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Faults in High Performance Computing

A challenge for HPC is faults
Exposure/risk increases with system size
Many types: hard, soft, network, silent
Many causes: hardware, software,
radiation, network, etc.
generic solutions: triple modular
redundancy (TMR), checkpoint-restart
Active research area in recent decades

(source: wikipedia)

Numerous papers discuss use of checksums to detect and
correct memory failures (bit flips) in linear algebra
We present an approach for avoiding bit flip errors in finite
difference computations
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Finite difference computations

Finite differences methods and method of lines are
common for solving partial differential equations
Explicit methods cannot leverage fault tolerant linear
algebra

un
∗

un+1
∗

Triple modular redundancy (TMR) could easily be used
Do everything 3 times (with separate memory)
Choose result which is equal for any two

1/3 efficiency (3 times the resources/time)
How else could we detect/correct or even avoid errors?
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Robust stencils in 1D

Consider the advection equation

∂tu + a ∂xu = 0

The standard Lax–Wendroff method
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with c = a∆t/∆x is stable and second order.
Ray, Mayo and Armstrong considered using several finite
difference discretisations having distinct stencils to make
computations fault tolerant.
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One introduces the widened discretisation
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and a third (far) discretisation
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both of which are also stable and second order.
The corresponding stencils are:

N:
W:
F:
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Error avoidance and results in 1D

To avoid (significant) errors:
take the median of un

i−1,u
n
i ,u

n
i+1

discard the un
i−3,u

n
i−2, . . . ,u

n
i+3 furthest from median

Use most compact stencil which avoids discarded value

Results:
Similar robustness to TMR
Similar efficiency to TMR
(note: not yet optimised)
Similar ideas also applied to
(inviscid) Burgers’ equation with
similar success for robustness
(note: shocks still captured)
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Advection in multiple dimensions

We extend this work to 2D

∂tu + a ∂xu + b ∂yu = 0

(NB: also applies to d > 2)
Consider a square domain
discretised as a uniform grid
The 1D discretisations can be
applied in 2D by applying along
one direction at a time (effectively
an operator splitting approach)
Resulting stencils are on the right

N W F
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Robust stencils in multiple dimensions

How do we choose one of these stencils in a way which
avoids (significant) faults?
Computing a median of central values and eliminating
outliers from the 7x7 stencil region is expensive
Instead we consider computing a subset of the 9 stencils
and taking the median update as the result
We consider subsets of 3, 5 and 7 stencils (to simplify the
calculation of a median)
By choosing 2n + 1 stencils such that no one neighbour is
contained in more than n of the stencils then the medain
update will avoid any significant faults
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Examples of robust stencil sets

Ideally we want the NN stencil in our set (most accurate)
Additionally, the other stencils will bracket this in smooth
error free regions, in practice this is tricky
As a heuristic we choose symmetric stencil sets
(i.e. if XY ∈ S then YX ∈ S where X,Y ∈ {N,W,F})
There’s one such set (having 5 stencils)
3 and 7 stencil sets (not using NN) are also depicted
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Rough performance analysis of methods

Comparisons relative to standard Lax-Wendroff

TMR
3x memory
3x computation
(plus agreement/median)
3x boundary comm.

Robust Stencils (3/5/7 examples)
≈1x memory
(extra ghost/halo points)
3.7/6.4/8.3x computation
(plus median)
≈3x boundary comm.
(wider halos)

Finite difference methods are often memory bound
Extra computations for robust stencils potentially
significantly cheaper with optimised cache usage
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Rough analysis of robustness

Both approaches survive single fault in any one time step

Suppose 2 faults have occurred in a single time step:

TMR fails if 2nd fault within 5x5 region around
1st (on another copy, thus 2 chances)
RS fails if 2nd fault within 13x13 region
around 1st (worst case)
Assuming fault rate ∝ memory in use then
TMR has 3 times the exposure/risk
Thus approximately 150 vs 168 elements of
exposure/risk of unavoidable failure
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How do we inject faults

We use an additional process to simulate faults
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Time between faults is assumed to be exponentially distributed
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Other numerical implementation details

Code is MPI parallel and scalable to at least 2K proc.
Tests performed on Raijin cluster (NCI, Canberra, Aus.)
with gnu compilers
Codes not yet optimised (beyond twiddling compiler flags)
Initial condition is a sinusoidal field which is translated
periodically via advection
Faults are injected from another thread at a specified rate,
location of faults in memory is uniformly random
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Numerical results

Timing results (40962)
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Each takes similar time on own, 3 sets slightly better than TMR
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Numerical results

Error of each stencil (40962)
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Robust stencil results typically similar to the WW stencil
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Serial fault injection results (5122)
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Summary

Robust stencils are competitive with TMR - similar
robustness at a lower computational cost
Can be extended to any number of dimensions
Can be extended to other finite difference discretisations
Works in a select case of finite element methods (e.g. by
recasting as a finite difference method)
Main idea could be applied more generally to other
methods
A detailed analysis is ongoing work
With multistep integrators one can potentially avoid errors
that effect large regions of bits
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