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1 Overview
• overview of research teaching by the Computer Systems Group, ANU

• OpenMP for contemporary clusters
• state of the art; handling of heterogeneity
• utilization of advanced networking technologies

• high performance numerical computing on service-oriented middleware

• provide fault-tolerance & handling of heterogeneity, and performance?

• virtualized HPC Clusters
• motivations: data center with a heterogeneous cluster of sub-clusters
• evaluating performance of communication configurations
• framework for scheduling with virtual machine migration

• NUMA simulation tools and frameworks
• UltraSPARC SMP: memory modelling validation, parallelization
• Opteron: parallel Valgrind, NUMAGrind

• multicore computing (future plans)

◭◭ ◭ • ◮ ◮◮ ×
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2 Overview of Research at ANU’s Computer Systems Group

• Robotics (Zimmer): autonomous sub-
mersibles & aircraft

• Bio-Engineering (Rendell, Blackburn)

• multidisciplinary collaborative project
with IBM Research

• new tools for study of ion channel sys-
tems

• involves X10 development

• Performance Analysis:

• development of CC-NUMA simulator
(Strazdins)

• DaCapo: de facto standard Java
benchmarking suite (Blackburn)

◭◭ ◭ • ◮ ◮◮ ×
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3 Overview of Research at ANU’s Computer Systems Group (II)

• Parallel Processing:

• computational chemistry on cc-NUMA project (Rendell; Sun / Gaus-
sian)

• CBE/GPU implementations (Rendell, McCreath)

• cluster OpenMP (Rendell, Strazdins; Intel)

• numeric HPC on service-oriented architectures (Strazdins; Platform)

• Operating Systems:

• application of virtualization to HPC (Strazdins)

• Linux kernel development (McCreath)

◭◭ ◭ • ◮ ◮◮ ×
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4 Overview of Teaching in Computer Systems at ANU

• COMP2300 Introduction to Computer Systems: C,
assembler, architecture and OS concepts

• COMP2310 Concurrent and Distributed Systems

• COMP3300 Operating Systems: inside the kernel!

• COMP3310 Computer Networks

• COMP3320 High Performance Scientific Computa-
tion

• COMP4330 Real-Time and Embedded Systems

• COMP4300 Parallel Systems

• COMP8320 Multicore Computing (for 2009)

• project courses at 3rd year, Hons & Masters levels

• specializations in Bachelors and Masters courses

◭◭ ◭ • ◮ ◮◮ ×
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5 Clusters at the Computer Systems Group

• saratoga: 8 (× 2 CPU) Opterons with GigaE

jabberwocky heterogeneous cluster

• hardware donated by Alexander Technology, mid 2006

• VorpalBlades: 4 (× 2-4 CPU) Opterons with GigaE
• SlithyToves: 4 (× 1-2 CPU) Opterons with GigE and Quadrics
• TulgeyWood: remote node imaging file repository

and its growing like the mythical Jabberwocky . . .

• augmented with a 4-node quad-core Infiniband IB cluster (2008)

◭◭ ◭ • ◮ ◮◮ ×
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6 The Grid-Enabled Clusters Project

• scenario: a ‘compute center’ serving several users (with scientific appli-
cations)

• heterogeneity is desirable, inevitable!

• aim: develop intelligent runtime environments

• select where to execute a job, based on cost / benefit, current load

• approach:

• develop performance-monitoring and characterization infrastructure
into runtime environments

• sophisticated scheduling strategies

• use of virtualization by Xen to aid migration and operating system
customization

• migration for finding optimal sub-cluster, load balancing and con-
solidation

◭◭ ◭ • ◮ ◮◮ ×
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7 Communication Configurations of SMP Clusters with Multi-
ple GigE Interfaces

• motivation:

• low-end SMPs (esp. with multi-cores) are highly cost-effective for com-
putational power

• communication performance of COTS clusters has not kept up

• many COTS motherboards support multiple I/O connections

• e.g. IWILL DK8-HTX (Opteron) has three PCI-X / PCI buses and
14 device slots

• adding network interface cards is at small relative cost
• could these be used to balance a cluster’s communication perfor-

mance?

• (Gigabit) Ethernet (GigE) is the most widely used interface:
highly cost-effective

• can virtualized clusters also take advantage of this?

