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1 Overview

• the MetUM and Chaste projects
• supercomputers: the vayu cluster, the K supercomputer

• issues in large-scale, memory-intensive simulations

• techniques and tools for understanding scalability
• identifying communication overhead & load imbalance, sections
• tools: internal profilers, Integrated Performance Monitoring tool

• efficient performance analysis methodologies
• accounting for variability of measurements; affinity effects
• obtaining representative ‘sub-benchmarks’

• results on MetUM and Chaste on vayu

• comparison on the private and public clouds
• motivations and setup
• results: microbenchmarks and applications

• conclusions and future work

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au


IAS TUM, July 2012 Performance of Large-scale Simulations 2

2 The Unified Model in Aust. Weather and Climate Simulations

• the Met Office Unified Model (MetUM, or just UM) is a (global) atmo-
spheric model developed by the UK Met Office from early ’90s

• for weather, BoM recently used a N144L50 atmosphere grid

• wished to scale up to a N320L70 (640 × 481 × 70) then a N512L70
(1024× 769× 70) grid

• operational target: 24 hr simulation in 500s on < 1K cores (10-day
‘ensemble’ forecasts)

• doubling the grid resolution increases ‘skill’ but is ≤ 8× the work!

• climate simulations currently use a N96L38 (192× 145× 38)

• ACCESS project to run many (long) runs for IPCC

• common infrastructure: atmosphere: UM (96 cores);
ocean: NEMO, sea ice: CICE, coupler: OASIS (25 cores)

• next-generation medium-term models to use N216L85 then N320L70

• note: (warped) ‘cylindrical’ grids are easier to code but problematic . . .

◭◭ ◭ • ◮ ◮◮ ×

http://www.bom.gov.au
http://www.accessimulator.org.au
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3 The MetOffice Unified Model

• configuration via UMUI tool
creates a directory with
(conditionally-compiled) source
codes + data files (for a particular
grid)

• main input file is a ‘dump’ of
initial atmospheric state (1.5GB
for N320L70)

• ‘namelist’ files for ≈ 1000 run-
time settable parameters

• in operational runs, periodi-
cally records statistics via the
STASH sub-system

• partition evenly the EW & NS di-
mensions of the atmosphere grid
on a P ×Q (MPI) process grid

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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4 Unified Model Code Structure and Internal Profiler

• codes in Fortran-90 (mostly F77; ≈ 900 KLOC) with cpp (include com-
mon blocks, commonly used parameter sub-lists, etc)

• main routine u model(), reads dump file & repeatedly calls atm step()

• dominated by Helmholtz P -T solver (GCR on a tridia. linear system)

• internal profiling module can be activated via ‘namelist’ parameters

• has ‘non-inclusive’ +‘inclusive’ timers (≈ 100 of each)
• the top-level non-inclusive timer is for u model();

sum of all non-inclusive timers is time for u model()

• reports number of calls and totals across all processes, e.g.
ROUTINE MEAN MEDIAN SD % of mean MAX ...

1 PE_Helmholtz 206.97 206.98 0.05 0.02% 207.02 ...
3 ATM_STEP 36.39 38.53 9.46 25.99% 44.60 ...
4 SL_Thermo 25.38 26.60 3.45 13.58% 31.15 ...
5 READDUMP 24.18 24.36 1.12 4.62% 24.37 ...
...

• due to global sync. when a timer starts, can estimate load imbalance

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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5 The Chaste Cardiac Simulation Project

• Chaste: software infrastructure for
modelling the electro-mechanical
properties of the heart

• large system of C++ code, many
dependencies

• also has internal profiler

• required resolution necessitates
parallelization via MPI

• most computationally-intensive
part is solution of a large sparse
linear system once per timestep

• workload uses a high resolution
rabbit heart (Oxford University) (2
× 1 GB files – 4 million nodes, 24
million elements)

