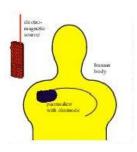
Challenges in Large-scale Electromagnetic Compatability Analysis

Peter Strazdins

Department of Computer science, Australian National University

cs.anu.edu.au/~Peter.Strazdins/seminars/LargeEMC

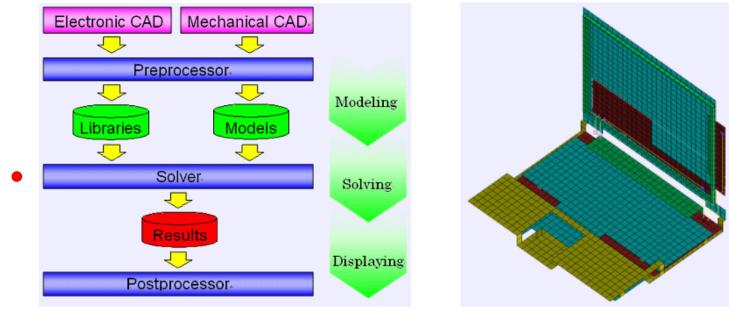
December 3, 2001


AdvCom'01: Chall. in Large-scale EMC Anal. 1 DCS, ANU_

1 Talk Outline

- introduction to EMC analysis
- the ACCUFIELD application:
 - introduction
 - fast frequency stepping
 - direct solution methods
 - iterative solution methods via fast frequency stepping
 - performance and convergence issues
- related work in EMC
- challenges for large-scale analysis
- where to go from here?

2 Introduction to Electromagnetic Compatability Analysis

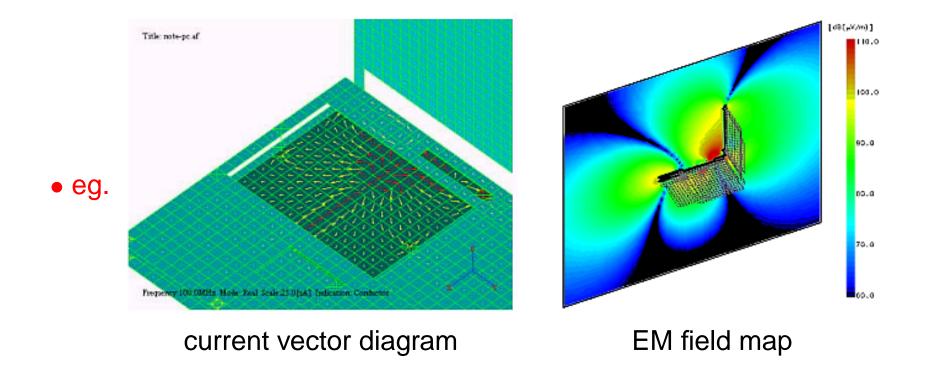

- Electromagnetic Compatibility (EMC) issues becoming increasingly important
 - ↑ GHz (microwave) clock speeds, increasingly complex electronic systems
 - an (oscillating) incident electromagnetic field may induce locally very strong currents and resultant fields on an electronic device
 - concern over health & system malfunction issues due to electromagnetic interference (EMI)
 - $\bullet \Rightarrow$ strict EMC regulations imposed by most countries
- $\bullet \Rightarrow$ need accurate prediction of EMI at the system design stage

• the electromagnetic scattering problem is closely related

3 Introduction to ACCUFIELD

• ACCUFIELD is such an application (www.accufield.com, Fujitsu)

ACCUFIELD architecture


Note PC model

• used mainly for relatively simple electronic devices, eg. printed circuit boards

- uses the moment & transmission line approximation methods to calculate the EM field in the frequency domain (details on www page)
- models: break conductive & dielectric surfaces / wires into discrete elements

- given an incident (oscillating) electric field V (known), find the induced current I from ZI = V, where:
 - Z is a dense complex (indefinite) $N \times N$ matrix
 - assembled using the relatively compact model description
 - normally symmetric, unless constraints are imposed
 - for Note PC model, N=7041, but $N\approx 30000$ possible for large-scale systems
 - symmetric: direct solution via $Z \rightarrow PLDL^TP^T$ requires $\frac{N^3}{3}$ FLOPs, $\approx \frac{N^2}{2}$ storage
 - store Z in lower triangular half; overwrite with L and D
 - \Rightarrow a large || parallel machine is required eg. AP3000, 24 nodes @ 300 MHz, 1.5GB
 - non-symmetric: direct solution via $Z \rightarrow PLU$, 2 × as many FLOPs & storage
- \bullet EMC analysis is usually required at different frequencies ω
 - here $V = V(\omega), Z = Z(\omega)$; the direct solution at ω_c can be used to precondition an $O(N^2)$ iterative solution for $\omega \approx \omega_c$

- using the solution vector *I*, can determine the induced surface fields, current emissions, the effectiveness of filters and shielding, etc
 - FFTs are used to convert results to the time domain

4 **Fast Frequency Stepping in ACCUFIELD**

- consider a analysis over set of frequencies $\Omega = \{\omega_1, \omega_2, \dots, \omega_{n_f}\}$, $\omega_i < \omega_{i+1}$
- for linear system assembly:
 - using the model's information, explicitly assemble $Z(\omega_j)$ for $\omega_j \in \Omega_s \subseteq \Omega$
 - for $\omega_i \notin \Omega_s$, interpolate $Z(\omega_i)$ from $Z(\omega_j), Z(\omega_k)$, where j < i < k and $\omega_j, \omega_k \in \Omega_s$
 - (embarrassingly) easy to parallelize
- for linear system solution:
 - choose a central frequency ω_c , eg. $\omega_c \in \Omega_s$, and obtain a direct solution here
 - the factorized $Z(\omega_c)$ is used to precondition the iterative solutions for ω_i to left and right of ω_c
 - do this until the iterative solution time > half the direct solution time
- these methods represents space-time tradeoff