◭◭ ◭ • ◮ ◮◮ ×
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8 Background: Virtualization under Xen

• virtualization offers many advantages (greater encapsulation), but typi-
cally comes at a significant performance penalty

• (OS) virtualization: a hypervisor (or virtual machine monitor, VMM) sits
at a higher privilege level to the virtualized (’guest’) OS

• direct access to devices, page tables, privileged registers is by by
calls to the VMM

• Xen uses para-virtualization: the parts of the (Linux) kernel dealing with
the above must be modified (‘XenoLinux’)

• offers both potentially high performance and functionality

• requires one special guest OS (domain0, the ‘driver domain)’:

• manages (configures, creates, destroys) a number of guest OSs (guest
VMs)

• external communication occurs through a virtual interface:
• data is transferred by pseudo device drivers to domain0

◭◭ ◭ • ◮ ◮◮ ×
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9 Background: TCP/IP Stack Processing under Linux SMP

• Linux SMP 2.6 has sophisticated TCP/IP stack processing

• uses 2 kinds of locks: connection-related and socket-related (more fre-
quently accessed)

• 2 broad strategies:

• message-parallel: ||ize the processing (of different segments) of a
single transmission

• connection-parallel: ||ize processing of messages using different sock-
ets (generally superior performance)

• recent studies have shown parallelization incurs some overhead (lock
manipulation and cache pollution)

• explains the generally poor performance of channel bonding

◭◭ ◭ • ◮ ◮◮ ×
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10 Communication Configurations with Multiple Interfaces

• work with Muhammad Atif (formerly Richard Alexander and David Barr,
XenHPC’06)

• under Xen, have a virtualized node one each CPU

• can have shared and separate bridges for communication

• can also export NICs to Xen Guests

• baseline of native Linux with one process per CPU (incoming messages
for each process routed through separate NICs - MPICH)

◭◭ ◭ • ◮ ◮◮ ×

http://xhpc.ai.wu-wien.ac.at/ws/
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11 Micro-Benchmarks: Inter-Domain Communication (2 nodes)

• used modified OSUbench, with MPICH and OpenMPI on VorpalBlades

Comfig/Pairs: 1 2 3 4
Linux-OMPI 125 94 114 123

Linux-MPICH 106 104 124 123
Exported Interfaces 125 112 80 110
Separate Bridges 125 129 125 160

Shared Bridge 126 125 128 149

1 2 3 4
109 199 199 248
109 218 202 240
109 197 326 408
109 161 190 194
108 124 136 126

Latency (µs) at 1 Byte Latency (MB/s) at 4 MB

Comfig/Pairs: 1 2 3 4
Linux-OMPI 109 165 300 397

Linux-MPICH 105 186 305 366
Exported Interfaces 105 183 312 394
Separate Bridges 102 182 177 142

Shared Bridge 102 119 105 96

1 2 3 4
124 296 337 408
124 273 350 361
121 183 370 415
115 183 177 168
115 119 105 111

Avg. Bandwidth (MB/s), size ≥4K Avg. Bi-Band. (MB/s), size ≥4K

◭◭ ◭ • ◮ ◮◮ ×
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12 Benchmarks: Intra-Domain Communication (2 nodes)

• OSU micro-benchmarks reveal heavy overheads from Xen:
Comfig/Pairs: 1 2

Linux-OMPI 1250 1804
Exported Interfaces 87 196
Separate Bridges 84 94

Shared Bridge 344 300

1 2
1163 1456
82 127
85 98
366 338

Avg. Bandwidth (MB/s), size ≥4K Avg. Bi-Band. (MB/s), size ≥4K

• using NAS Parallel Benchmarks (class A) on a 1 × 4 cluster:

◭◭ ◭ • ◮ ◮◮ ×
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13 Application-Level Micro-Benchmarks on a 2 × 4 Cluster

• weakened intra-domain performance in Xen seems hidden!