◭◭ ◭ • ◮ ◮◮ ×

http://www.comlab.ox.ac.uk/chaste/
http://www.anu.edu.au
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6 The Vayu Cluster at the NCI National Facility

• 1492 nodes: two 2.93 GHz X5570 quad-core
Nehalems (commissioned Mar 2010)

• memory hierarchy: 32KB (per core) / 256KB
(per core) / 8MB (per socket); 24 GB RAM

• single plane QDR Infiniband: latency of 2.0µs
& 2600 MB/s (uni-) bandwidth per node

• jobs (parallel) I/O via Lustre filesystem

• jobs submitted via locally modified PBS; (by default) allocates 8 consec-
utively numbered MPI processes to each node

• typical snapshot:
1216 running jobs (465 suspended), 280 queued jobs, 11776 cpus in use

• estimating time and memory resources accurately is important!

• allocation for our work was a few thousand CPU hours, max. core count
2048 . . .

◭◭ ◭ • ◮ ◮◮ ×
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7 Issues in Large-scale Memory-Intensive Simulations

• simulations of scientific interest run over many timesteps

• ‘realistic’ benchmarks are resource-intensive: may be difficult on a
‘premiere facility’

• variability of results problematic for accurate performance analysis

• resolution for state-of-the-art science pushes memory limits, even on a
‘premiere facility’

• Chaste on 4M node mesh needs more memory than N320L70 atmo-
sphere!

• running MetUM on vayu required:

• removing limit on stack size
• redefining internal message buffer size (< 8 cores)
• ‘pinning’ more (1 GB) physical memory for Infiniband (> 900 cores)
• specifying memory limit to be physical (rather than virtual) (> 900

cores, wide process grid aspect ratios)

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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8 Techniques for Understanding Scalability:
Communication Overhead and Load Imbalance

• measure time spent in communication library (MPI) separately

• ideally, break-down per different communication operations
(2 major categories: point-to-point and collective)

• and (major categories of) buffer size

• load imbalance is more tricky to measure

• differences in computation times across processes
• and/or differences in times taken at barriers

• i.e. the averaged time (over each process) spent in barriers, minus
the estimated overhead of barriers (when perfectly balanced)

• ideally, should do this for other collectives as well (e.g. small all-
reduce operations)

• note: problems are not solvable by a faster network!
must be addressed at the application level

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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9 Case Sudy: Load Imbalance Across Cores in MetUM (32× 32
process grid)

• over ‘warmed period’; Red = 0%,
Black = 15% of run-time

• from time spent in barriers within
UM internal profiler

• large value indicates a lighter
load

Note that this will be an underesti-
mate!

• clear indication of especially latitu-
dinal variations

• solution: less regular data distri-
bution to take load off the polar ar-
eas

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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10 Tech. for Understanding Scalability: Section-Based Analysis

• consider latitudinal load imbalance in global atmosphere simulation

• simulation at each timestep proceeds in a number of ‘sections’
polar filtering, thermal radiative transfers, convection, advection, etc

• some require more work in high latitude, others in lower

• understanding of issues can be sharpened if considered separately

• in particular, aggregate load imbalance is better estimated from weighted
sum of per-section imbalances (triangle inequality)

• e.g. in the MetUM atm step() routine:

If (Ltimer) Call timer (’PE_Helmholtz’,3) ! 3: start non−inclusive timer

! code to call main PE Helmholtz routine

...

If (Ltimer) Call timer (’PE_Helmholtz’,4) ! 4: end non−inclusive timer

by calling at a barrier at the start of each (!) timer, can estimate per-
section load imbalance by using variation in total times

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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11 Tools for Understanding Scalability

• desirable properties of any tool collecting scalability-related data

• have minimum impact on computation time and memory footprint
• communication vs. computation time breakup, load imbalance

• provide further information indicating likely causes (i.e. hardware
event counts: e.g. cache misses)

• breakdown of these over component parts of the computation ,

• range from internal profilers to the heavy-weight SunStudio collect

• the works! Pertinent sections derived automatically from the subrou-
tine call-graph – combined with MPI & hardware event count profiling

