) of < 1% of ‘warmed

period’ times

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 17

17 Results: Which Time to Take? (N512L70 + PS24)

• process grids aspects
between 1:1 and 1:2
chosen

• ‘t16’ is time for 16
cores

• essentially linear
scaling from 16 to 64
cores (slightly super-)

• surprisingly, average
& minimum times
show similar curves

 8

 16

 32

 64

 128

 128 256 512 1024 2048

S
pe

ed
up

 (
ov

er
 1

6
co

re
s)

Number of Cores

job - min (t16=2324)
u_model - min (t16=2307))

warm - min (t16=1464)
warm - av (t16=1603)

ideal

• job time @ 1024 cores includes: pre-launch: 2s, launch processes: 4s,
read ‘namelist’ files: 6s, read dump(): 27s, cleanup: 1s

• message: ‘warmed time’ is a better predictor of the full simulation

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 18

18 Results: Section Analysis and Scaling Behavior (Chaste)

• ‘t8’ is the time in seconds for 8 cores (due to memory constraints, could
not run on less)

 0.0625

 0.25

 1

 4

 16

 64

 256

 8 16 32 64 128 256 512 1024 2048

S
pe

ed
up

 (
ov

er
 8

 c
or

es
)

Number of Cores

total (t8=2143)
total (long sim)
KSp (t8=1451)

Ode (t8=281)
InMesh (t8=54)

Output (t8=2)
rest (t8=92)

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 19

19 Results: Understanding Scalability Analysis via Profiling

• scalability of total time: max. 11.9 at 512 cores (from 8)

• scalability of ODE and KSp quite high; loss due to un-parallelized ‘rest’
and inversely scaling ’Output’ (using HDF5)

• execution time spent for 1024 cores

section %t %comm main MPI comments
rest 43 30 all-gather 25% time in I/O
Output 20 30 barrier high load imbalance
InMesh 19 41 broadcast
KSp 14 25 all-reduce (8b)
Ode 1 18 all-reduce (4b)
AssSys 0.8 0 slight imbalance; some I/O
AssRHS 0.5 7 waitany high load imbalance

• note: IPM dilated the time spent in the KSp section by 50% and overall
by 10%

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 20

20 Motivations for Using Clouds: a Cloud-bursting Supercom-
puter Facility

• supercomputing facilities provide access to
state-of-the-art cluster computers

• also provide comprehensive software stacks
to support a diverse range of applications

• the supercomputing cluster is typically highly contended resource

• users may be restricted to limited resources
• may have long turnaround times
• some workloads may not make good use of cluster

• ⇒ may be better off using a private or even public cloud

• requires easily replication of software stack on cloud resources
• ideally, migration of jobs onto cloud would be transparent
• recent frameworks can transparently profile HPC jobs for cloud suit-

ability, e.g. ARRIVE-F, (and migrate VMs accordingly)

◭◭ ◭ • ◮ ◮◮ ×

http://cs.anu.edu.au/~Muhammad.Atif/opensource/arrivef/
http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 21

21 Experimental Cloud Setup: Systems

Platform private cloud public cloud premiere cluster
Platform DCC EC2 Vayu

of Nodes 8 4 1492

CPU

Model Intel Xeon E5520 Intel Xeon X5570 Intel Xeon X5570
Clock Spd 2.27GHz 2.93GHz 2.93GHz

#Cores 8 (2 slots) 8× 2 8 (2 slots)
L2 Cache 8MB (shared) 8MB (shared) 8MB (shared)

Memory per node 40GB 20GB 24GB
Operating System Centos 5.7 CentOS 5.7 CentOS 5.7

Virtualization VMware ESX 4.0 Xen –
File System NFS NFS Lustre
Interconnect 1 GigE (dual) 10 GigE QDR IB

• DCC: 1 VM/node; filesystems mounted via external cluster via two QLogic
channel fibre HBAs

• vayu: QDR IB used for both compute and storage

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 22

22 Cloud Setup: Software

• EC2: StarCluster instance to automate the build, configuration & man-
agement of HPC compute nodes

• vayu /apps directory: system-wide compilers, libraries, and application
codes

• user environment is configured via module package

• rsync /apps and user home/project directories onto the VM to replicate
stack

• minimizes interference of existing stack on the clouds

• only occasionally needed to recompile for the clouds

• benchmarking software

• OSU MPI communication micro-benchmarks: bandwidth and latency

• NAS Parallel Benchmark MPI suite 3.3, class B

• 5 kernels & 3 pseudo-applications derived from CFD applications

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 23

23 Cloud Results: Communication Micro-benchmarks

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1 8 64 512 4K 32K 256K 2M

M
B

/s
ec

Message Size

OSU bandwith benchmark results comparison on three different platforms

dcc GigE

EC2 10GigE

vayu QDR IB

 1

 10

 100

 1000

 10000

 100000

 1 8 64 512 4K 32K 256K 2M

M
ic

ro
se

co
nd

s

Message Size

OSU latency benchmark results comparison on three different platforms

dcc GigE

EC2 10GigE

vayu QDR IB

OSU MPI bandwidth tests OSU MPI latency tests
(MB/s vs message size) (time (µs) vs message size)

• trends as expected per theoretical specifications: more than one order
of magnitude better performance on vayu