◭◭ ◭ • ◮ ◮◮ ×
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14 Attempts at Improving Xen Intra-Domain Performance

• XenSocket (IBM, 2007): for faster communication between Xen Guests

• 1-way only, no polling or select
• bare XenSocket comparable to native Linux (shared memory) transfer

for OSU Bandwidth (only)

• attempt to add a Byte Transfer Layer module in OpenMPI

• dynamically determine if guests are co-located
• if so, set up alternate socket (pair) to TCP/IP
• possible (in principle) to cope with migration
• OpenMPI TCP/IP BTL is heavily callback implemented

• results:

• only robust for blocking MPI send / receive
• performance degraded once inside BTL
• very difficult to work with OpenMPI BTLs!

• there must be a better way!

◭◭ ◭ • ◮ ◮◮ ×
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15 A Scheduling Framework for Heterogeneous Clusters

• Muhammad Atif’s PhD topic

• virtualized Jabberwocky multi-cluster (filesystems with NFS, AoE)

• each parallel job runs on own virtualized nodes (one MPI process per
VM), which can be migrated

• migration downtime varies with load, < 75 ms

• wish to schedule to select optimal sub-cluster for job, or to load-balance,
or to consolidate physical nodes

• use xenoprofile to determine VM’s (hence job’s) CPU and memory
usage statistics (need multiplexing!)

• use a profiler within OpenMPI to determine communication charac-
teristics

• issue: need to determine what physical hosts VMs are running on!

• idea is to profile the running job, update runtime estimation engine about
its progress, and migrate if worthwhile

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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16 Diagram of Scheduling Framework for Heterogeneous Clus-
ters

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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17 Migration Experiments across Clusters

• need to determine overhead of migration

• different from downtime!

• need to measure impact on running application

• as functions of VM memory size, job memory footprint, communica-
tion intensiveness, etc

• preliminary results on the HPL benchmark:

• 15–20s per migration, little affected by memory footprint or load

• further investigation needed!

◭◭ ◭ • ◮ ◮◮ ×
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18 OpenMP on Advanced Clusters
• with Jie Cai (also Jin Wong & Alistair Rendell)

• two DSM-based systems: Inter Cluster OpenMP (homeless) and Omni/Danui
(home-based)

• development of page fault benchmarks

• page fault (segv) based performance models (tools can count segvs)

• source code analysis technique to count page faults
• performance valuation / validation on GigE / IB clusters

• heterogeneity modelling: p nodes, execution rates r1 ≤ r2 ≤ . . . rp

• pr1T1

Σ
p
i=1

ri
≤ T ≤ T1

• for NAS CG.A/C, T ≈ T1; for BT.A/C, near-ideal p = 2, 4, 8; why?

• current / future work:

• reduce segv cost (IB): use of RDMA / atomic ops / multi-rails
• utilize of computation/communication overlap and prefetch
• scheduling for heterogeneity

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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19 Intel Cluster OpenMP

• supported by Intel C/C++/Fortan compiler

• run-time system TMK based on TreadMarks

• Lazy Release consistency protocol, homeless

• has CAL communication layer, with TCP and uDAPL interfaces

• memory is kept consistent through
detecting and servicing different
type of page-faults

• write-fault involves making a
‘twin’ or original page, and sub-
sequently a ‘diff’

• fetch fault involves gathering
and applying diffs from previ-
ous synchronization point

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au
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20 Memory Consistency Benchmarks for Cluster OpenMP

• no comparable benchmarks from
shared-memory based systems

• generates memory consistency work-
loads

• modify some data

• OpenMP barrier

• access data written by another thread

• a reference time from using private data
instead of shared

• difference in elapsed time gives us
the overhead

• kernel(array, arraysize, chunksize, id,

nthreads)

• source: http://ccnuma.anu.edu.au/dsm/mcbench

◭◭ ◭ • ◮ ◮◮ ×

http://ccnuma.anu.edu.au/dsm/mcbench
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21 Memory Consistency Benchmark Results on Clusters
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◭◭ ◭ • ◮ ◮◮ ×
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22 Memory Consistency Benchmark Results on a V1280 Ultra-
SPARC SMP
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◭◭ ◭ • ◮ ◮◮ ×
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23 Performance of Cluster OpenMP: NAS Class A & C, GigE

◭◭ ◭ • ◮ ◮◮ ×
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24 Performance of Cluster OpenMP: NAS Class A, IB

◭◭ ◭ • ◮ ◮◮ ×
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25 Memory Usage of Cluster OpenMP: NAS Class A
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◭◭ ◭ • ◮ ◮◮ ×
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26 Approaches to Performance Evaluation