• Integrated Performance Monitoring tool (IPM) in middle of the range
• supports profiling of the MPI library and hardware event counters
• support sections easily from internal profiler, e.g. from MetUM timer():

if ( timer type == 3) call mpi pcontrol (+1, current timer name )

if ( timer type == 4) call mpi pcontrol(−1, current timer name )

◭◭ ◭ • ◮ ◮◮ ×

http://ipm-hpc.sourceforge.net/
http://www.anu.edu.au
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12 Methodologies: Minimizing Measurement Variability

• to analyze large-scale and long-running simulations over 1000’s of cores,
potentially need vast computing resources!

• compounded with fact that repeated experiments on a facility may give
significant variability: many need to run many times!

• on a cluster such as vayu:

• each node has 2 quad-core sockets; 8 processes given to each node

the following effects were found to be important:

• process affinity: once a node is assigned to a core, ensure that it
stays there

• NUMA affinity: memory used by a process must only be allocated on
the socket of the core that it is bound to

• input/output requires (on vayu) access to the shared Lustre file system

• exposes experiments to other users’ using the file system
• remains an open problem!

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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13 Case Study: Effect of Affinity on Variability of MetUM

• use the normalized error
from the average Σn

i=1|ti−t̄|

nt̄

• noting number of mea-
surements (n = 5)
only sufficient to observe
general trends

• no clear correlation of
error and number of
cores

• process affinity re-
duces variability by
20%

• NUMA affinity re-
duces this further by
a factor of 4!
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◭◭ ◭ • ◮ ◮◮ ×
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14 Effect of (no) NUMA Affinity – Exposed by IPM Profiles

• MetUM N320L70 (no STASH) output, 32× 32 process grid

• no NUMA affinity: groups of 4 processes (e.g. socket 0) – spikes in
compute times

• other runs: spikes occur on differing numbers & positions of nodes

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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15 Methodologies: Obtaining Representative Sub-Benchmarks

• standard 24 hour atmosphere benchmarks used by BoM are deemed to
represent 10-day operational runs

• how much of this actually needs to be done for an accurate and repre-
sentative performance analysis?

• basic idea: reduce number of iterations and select representative itera-
tions for extrapolation for a larger simulation

• works well when simulation’s computational profile is time-invariant

• cardiac simulation is more problematic:

• simulations of interest comprise applying an electric stimulation (e.g.
0.25 ms) and awaiting response over a longer interval (e.g. 30 ms)

• depolarization are repolariztion wavefronts travel back and forth across
the model over the response time

• in such cases, detailed performance analysis is required across all po-
tentially different intervals to see if computational profiles (significantly)
change

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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16 Validation of Sub-benchmark Methodology - MetUM

• methodology: run for 3 hours, taking the 12 iterations on hours 2–3
(‘warmed period’) as representative

• projected run time for 24 hour operational job (960 cores) is:
t′ = (t− t2:24) + 11.5t2:3

run t t2:24 t2:3 t′ anomalies
N512L70 527 39.12 6.5 524.3 −
N320L70− 1 224 163.8 13.7 214.8 iter. 59 (7.9s)
N320L70− 2 237 174.9 14.9 233.6 iter. 134 (4.2s)

• defensive programming check: sum of ‘non-inclusive’ timers matched
total to less than 0.1%

• to reduce overhead, 1st hour was used to determine which sections
were ‘important’ enough to perform barriers to estimate load imbalance

• reduced number of such barriers by a factor of 10
• measured profiler overhead (gather data, barriers) of < 1% of ‘warmed

period’ times

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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17 Results: Which Time to Take? (N512L70 + PS24)

• process grids aspects
between 1:1 and 1:2
chosen

• ‘t16’ is time for 16
cores

• essentially linear
scaling from 16 to 64
cores (slightly super-)

