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1 Context of Talk: Parent Project

LP11 Robust numerical solution of PDEs on petascale computer systems
with applications to tsunami modelling and plasma physics (Hegland et al)
• large-scale parallelization of the ANUGA tsunami application

• (hard) fault tolerant computation of PDEs with the Sparse Grid Combi-
nation Technique (SGCT)

• highly scalable parallel SGCT al-
gorithms

• complex parallel applications
made fault tolerant via the SGCT

• GENE (plasma physics); also
Taxilla Lattice-Boltzmann and
Solid Fuel Ignition
• hard faults; assumes constant

resources (replace failed pro-
cesses)
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2 Overall Organization of Talk

This talk is about follow-on topics, organized in two parts:
1. PDE application-level (hard) fault tolerance for shrinking resources (con-

tinue without failed processes) via the SGCT
(joint work with Mohsin Ali (then ANU) and Bert Debusschere (Sandia
National Laboratories))

2. robust stencils as a general method to deal with soft faults in PDE
solvers
(joint work with Brendan Harding & Brian Lee (then ANU), and Jackson
Mayo, Jaideep Ray, Robert Armstrong (Sandia National Laboratories))

Common theme throughout: advection as an example PDE solver.
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3 Part 1 Overview: FT for Shrinking Resources via the SGCT

• motivation: why make applications fault-tolerant?

• background:

• solving PDEs via sparse grids with the combination technique
• the robust combination technique
• parallel sparse grid combination technique (SGCT) algorithm overview

• shrinkage-based recovery from faults

• fault detection and recovery using ULFM MPI (Message Passing Inter-
face)

• SGCT algorithm support for shrinkage

• modifications to the application (a 2D advection PDE solver)

• results: comparison with process replacement and checkpointing, per-
formance and accuracy

• conclusions and future work
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4 Motivation: Why Fault-Tolerance is Becoming Important

• exascale computing: for a system with n components, the mean time
before failure is proportional to 1/n

• a sufficiently long-running application will never finish!
• by ‘failure’ we usually mean a transient or permanent failure of a com-

ponent (e.g. node) – this is called a hard fault

• cloud computing: resources (e.g. compute nodes) may have periods of
scarcity / high costs

• for a long-running application, may wish to shrink and grow the nodes
it is running on accordingly – this scenario is also known as elasticity

• low power or adverse operating condition scenarios may cause failures
even with a moderate number of components

• this typically results in corrupted data – a soft fault

• the SGCT is a form of algorithm-based fault tolerance capable of meet-
ing these challenges for a range of scientific simulations
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5 Background: Sparse Grids

• introduced by Zenger (1991)

• for (regular) grids of dimension d having
uniform resolution n in all dimensions, the
number of grid points is nd

• known as the curse of dimensionality

• a sparse grid provides fine-scale resolution

• can be constructed from regular sub-grids
that are fine-scale in some dimensions and
coarse in others

• has been proved successful for a variety of
different problems:

• good accuracy for given effort
(O(n lg(n)d−1) points)
• various options for fault-tolerance!
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6 Background: Combination Technique for Sparse Grids

• computations over sparse grids may be approximated by being solved
over the corresponding set of regular sub-grids

• overall solution is from ‘combining’ sub-solutions via an inclusion-
exclusion principle (complexity is still O(n lg(n)d−1) where n = 2l + 1)

• for 2D at ‘level’ l = 3, combine grids (3, 1), (2, 2) (1, 3) minus (2, 1), (1, 2)
onto (sparse) grid (3, 3) (interpolation is required)
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7 Robust Combination Techniques

• uses extra set of smaller sub-grids

• the redundancy from this is < 1/(2(2d − 1))

• for a single failure on a sub-grid, can find a new combination formula
with an inclusion/exclusion principle avoiding the failed sub-grid

• works for many cases of multiple failures (using a 4th set covers all)

• a failed sub-grid can be recovered from its projection on the combined
sparse grid
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8 Parallel SGCT Algorithm: the Gather-Scatter Idea