• Sun Microsystems donated a 12 CPU (900 MHz) UltraSPARC V1280
(SMP) to the ANU for the CC-NUMA Project (2003–)

• 32KB I-Cache, 64KB D-Cache, 8MB E-cache
• relies on hardware/software prefetch for performance
• Sun FirePlane interconnect (150 MHz)

• ‘fat tree’-like address network, some NUMA effects

• benchmarks of interest: SCF Gaussian-like kernels in C++/OMP (by
Joseph Antony)

• primarily user-level, with memory effects of most interest
• parallelize with special emphasis on data placement & thread affinity
• use libcpc (CPC library) to obtain useful statistics
• use simulation for more detailed information (e.g. E-cache miss hot-

spots & their causes), or for analysis on larger/variant architectures

• OMP version of NAS Parallel Benchmarks also of interest

◭◭ ◭ • ◮ ◮◮ ×

http://www.informit.com/articles/article.asp?p=30907&seqNum=5&rl=1
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http://www.epcc.ed.ac.uk/direct/newsletter5/node15.html
http://developers.sun.com/prodtech/cc/articles/pcounters.html
http://www.openmp.org
http://www.nas.nasa.gov/Software/NPB
http://www.anu.edu.au
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27 Sparc-Sulima: an accurate UltraSPARC SMP simulator

• execution-driven simulator with Fetch/Decode/Execute CPU simulator

• captures both functional simulation and timing simulation
• (almost) complete-machine
• an efficient cycle-accurate CPU timing module is added

• emulate Solaris system calls at the trap level (Solemn, by Bill Clarke),
including LWP traps for thread support
permits simulation of unmodified (dynamically linked) binaries

• the CPU is connected to the memory system (caches and backplane)
via a ‘bridge’

• can have a plain (fixed-latency) or fully pipelined Fireplane-style back-
plane

• simulator speed: slowdowns in range 500–1000 ×
• source code available from Sparc-Sulima home page

• (recent) team: Bill Clark, Andrew Over and Peter Strazdins

◭◭ ◭ • ◮ ◮◮ ×

http://cs.anu.edu.au/techreports/2005/
http://cs.anu.edu.au/techreports/2004/
http://ccnuma.anu.edu.au/sulima
http://www.anu.edu.au
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28 Target Architecture – UltraSPARC FirePlane Protocol

FirePlane address bus timing (from Alan Charlesworth, The Sun Fireplane System

Interconnect, ACM/IEEE Conference on Supercomputing, Nov 2001.)

◭◭ ◭ • ◮ ◮◮ ×
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29 Target Architecture – FirePlane Protocol (cont)

1. CPU 0 begins transaction (cycle 0)

2. system address repeater broadcasts address (cycle 3)

3. all CPUs snoop transaction’s address (cycle 7)

CPUs respond (cycle 11)

CPUs see result (cycle 15)

4. owner initiates memory request (cycle 17)

5. data transfer begins (cycle 23)

• completion varies depending on distance

• 5 cycles for same CPU

• 9 cycles for same board

• 14 cycles for different board

note: here ‘CPU’ means ‘the E-cache associated with the respective CPU’

◭◭ ◭ • ◮ ◮◮ ×
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30 Sparc-Sulima: Pipelined Memory System Design

(Andrew Over’s PhD topic)
• minimum latency between event & impact on foreign CPU (in the FirePlane)

is 7 bus cycles – can apply parallel discrete event simulation techniques

•
Processor

MMU

Bridge

Store Buffer

Prefetch Queue

Caches

Backplane
Foreign 
Bridge

Foreign
Caches

BP

CPU 0

CPU N

... BP

CPU 0

CPU N

...

Timeslice N Timeslice (N+1)

Time

bridge-based structure run-loop (timeslice = 7*6 CPU cycles)

• asynchronous transactions facilitated by retry of load/store instructions,
CPU event queues, and memory request data structures

• simulating the prefetch-cache and store buffer was particularly problem-
atic

• added simulation overhead is typically 1.20 – 1.50

• scope for parallelization when running on an SMP host

◭◭ ◭ • ◮ ◮◮ ×
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31 Parallelization of the Simulator

• on an SMP, CPUs interact with each other only through the memory
system

• hence, natural to assign a separate thread to each simulated CPU

• two approaches:

• using plain backplane model:

• each simulated CPU runs for s ≥ 1 simulated cycles –
then synchronize (how big should s be?)