• surprisingly, average
& minimum times
show similar curves

 8

 16

 32

 64

 128

 128  256  512  1024  2048

S
pe

ed
up

 (
ov

er
 1

6 
co

re
s)

Number of Cores

job - min (t16=2324)
u_model - min (t16=2307))

warm - min (t16=1464)
warm - av (t16=1603)

ideal

• job time @ 1024 cores includes: pre-launch: 2s, launch processes: 4s,
read ‘namelist’ files: 6s, read dump(): 27s, cleanup: 1s

• message: ‘warmed time’ is a better predictor of the full simulation

◭◭ ◭ • ◮ ◮◮ ×
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18 Results: Section Analysis and Scaling Behavior (Chaste)

• ‘t8’ is the time in seconds for 8 cores (due to memory constraints, could
not run on less)
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◭◭ ◭ • ◮ ◮◮ ×
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19 Results: Understanding Scalability Analysis via Profiling

• scalability of total time: max. 11.9 at 512 cores (from 8)

• scalability of ODE and KSp quite high; loss due to un-parallelized ‘rest’
and inversely scaling ’Output’ (using HDF5)

• execution time spent for 1024 cores

section %t %comm main MPI comments
rest 43 30 all-gather 25% time in I/O
Output 20 30 barrier high load imbalance
InMesh 19 41 broadcast
KSp 14 25 all-reduce (8b)
Ode 1 18 all-reduce (4b)
AssSys 0.8 0 slight imbalance; some I/O
AssRHS 0.5 7 waitany high load imbalance

• note: IPM dilated the time spent in the KSp section by 50% and overall
by 10%

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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20 Motivations for Using Clouds: a Cloud-bursting Supercom-
puter Facility

• supercomputing facilities provide access to
state-of-the-art cluster computers

• also provide comprehensive software stacks
to support a diverse range of applications

• the supercomputing cluster is typically highly contended resource

• users may be restricted to limited resources
• may have long turnaround times
• some workloads may not make good use of cluster

• ⇒ may be better off using a private or even public cloud

• requires easily replication of software stack on cloud resources
• ideally, migration of jobs onto cloud would be transparent
• recent frameworks can transparently profile HPC jobs for cloud suit-

ability, e.g. ARRIVE-F, (and migrate VMs accordingly)

◭◭ ◭ • ◮ ◮◮ ×

http://cs.anu.edu.au/~Muhammad.Atif/opensource/arrivef/
http://www.anu.edu.au
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21 Experimental Cloud Setup: Systems

Platform private cloud public cloud premiere cluster
Platform DCC EC2 Vayu

# of Nodes 8 4 1492

CPU

Model Intel Xeon E5520 Intel Xeon X5570 Intel Xeon X5570
Clock Spd 2.27GHz 2.93GHz 2.93GHz

#Cores 8 (2 slots) 8× 2 8 (2 slots)
L2 Cache 8MB (shared) 8MB (shared) 8MB (shared)

Memory per node 40GB 20GB 24GB
Operating System Centos 5.7 CentOS 5.7 CentOS 5.7

Virtualization VMware ESX 4.0 Xen –
File System NFS NFS Lustre
Interconnect 1 GigE (dual) 10 GigE QDR IB

• DCC: 1 VM/node; filesystems mounted via external cluster via two QLogic
channel fibre HBAs

• vayu: QDR IB used for both compute and storage

◭◭ ◭ • ◮ ◮◮ ×
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22 Cloud Setup: Software

• EC2: StarCluster instance to automate the build, configuration & man-
agement of HPC compute nodes

• vayu /apps directory: system-wide compilers, libraries, and application
codes

• user environment is configured via module package

• rsync /apps and user home/project directories onto the VM to replicate
stack

• minimizes interference of existing stack on the clouds

• only occasionally needed to recompile for the clouds

• benchmarking software

• OSU MPI communication micro-benchmarks: bandwidth and latency

• NAS Parallel Benchmark MPI suite 3.3, class B

• 5 kernels & 3 pseudo-applications derived from CFD applications

◭◭ ◭ • ◮ ◮◮ ×
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23 Cloud Results: Communication Micro-benchmarks
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• trends as expected per theoretical specifications: more than one order
of magnitude better performance on vayu