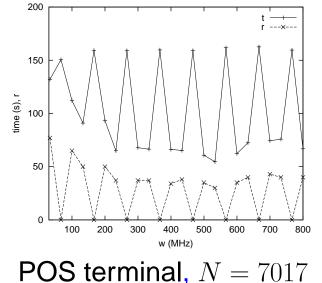
5 Direct Solution of Indefinite Systems

• a direct solution for *I* is the most general and potentially accurate method

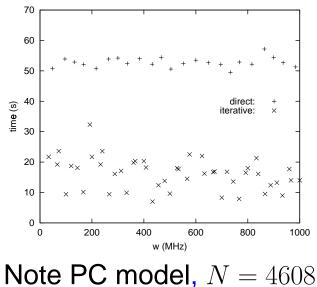
• symmetric systems:

- numerically stable algorithms exist that exploit symmetry to require only $\frac{N^3}{3} + O(N^2)$ FLOPS in the factorization:
 - (row/column) symmetric interchanges are required to eliminate some columns
 - the Bunch-Kaufman LDLT factorization algorithm $Z \rightarrow PLDL^TP^T$ has been shown to be very competitive!
 - we have developed especially efficient serial and || implementations
- back-solve computation performs: I = V; $I \leftarrow P^{-T}L^{-T}D^{-1}L^{-1}P^{-1}I$
 - has only $O(N^2)$ FLOPs, but high O(N) associated || overheads
 - is also used for preconditioning in the iterative solver
- non-symmetric systems: LU factorization is well-known; back-solve computation $I \leftarrow U^{-1}L^{-1}P^{-1}I$ has slightly lower overheads

6 Iterative Solution for Fast Frequency Stepping


- use a preconditioned conjugate gradient method, adapted for indefinite symmetric systems
 - nb. ACCUFIELD usually generates "nearly" definite systems
- each iteration requires:
 - a symmetric matrix-vector multiply $r \leftarrow r \alpha Z(\omega_i)p$
 - a back-solve via the factored preconditioner $p \leftarrow \beta p + Z^{-1}(\omega_c)r$
 - miscellaneous vector operations (adding a small amount of extra overhead)
- $Z(\omega_i)$ and the factored $Z(\omega_c)$ are stored in an $N \times (N+1)$ rectangular matrix
 - physical memory storage requirements still increases by $2 \times$ (very large N)
- for large matrices, (||) execution time is dominated by the matrix-vector multiply
- for smaller matrices, time is dominated by communication startups

7 Performance: Convergence and Computational Speed


- results here are for an 8-node Fujitsu AP3000 with 360 MHz US-2 processors (startup cost $\approx 20 \mu s$, transfer rate of up to 80 MB/s)
- for analysis of the Note PC model using direct solution:

# cells :	1	4	8
times (s):	293	103	59

• parallel execution times (*r* is the convergence rate):

POS terminal, N = 7017(overall FFS speedup of 1.65; at most 2 iterative solves per ω_c)

(overall FFS speedup of 2.18; nearby ω 'pairs' converged rapidly)

8 <u>Related Work in EMC</u>

- frequency interpolation proposed for non-symmetric systems by Hoyler and Unbehauen (1996)
 - +ve comparisons with other (eg. block-Jacobi and GMRES) preconditioners
 - their FFS proceeds only in a single direction
- FFS is a special case of Model-Based Parameter Estimation (Miller, 1998)
 - shows how interpolation can reduce computational work on both the linear system assembly and solution
- iterative methods for EMC reported by Jakobus (2000)
 - used a conjugate gradient method with a block-Jacobi preconditioner
 - improvements reported for non-symmetric systems
 - no frequency interpolation was used
- fast multipole methods have been used in electromagnetic scattering
 - Boeing (1999), Jakobus (2000)

can also use wavelets and adaptive integral methods

9 Challenges for Large-scale EMC analysis

- EMC analysis using the moment method can be highly accurate
- combination of direct and iterative methods used in ACCUFIELD:
 - scalable & 'efficient' implementations have been devised
 - symmetry: halves the FLOPs (direct solution only) and storage
 - parallel processing enables feasible solution of moderate-scale systems
- iterative methods for analysis over multiple frequencies
 - still needs || processing; || overheads \Rightarrow only moderate performance gains
 - seems to require an expensive preconditioner; has extra memory costs
- in EMC, larger-scale systems can arise from more complex models and/or finer discretizations (more accurate)
 - need fundamentally less expensive methods than the direct:
 - problem: difficulty in achieving good convergence rates
 - effects of dielectric materials
 - most analysed systems are neither large nor elongated
 - large off-diagonal 'mass' of the resulting linear system

10 Large-scale EMC analysis: where to go from here?

- (||) out-of-core solvers (direct solution only?)
- better iterative schemes:
 - eg. (symmetric) quasi-minimum residual ?
- better / less expensive preconditioners:
 - eg. block-Jacobi, sparse approx. inverse?
- incorporation of $O(N \log N)$ techniques (wavelets, FMM, AMI)
 - usable for preconditioners if not sufficiently accurate?
- efficient and portable implementations are needed
- seeking collaborators (from 'advisory' to 'active'...)
- possibility of collaboration with the ACCUFIELD group:
 - strategy: development on the math. rather than the modelling level, use sample linear systems