• evolve independent simula-
tions over time T on a set of
component grids, solution is
a d-dimensional field (here
d=2, l=5)

• each grid is distributed over
a process grid (here these
are 2× 2, 2× 1 or 1× 2)

• gather: combine fields on
a sparse grid (index (5, 5)),
here on a 2× 2 process grid

• scatter: sample (the more
accurate) combined field
and redistribute back to the
component grids
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9 Shrinkage-based Recovery of FT SGCT Applications

• each sub-grid is solved over a set of processes (with contiguous MPI
ranks within the global MPI communicator)

• we check for process failure before applying the SGCT

• after detection of failure, the faulty communicator is shrunk, containing
only the alive processes

• we shrink the process sets of the sub-grids that experienced the failures

• we have also to shrink the local sizes of the sub-grids and associated
data structures in these processes!

This seems hard! However:

• FT apps generally must be capable of a restart from the middle; sim-
ilarly we can implement a ‘re-size’
• the FT-SGCT provides an effectively cost and effort-free redistribu-

tion!

• processes of other sub-grids merely get their ranks adjusted
JJ J • I II ×
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10 Shrinkage-based Recovery of an l = 4 FT SGCT Application
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11 Communicator Recovery via ULFM MPI

• recovery via process shrinkage similar to process replacement

• create an ULFM MPI error handler, passing address of the global com-
municator ftComm to it

• e.g. processes 3 and 5 of ranks 0–6 now fail
0 1 2 3 4 5 6

• before invoking the SGCT, call MPI Barrier(ftComm) (this will now fail)
0 1 2 4 6

• call OMPI Comm revoke(&ftComm), create a shrunken communicator via
OMPI Comm shrink(ftComm, &shrunkComm)

0 1 2 3 4

• synchronize the system via OMPI Comm agree(ftComm=shrunkComm, ...)

• note: must reset any local variables dependent on the MPI rank or com-
municator size
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12 SGCT Algorithm Support for Shrinkage

• for a 2D SGCT-enabled application, each sub-grid is decomposed over
a subset of MPI processes arranged as a 2D process grid, containing:

• n, the total number of processes available
• r0, the MPI rank of the first process
• P = (Px, Py), the process grid shape. Initially n = PxPy

A logical process id p = (px, py), (0, 0) ≤ p < P , has rank r0 + pyPx + px

• if this grid is numbered i ≥ 0, r0 = Σi−1
j=0nj, where nj is number of pro-

cesses in grid j

• if we detect f failures in this grid, we resize to P ← (Px−df/Pye, Py) and
set n← n− f
• if we detect fl failures in process grids to left (numbered j < i),
r0 ← r0 − fl
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13 Modifications to the PDE Solver

• the initialization of all process grid dependent variables and arrays are
put into a single function

• note that an FT application (e.g. by checkpointing) will have to do this
as well, to facilitate restart at an arbitrary point

• before calling the SGCT, a list of ranks of all failed processes is made

• if the current process grid has one of these, it does not participate in the
gather stage of the SGCT

• it however re-sizes its data, calling the initialization function
• it participates in the scatter stage, receiving its re-sized solution field

automatically

Otherwise, perform the gather and scatter of the SGCT as per normal
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14 Results: Replace vs Shrink Recovery Overheads

• compare overheads of pro-
cess replacement (‘spawn’)
vs process shrinkage

• experiments on the Raijin
cluster, dual 8-core Sandy
Bridge 2.6 GHz nodes + In-
finiband FDR

• uses ULFM’s (slower) Two-
Phase Commit distributed
agreement algorithm

• 2 random process failures
via kill signals
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15 Results: Advection Application Performance

• compared also with a CR
version of a 2D SGCT ad-
vection solver

• SGCT with level l = 4 over a
213 × 213 (full) grid

• 2 random process failures:
sufficient to reveal interest-
ing recovery behavior

• ULFM agreement algorithm
impacts on performance for
≈ 3000 cores

• shrinkage fastest despite
loss of compute resources
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http://www.anu.edu.au