• fluctuations on DCC suspected from CPU scheduling by hypervisor

◭◭ ◭ • ◮ ◮◮ ×
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24 Cloud Results: NAS Parallel Benchmarks (I)
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EP.B speedup, 1 to 64 cores IS.B speedup, 1 to 64 cores
• EC2 fluctuations for EP.B suspected due to jitter (CPU scheduling and

hyperthreading

• IS shows the poorest scaling of all benchmarks:

• IPM profiling shows % communication at 64 cores is 98% (DCC),
85% (DCC) and 68% (vayu)

◭◭ ◭ • ◮ ◮◮ ×
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25 Cloud Results: NAS Parallel Benchmarks (II)
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FT.B speedup, 1 to 64 cores CG.B speedup, 1 to 64 cores
• CG.B: IPM profiling shows % communication at 64 cores is 90% (DCC),

58% (DCC) and 22% (vayu)

• drop-offs on clouds occur when intra-node communication is required

• BT.B, MG.B, SP.B and LU.B showed similar scaling to FT.B

• single core performance consistently 20% (30%) faster on EC2 (vayu)

◭◭ ◭ • ◮ ◮◮ ×
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26 Cloud Results: Chaste Cardiac Simulation

• (results not available on EC2 due
to complex dependencies)

• scaling of the KSp linear solver de-
termines overall trends

• note: benchmark scales to
1024 cores on vayu

• input mesh: 1.4× faster on vayu (8
cores), scaled the same on both

• output: 2.6× faster on vayu (8
cores) but scaled better on dcc
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• @ 32 cores, 48% vs 11% of time spent in communication on dcc vs vayu

• 13× more spent in KSp solver on dcc (large numbers of collectives)

• IPM profiles also indicated a greater degree and a higher irregularity of
load imbalance on DCC

• ⇒ dcc performance hurt by high message latencies & jitter

◭◭ ◭ • ◮ ◮◮ ×
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27 Cloud Results: MetUM Global Atmosphere Simulation
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time(s) 303 624 770 380
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%comm 13 42 18 18
%imbal 13 4 18 19
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Details at 32 cores (EC2-4: 4 nodes
used, uniformly 2× faster)

• overall load imbalance least on dcc, but generally higher & more irregu-
lar across individual sections (NUMA effects)

• EC-2 shows similar imbalance and communication profiles to vayu

• dcc spent most time in communication, particularly in sections where
there were large numbers of collectives

• read-only I/O section: dcc much slower to vayu, EC2 similar, to vayu

◭◭ ◭ • ◮ ◮◮ ×
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28 Conclusions

• performance of large-scale memory-intensive simulations

• working with such codes and systems is hard!
• many techniques and suitably lightweight tools needs to be applied in

order to understand it
• need to understand what (is the issue), then where, and then why
• it is however possible to get useful insights, even for complex ap-

plications
• efficient methodologies need to be developed – non-trivial unless com-

putational profile is time-invariant!

• largely successful in creating x86-64 binaries on HPC system & repli-
cating all software dependencies into the VMs on clouds

• communication bound applications were disadvantaged on the virtual-
ized platforms
• large numbers of short messages were especially problematic

• over-subscription & hidden effects (e.g. NUMA) also also affected clouds

◭◭ ◭ • ◮ ◮◮ ×
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Future Work

• extend performance analysis to other large-scale applications

(e.g. ANUGA, GENE)

• methods to reduce reductions and other global operations become
more attractive as we scale to larger numbers of cores

• use metrics from the ARRIVE-F framework to assess candidate work-
loads for private/public science clouds

• using StarCluster, cloud burst onto OpenStack based resources locally
& externally

◭◭ ◭ • ◮ ◮◮ ×
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