• memory system access protected by an array of locks,
based on the ‘index’ of the address

• using pipelined backplane model: s = 42 (fixed)

• backplane simulation phases must be serialized
• appears to be a problem (Amdahl’s Law) – but this is relatively fast

• but there is a more serious and fundamental problem for both . . .

◭◭ ◭ • ◮ ◮◮ ×
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32 Simulator Parallelization - Load Imbalance Issues

• load imbalance in the time required to simulate s cycles

• exacerbated by optimizations in Sparc-Sulima: ‘skip’ stall cycles, ‘caching’
of calculations (e.g. instruction decoding and address translation)

• histograms of time to simulate s = 42 cycles on NAS OMP ft.S & is.W:

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  50000  100000  150000  200000  250000

N
or

m
al

iz
ed

 F
re

qu
en

cy

Single Processor Timeslice Simulation (ns)

1 simulated cpu/host thread
2 simulated cpu/host thread
4 simulated cpu/host thread

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0  20000  40000  60000  80000  100000  120000  140000  160000

N
or

m
al

iz
ed

 F
re

qu
en

cy

Single Processor Timeslice Simulation (ns)

1 simulated cpu/host thread
2 simulated cpu/host thread
4 simulated cpu/host thread

• for the plain backplane model, an accuracy analysis on the NPB indi-
cated that 32 ≤ s ≤ 256 was optimal speed–accuracy tradeoff

◭◭ ◭ • ◮ ◮◮ ×
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33 Parallelization - Results

• speedup for NAS OMP ft.S of plain (s = 256) and pipelined model:
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• speedups dependent on application (instruction mix and frequency of
stall events)

◭◭ ◭ • ◮ ◮◮ ×
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34 Multicore as a Parallel Simulator Host

• synthetic benchmark with extensive memory traffic (hard to ||ize!)
• small shared region used for writes
• large private region used for reads
• different reference stream for each thread
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◭◭ ◭ • ◮ ◮◮ ×
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35 Multiprocessor Simulation - Stability Issues

• relationship between synchronization quantum, speedup and accuracy
for simulation of a 4 CPU UltraSPARC III
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serial simulation parallel simulation (1 CPU per thread)
(error and simulation speed are relative to a simulation quantum of 1)

• for a given simulation quantum, parallel simulation is more accurate!

• frequently synchronizing applications are generally the most sensitive

◭◭ ◭ • ◮ ◮◮ ×
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36 Simulator Validation Methodology

• verifying simulator accuracy is critical for useful performance analysis

• essential in any kind of performance modelling!

• validation is an ongoing issue in field of simulation

• microbenchmarks: used to verify timing of a multitude of single events

• application-level: by the OpenMP version of the NAS Parallel Benchmarks

• use of hardware event counters (via UltraSPARC CPC library)√
permits a deeper-level of validation than mere execution time√
also provides breakdown of stall cycles (e.g. D/E-cache miss, store buffer)

× hardware counters are not 100% accurate;
also ambiguously/incompletely specified (e.g. stall cycle attribution)

◭◭ ◭ • ◮ ◮◮ ×

http://www.openmp.org
http://www.nas.nasa.gov/Software/NPB
http://developers.sun.com/prodtech/cc/articles/pcounters.html
http://www.anu.edu.au
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37 Validation: Microbenchmarks

• e.g. cache-to-cache transfer microbenchmark:

Processor A

1: st %g0, [A]
call _barrier

call _barrier
ba 1b

Processor B

1: call _cache_flush
call _barrier
rd %tick, %l0
ld [A], %g0
rd %tick, %l1
sub %l1, %l0, %l0
call _barrier
ba 1b

• also D/E Cache load/store hit/miss (various cache states/CPU pairs), atomic in-
str’n latency, store bandwidth, memory access (various regions), RAW, etc

• preferable to (possibly erroneous, out-of-date) data sheets

• provided valuable data, with several surprising & undocumented effects

◭◭ ◭ • ◮ ◮◮ ×
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38 Multiprocessor Validation: NAS Benchmarks (S-class)