Co-Lab Seminar, Oct 2019Two Approaches to Highly Scalable and Resilient Partial Differential Equation Solvers 16

16 Results: Advection Application Accuracy

• FT SGCT with level l = 4
over a 213 × 213 (full) grid

• random process failures
over initial set of 49 pro-
cesses

• baseline error rate (no fail-
ures) is 4.45E-07

• error for each test depend
on which sub-grids had the
failed processes

• note: results identical for re-
placement or shrinkage re-
covery

JJ J • I II ×

http://www.anu.edu.au


Co-Lab Seminar, Oct 2019Two Approaches to Highly Scalable and Resilient Partial Differential Equation Solvers 17

17 Part 1: Conclusions
• demonstrated that SGCT applications can be made fault tolerant under

a shrinkage regime

• recovery under ULFM MPI is relatively simple and reliable

• also order of magnitude faster than the replacement regime

• existing parallel SGCT algorithm needed only process grid re-sizing sup-
port added

• the SGCT automatically solves the problem of redistribution!

• only modest modifications on an existing FT application is required

• with small numbers of failures, shrinkage gave faster application perfor-
mance than replacement (and ≈ 2× faster checkpoint-restart)

• would improve with a more scalable ULFM distributed agreement al-
gorithm

• advection solver accuracy still high even with ≈ 10% process failures
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http://www.anu.edu.au


Co-Lab Seminar, Oct 2019Two Approaches to Highly Scalable and Resilient Partial Differential Equation Solvers 18

18 Part 1: Future Work

• extend for elasticity: growing as well as shrinking resources

• extend to real applications, e.g. the GENE gyrokinetic plasma applica-
tion

• no in-principle reason why not, especially as a GENE is already restartable
(from checkpoints)
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19 Part 2: Robust Stencils – Motivations for Soft Faults

• soft or silent faults also have exposure/risk increasing with system size
or reduced power levels

• generic solutions: triple modular redundancy (TMR), checkpoint-restart

• active research area in recent decades

• various papers discuss the use of checksums to detect and correct
memory failures (bit flips) in linear algebra

• we present an approach for avoiding bit flip errors in finite difference
computations

(some text and diagrams for this part are borrowed from Brendan Harding’s ICCS’16 slides)
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20 Finite Difference Computations

• finite difference methods are common for (explicitly) solving partial dif-
ferential equations

• explicit methods cannot leverage fault tolerant linear algebra techniques

• triple modular redundancy (TMR) could easily be used

• do everything 3 times (with separate memory)
• choose the result which is equal for any two
• 1/3 efficiency (3 times the memory and time)

• how else could we detect/correct errors?
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21 Robust Stencils in 1D
• the 1D advection equation δtu + aδxu = 0

may be solved by the standard (‘normal’) Lax-Wendroff method:

un+1
t =

c(1 + c)

2
uni−1 + (1− c2)un−1 +

c(−1 + c)

2
uni+1

where c = a∆t/∆x, and is stable and of second order
• Mayo et al. used several finite difference discretisations for fault toler-

ance, which are also stable and of second order
• the widened discretisation, avoiding the i± 1 points:

un+1
i =

c(2 + c)

8
uni−2 +

4− c2

4
uni +

c(−2 + c)

8
uni−2

• the third (far) discretisation, avoiding the central point:

un+1
i =

−3 + 8c + 3c2

48
uni−3 +

9− c2

25
uni−1 +

9− c2

25
uni+1 +

−3− 8c + 3c2

48
uni+3

• the corresponding stencils are:
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22 Advection in 2 or More Dimensions

• wish to extend to the 2D advection
equation:
δtu + aδxu + bδyu = 0

• assume a square domain discre-
tised as a uniform grid

• using the N, W and F stencils, the
tensor product of the coefficients
in the x- and y- dimensions gives
the 2D coefficients

• the 3 × 3 resulting stencils are
NN WN FN
NW WW FW
NF WF FF

• this approach can be generalized
to d > 2
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23 Robust Stencils in 2 Dimensions

• under the assumption of a single faulty point in the 7× 7 region, how do
we choose a stencil to avoid that point?