• fluctuations on DCC suspected from CPU scheduling by hypervisor

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 24

24 Cloud Results: NAS Parallel Benchmarks (I)

 0.2

 0.4

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

S
pe

ed
up

of cores

EP benchmark scalability comparison on three different platforms

dcc GigE

EC2 10GigE

vayu QDR IB

 0.2

 0.4

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

S
pe

ed
up

of cores

IS benchmark scalability comparison on three different platforms

dcc GigE

EC2 10GigE

vayu QDR IB

EP.B speedup, 1 to 64 cores IS.B speedup, 1 to 64 cores
• EC2 fluctuations for EP.B suspected due to jitter (CPU scheduling and

hyperthreading

• IS shows the poorest scaling of all benchmarks:

• IPM profiling shows % communication at 64 cores is 98% (DCC),
85% (DCC) and 68% (vayu)

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 25

25 Cloud Results: NAS Parallel Benchmarks (II)

 0.2

 0.4

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

S
pe

ed
up

of cores

FT benchmark scalability comparison on three different platforms

dcc GigE

EC2 10GigE

vayu QDR IB

 0.2

 0.4

 1

 2

 4

 8

 16

 32

 64

 1 2 4 8 16 32 64

S
pe

ed
up

of cores

CG benchmark scalability comparison on three different platforms

dcc GigE

EC2 10GigE

vayu QDR IB

FT.B speedup, 1 to 64 cores CG.B speedup, 1 to 64 cores
• CG.B: IPM profiling shows % communication at 64 cores is 90% (DCC),

58% (DCC) and 22% (vayu)

• drop-offs on clouds occur when intra-node communication is required

• BT.B, MG.B, SP.B and LU.B showed similar scaling to FT.B

• single core performance consistently 20% (30%) faster on EC2 (vayu)

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 26

26 Cloud Results: Chaste Cardiac Simulation

• (results not available on EC2 due
to complex dependencies)

• scaling of the KSp linear solver de-
termines overall trends

• note: benchmark scales to
1024 cores on vayu

• input mesh: 1.4× faster on vayu (8
cores), scaled the same on both

• output: 2.6× faster on vayu (8
cores) but scaled better on dcc

 1

 2

 4

 8

 8 16 32 64

S
pe

ed
up

 (
ov

er
 8

 c
or

es
)

Number of Cores

vayu total (t8=1599)
dcc total (t8=1017)
vayu KSp (t8=938)

dcc KSp (t8=579)

• @ 32 cores, 48% vs 11% of time spent in communication on dcc vs vayu

• 13× more spent in KSp solver on dcc (large numbers of collectives)

• IPM profiles also indicated a greater degree and a higher irregularity of
load imbalance on DCC

• ⇒ dcc performance hurt by high message latencies & jitter

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 27

27 Cloud Results: MetUM Global Atmosphere Simulation

 1

 2

 4

 8

 8 16 32 64

S
pe

ed
up

 (
ov

er
 8

 c
or

es
)

Number of Cores

vayu (t8=963)
dcc total (t8=1486)
EC2 total (t8=812)

EC2-4 total (t8=646)

Vayu DCC EC2 EC2-4
time(s) 303 624 770 380
rcomp 1.0 1.37 2.39 1.17
rcomm 1.0 6.71 3.53 1.61
%comm 13 42 18 18
%imbal 13 4 18 19
I/O (s) 4.5 37.8 9.1 7.6

Details at 32 cores (EC2-4: 4 nodes
used, uniformly 2× faster)

• overall load imbalance least on dcc, but generally higher & more irregu-
lar across individual sections (NUMA effects)

• EC-2 shows similar imbalance and communication profiles to vayu

• dcc spent most time in communication, particularly in sections where
there were large numbers of collectives

• read-only I/O section: dcc much slower to vayu, EC2 similar, to vayu

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 28

28 Conclusions

• performance of large-scale memory-intensive simulations

• working with such codes and systems is hard!
• many techniques and suitably lightweight tools needs to be applied in

order to understand it
• need to understand what (is the issue), then where, and then why
• it is however possible to get useful insights, even for complex ap-

plications
• efficient methodologies need to be developed – non-trivial unless com-

putational profile is time-invariant!

• largely successful in creating x86-64 binaries on HPC system & repli-
cating all software dependencies into the VMs on clouds

• communication bound applications were disadvantaged on the virtual-
ized platforms
• large numbers of short messages were especially problematic

• over-subscription & hidden effects (e.g. NUMA) also also affected clouds

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 29

Future Work

• extend performance analysis to other large-scale applications

(e.g. ANUGA, GENE)

• methods to reduce reductions and other global operations become
more attractive as we scale to larger numbers of cores

• use metrics from the ARRIVE-F framework to assess candidate work-
loads for private/public science clouds

• using StarCluster, cloud burst onto OpenStack based resources locally
& externally

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

IAS TUM, July 2012 Performance of Large-scale Simulations 30

Acknowledgements

• MetUM in collaboration with Tim Pugh (BoM) and others

• Chaste work in collaboration with Markus Hegland and James Southern
(FLE)

• Fujitsu Laboratories Europe for supporting work on Chaste

• cloud work in collaboration with Jie Cai, Muhammad Atif and Joseph
Antony (NCI NF)

• NCI NF staff technical support

• NCI NF for time on vayu cluster

Questions???

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au