• p threads; ratio of total cycles target: simulator (pipelined)
p BT FT IS LU LU-hp MG SP UA Avg RMS
1 1.02 1.05 0.99 0.97 1.01 0.94 0.99 0.87 0.99 6%
2 0.99 0.97 0.97 0.89 0.76 0.81 0.88 0.93 0.91 12%
4 0.96 0.91 0.92 0.86 0.70 0.78 0.88 0.81 0.85 17%
8 0.93 0.86 0.67 0.87 0.61 0.74 0.73 1.58 0.86 24%

• simulator is generally optimistic; slightly better results for W-class

• non-pipelined sim. slightly more optimistic (RMS: 6%, 1%, 22%, 30%)
• as p increases, instability on host does (esp. UA)
• errors in counts of total instructions generally matched cycle counts
• E-cache events (stalls, copy-back and invalidate event counts) gen-

erally agreed closely

• issues:
• modelling the random replacement policy (D-cache problematic)
• store buffer and prefetch also difficult

◭◭ ◭ • ◮ ◮◮ ×
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39 Multiprocessor Validation (II)

• kernel-level effects (scheduling, cache pollution) were (initially) suspected
for inaccuracies

• strong correlation between error and number of thread-related syscalls

• is kernel-level simulation essential for accurate SMP simulation?

• also between time spent in spin-loops!

• recently tried modified (non-sleeping) libmtsk, also gcc-compiled (+non-
sleeping)

• no clear correlation between user-level only and unmodified work-
loads

◭◭ ◭ • ◮ ◮◮ ×
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40 Parallel Workload Stability - NAS

• on a quiesced V1280
(under processor
sets), there was a
variation in cycle
counts between
repeated runs

• larger variation in
other event counts

• e.g. 10% variation
in CG (p = 1) for
store buffer stalls

• UA is particularly
problematic
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◭◭ ◭ • ◮ ◮◮ ×
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41 Parallel Workload Stability - Barriers

• OpenMP barrier microbenchmark: variability on the V1280
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• which behavior should the simulator be modelling?

◭◭ ◭ • ◮ ◮◮ ×
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42 Computational Chemistry on NUMA Opteron Clusters

• Sun Microsystem’s high-end HPC focus is has shifted on clusters of ‘fat’
Opteron nodes

• i.e. 2–4 core, 16-way SMP; NUMA effects due to HyperTransport

• e.g. the 10,480 CPU cluster at the Tokyo Institute of Technology

• accordingly, CC-NUMA project’s Phase II (2007–2009) is oriented to this
platform (X4600, donated by Sun)

• algorithm development and performance evaluation of CC (electronic
structure methods)

• development and use of simulation tools for this platform

• based on the x86-based Valgrind simulator infrastructure – fast!
• add similar cycle-accurate CPU and memory models
• also model the cluster communication network
• and parallelize it all!

• project of PhD student Danny Robson (started Sep 07)

◭◭ ◭ • ◮ ◮◮ ×

http://www.sun.com/smi/Press/sunflash/2005-11/sunflash.20051115.1.xml
http://ccnuma.anu.edu.au/phaseII.html
http://www.sun.com/servers/x64/x4600/benchmarks.jsp
http://www.valgrind.org/
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43 Modelling of Multi-core NUMA Clusters: Approach

• implement as a Valgrind ‘module’ invoked upon memory references

• develop configurable cache & memory system models (MicroLib?)
• need also to model page coloring and NUMA effects

• accurate CPU simulation: can be based on basic blocks - fast!

• for multi-CPUs: Valgrind’s scheduling to be controlled by the module
• must accurately maintain simulated time to co-ordinate simulated threads
• parallelization of a Valgrind based system a further challenge!

• cluster-level: traps corresp. to comms. invoke a cluster-level scheduler

• such as distributed implementation provides an interesting challenge!
• construct performance models of the communication network of vari-

ous levels of accuracy (e.g. contention)

• alternative infrastructure, SimNow!, has so far shown to be limited in
accuracy and extensibility

• validation: may have to rely on microbenchmarks more . . .

◭◭ ◭ • ◮ ◮◮ ×

http://www.microlib.org
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44 Overview of Valgrind

• Valgrind dynamic binary translation and instrumentation framework –
user-level only!

