
Adaptive resource remapping
through live migration of virtual

machines

Muhammad Atif
Peter Strazdins*

Research School of Computer Science
The Australian National University

2

Contents

• Introduction
• Related Work
• Resource Remapping Framework ARRIVE-F

– Performance Model
– Migration decisions
– Implementation

• Experiments
• Conclusion

3

Introduction

• Compute farms become heterogeneous.
– Frequent upgrades, Specific nodes for projects.
– CPU Speeds, Memory, Communication

interfaces.
• Poor utilization.

– Job requiring faster communication can land on
nodes with slower interconnects.

• Effective mapping of jobs in such clusters is
NP complete.
– A number of heuristics proposed.

4

Pictorially
Profile for:

- CPU (Hardware Characteristics)
- Communication Characteristics
- Memory utilization.

CPU Memory CPU Memory

CPU Memory

Application “Y”
(Requires more memory)

Operating System

Application “Z”
(Requires better comm.)

Operating System

Application “X”
(Requires better CPU.)

Operating System

Notice the unhappy systems

5

Pictorially

CPU Memory CPU Memory

CPU Memory

Application “Y”
(Requires more memory)

Operating System

Application “Z”
(Requires better comm.)

Operating System

Profile for:

- CPU (Hardware Characteristics)
- Communication Characteristics
- Memory utilization.

Application “X”
(Requires better CPU.)

Operating System

6

Related Work

• Heterogeneity aware schedulers
– Static cluster scheduling
– Applications are scheduled based on their profile
– Require off-line profiling

• Heterogeneity aware applications
– Application distributes its load based on the

cluster.
– Source code modification

• Migration
– Process migration using Mosix

7

Comparison with ARRIVE-F

• ARRIVE-F does not require source code
modifications

• No offline profiling mode
• Execution times based on real hardware

metrics
– L1/L2 Cache misses, Flops

• Live migration facility of hypervisor to
migrate jobs to suitable clusters

• Can take advantage of dynamic conditions

8

Framework

• Assumptions
– Iterative scientific applications
– Run-times in the order of minutes
– Do not cater for I/O intensive jobs
– Heterogeneous compute farm divided into a

number of homogeneous compute clusters.

9

Performance Modeling

• Online Performance Modeling
– Computational Model
– Communication Model
– Memory utilisation Model
– Migration Model

10

Computation Model

• Responsible for generating CPU profile of the
running application

• Use L1/L2 and FLOPS; but not limited to these

• Simple approximation

11

Communication Model

• Two sub-models
– Blocking and Non blocking

• Blocking Communication
– Log the frequency of different message sizes
– Multiplied by 'precomputed' latency of that

message size

12

Communication Profile

• Non-blocking
– Difficult; use a lightweight approximation
– Record wait times by logging each

MPI_Request with corresponding MPI_Wait

13

Memory Utilization

• Swap thrashing is the most costly
operation

• We migrate the application as soon as
thrashing is detected.

14

Predicting Execution Time

• The time gained or lost by the job if it was
executed on cluster ‘B’ can be obtained by
subtracting the predicted computation and
communication times for sub-cluster ‘B’ from
the profiled times of sub-cluster ‘A’:

15

Migration Prediction

• Determine the time gained or lost w.r.t
remaining time

• Approximate w.r.t a time block

• Migrate if the following threshold is met

16

Implementation

Adaptive Resource Relocation In Virtualized Environments – Framework
Open source under GPL-v3 (http://cs.anu.edu.au/~muhammad.atif/opensource)

17

Experimental Evaluation

• Heterogeneous cluster
– XEN 3.3 compiled from source;

• XenoLinux 2.6.31.12
– Live Migration Patch [5]
– β=20 ; τ=50 ;

18

Accuracy and Overheads

Computational Accuracy Communication Accuracy

Overheads of the framework

19

Throughput Experiments

• Lublin-Feitelson Method to generate workload
• NPB kernels CG, EP, FT, IS, LU and MG

– Modified iterations to increase the wall-clock time
• Compare ARRIVE-F with FCFS-Backfill algorithm

– Jobs allocated to fastest clusters if possible.
• A number of experiments conducted

– Only one is being presented
• Each experiment was conducted 3 times

– Averages presented.

20

Experiment 1

• Stream of 330 jobs
• Throughput improvement = 27%
• Time saved = 32%
• Average waiting time reduced by = 55%

21

Experiment 1

• Total of three migration decisions
– Migration 1: Thrashing
– Migration 2: Communication
– Migration 3: CPU

22

Further Experiments

• Second experiment;
– FT.B.4.* removed; no thrashing
– Total time saved = 7%
– Average waiting time and turn around time = 1%

• Third Experiment
– Removed cluster with FAST ethernet
– Total time saved = 33%
– Average waiting time improved = 298%
– Turn around time improved = 230%

23

Conclusion

• Heterogeneity in compute farms can be
successfully addressed by virtualization and
migration (can easily extend to other classes of apps)

• Lightweight profiling
– 3% overhead

• Applicable to Cloud Computing
• Green Computing
• Envision such online profiling and migration

frameworks will become part of standard
cloud deployment in future

24

QUESTIONS!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