• preferably in an application-independent fashion

• idea: for each point, compute a subset of the 9 stencils and take the
median as the result

• chose subsets of s = 3, 5, 7 stencils so that no one point is in any
more than (s− 1)/2 of them, then the stencil with the median will not
contain any one faulty point
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24 2D Robust Stencil Sets

• ideally, we want the most accurate stencil (NN) in the set

• hopefully the other stencils will bracket this in error-free regions

• prefer to use symmetric stencil sets

• with the condition that no one point is in (s − 1)/2 of them, there is only
one of these, having s = 5

• robust s = 3 and s = 7 sets (not including NN) are also shown below:

S∗∗ N W F

N

W

F

* *

*

S∗∗ N W F

N

W

F

* *

*

S∗∗ N W F

N

W

F

*

* *

* *

S∗∗ N W F

N

W

F

*

* *

*

* *

*
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25 Analysis Relative to Standard Lax-Wendroff

(TMR = triple modular redundancy)
TMR robust stencils (3/5/7 sets)

memory 3× ≈ 1×
FLOPs 3× (plus median) 3.7/6.4/8.3× (plus median)

communication 3× ≈ 3× (wider halos)
robustness, for 1 fault yes yes

robustness, for 2 faults
(if not within a region of) 3× 3 · 2 · 3 = 56 7× 7 = 49

Note: stencil computations are typically memory bound, FLOPs may not
reflect execution time, and TMR may have more cache misses.

JJ J • I II ×

http://www.anu.edu.au


Co-Lab Seminar, Oct 2019Two Approaches to Highly Scalable and Resilient Partial Differential Equation Solvers 26

26 Fault Injection

An additional thread injects faults by randomly flipping bits in the array(s).

data

Median

data

u[0] u[1] u[2]

u[0] u[1] u[2]

NN NN

update
Boundary

NN

copy

Exchange 
Boundary with 
other MPI 
processes

u[0]

u[0]

update
Boundary

Exchange 
Boundary 
with 
other MPI 
processes

NW …

Median

Fault 
Injector

NN

There is an exponentially distributed fault injection rate.
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27 Other Implementation Details

• codes parallelized with MPI with Isend/Irecv for halos, scales to 2K cores

• codes were compiled on the NCI Raijin cluster with mpic++ -O3

• codes were not yet optimised

• initial condition is a sinusoidal field (4 peaks in x-dim, 2 in y-dim) over
the unit square with uniform velocity (1.0,1.0)

JJ J • I II ×

http://www.anu.edu.au


Co-Lab Seminar, Oct 2019Two Approaches to Highly Scalable and Resilient Partial Differential Equation Solvers 28

28 Results – Execution Time

214 × 214 field, 512 timesteps, 4× 4 MPI processes on a 16 core Xeon
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29 Results – Accuracy, Fault-free Case

Average error for a 214 × 214 field, 512 timesteps
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30 Results – Robustness

Average error for 212 × 212 field, 128 timesteps, 8 MPI processes (each
with a memory corruptor thread) on a 16 core Xeon
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31 Part 2: Conclusions

• robust stencils may be derived from various combinations of widened
base stencils (this implies ≈ 4× loss of accuracy)

• coefficients of 2D stencils are derived from the ‘tensor product’ of two
1D stencils

• application-independent selection of the ‘best’ stencil (via median)

• concepts can be extended to higher dimensions and/or other finite dif-
ference discretisations

• 3–5 stencil combinations are comparable to TMR in terms of robustness,
comparable or better in terms of speed

• new work includes optimizations for stencil combinations, and

• use 2 stencils at first to detect faults, engage more upon detection
(needs application-dependent error threshold)
• using stencil combinations / higher order stencils to improve accuracy

in the fault-free case
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. . . Questions???
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