• can run threaded programs (serialized), but is not intended to be par-
allelized!

• operates on basic blocks of an unmodified executable, which are trans-
lated first to UCode for later instrumentation

•

0x4001D5E: subq 2199099(%rip),%rax

------ IMark(0x4001D5E, 7) ------
PUT(168) = 0x4001D5E:I64
t22 = Add64(0x4001D65:I64,0x218E3B:I64)
t21 = GET:I64(0)
t20 = LDle:I64(t22)
t19 = Sub64(t21,t20)
PUT(128) = 0x8:I64
PUT(136) = t21
PUT(144) = t20
PUT(0) = t19

(a) UCode translation translate, instrument & dispatch loop

◭◭ ◭ • ◮ ◮◮ ×

http://www.anu.edu.au


SunLabs, 29/10/08 HPC Research at ANU 45

45 Parallelization of Valgrind

• aim: ||ize ‘core’ + some demo tools for AMD-64 (paper for ISPA’08)

• issue: flushing of blocks in the translation cache:

• what if another thread is accessing it?
• put it in a pending deletion list
• then (atomically) clear pointer in the fast translation table

• issue: (translations of) atomic instructions must be executed atomically!

• e.g. if atomic decrement was translated into read, subtract, write:
time thread 1 thread 2 thread 3

1 read [m1], r1
2 read [m1], r2
3 sub r1, 1, r1 write r3, [m1]
4 sub r2, 1, r12
5 write r1, [m1]
6 write r2, [m1]

(atomic lost) (store lost)

◭◭ ◭ • ◮ ◮◮ ×

http://www.cs.usyd.edu.au/~ispa2008/
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46 Parallel Valgrind: Performance
• locks for atomics & stores to same location is safest but much too slow!

• locking only atomics safe enough in practice

• alt. use atomics on (AMD-64) hosts (less generic)

• geometric means on NPB.W (slowdown over native execution)
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(a) pValgrind only (with speedups) (b) adding pCachegrind tool
• code available from http://ccnuma.anu.edu.au/pvalgrind/

• (parallel) NUMAgrind is currently being validated

◭◭ ◭ • ◮ ◮◮ ×

http://ccnuma.anu.edu.au/pvalgrind/
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47 Simulation Work – Conclusions

• accurate and reasonably efficient simulation of a modern NUMA mem-
ory system can be achieved

• entails hard work, and limited by lack of accurate and complete doc-
umentation of the target system

• hardware event counter based validation methodology was reason-
ably successful, but some issues remain

• reasonably efficient parallelization has been achieved
• have also analysed some computational chemistry applications with

it!
• validation, and (simulator & host) stability issues need further investi-

gation

• are extending the performance evaluation methodology and simulation
tools to clusters

• useful to improve cluster performance instrumentation (develop network-
level hardware event counter infrastructure)

◭◭ ◭ • ◮ ◮◮ ×
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48 Demography of Parallel Computing

Believers

speed (R)

Degree of
Parllelism (P)

(P,R+dR)

(P+dP,R)

(P+dP,R−dR)(P−dP,R−dR)

(P−dP,R+dR) (P+dP,R+dR)

Heretics

Luddites Fanatics

Agnostics

True
Believers

Luke−warm

Prossessor

(origin unknown)

• mid 90’s: advent of the killer micros

• mod 2000’s: advent of multicore

◭◭ ◭ • ◮ ◮◮ ×
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49 Multicore Computing (Future Work)

with recent donation of a mavericks, a T5120 UltraSPARC
T2 processor:
• integrate into our teaching program via a logical domain

wallaman

• possible research topics:

• hardware threading / LDom evaluation; T2 BLAS

• evaluation of emerging multicore programming
paradigms (+Haskell!)

• a T2 version of the Sparc-Sulima simulator

• investigate OS issues: scheduling and scalability: TM
support

• large-scale multicore simulation: validation, perfor-
mance and stability issues

• software-hardware co-design for heterogeneous mul-
ticore for (virtualized) HPC

◭◭ ◭ • ◮ ◮◮ ×

http://www.sun.com/servers/coolthreads/t5120/
http://haskell.org/opensparc
http://www.anu.edu.au

