The High Performance Numerical Computing on Service-Oriented Architectures Project: Research Themes

Peter Strazdins,
(and the HPNumSOA Project team),
Department of Computer Science,
The Australian National University

1 Overview

- project overview
- report to date
- overview of (parallel) numerical applications
- approaches to extending Symphony for numerical applications
- conjugate-gradient iterative linear system solver in Symphony
- LINPACK: blocked algorithm, message passing implementation
- data services: Global Arrays, GemFire
- parallel LINPACK under a service-oriented paradigm
 - ‘persisting service tasks’ and ‘service sub-tasks’ formulations
- conclusions: extending Symphony for numerical applications
2 Project Overview

- collaborative research project between Departments of Computer Science at ANU & Adelaide and Platform Computing, from July 2007
- funded by ARC Linkage Grant and Platform (TM) Computing (+ DCS ANU)
 - funding structure inherited from a previous collaborator (withdrew 03/08)
- CIs Peter Strazdins (ANU) & Paul Coddington (Adelaide)
- Platform staff include Khalid Ahmed, Chris Smith & Jingwen Wang
- PhD scholar Jaison Mulerikkal
 - project must be scoped within a single PhD candidature!
- aim: to utilize service-oriented infrastructures (Symphony) to develop HPC applications on clusters / grids
 - develop programming models that extend shared memory paradigms to clusters / grids
 - characterize the applications that run well on service-oriented infrastructures
 - investigate the programmability and optimization of such applications
 - devise a performance modelling methodology (use for run-time decisions
3 Project Report (to date)

- July 2007: before & after (and after again!): recruiting of scholars
- Sep 2007: both scholars to be at ANU; 1st scholar starts
- Nov 2007: 1st scholar terminates!! 2nd starts
- Mar 2008: decide to continue as a 1-scholar project
- Jan-Jul 2008:
 - identify conjugate-gradient solver as a key application to develop
 - identify ‘globally-addressable’ data service required for LINPACK
 - specific training for Jaison; begin literature review
 - deploy Symphony (source / object) & develop (naive) CG solver
- Aug-Oct 2008:
 - Global Arrays & GemFire considered for data service (LINPACK)
 - 64-bit installation of Symphony from source succeeded; deployment
 - preliminary performance results on naive (and improved) CG program on DCS clusters
4 Overview of (Scientific) Numerical Applications

- embarrassingly parallel: e.g. Monte Carlo methods, parametric simulations
- matrix-(matrix/vector) multiply-based (sparse or dense):
 - iterative linear and eigensolvers (e.g. conjugate-gradient)
 - matrix-matrix: quantum scattering, neural net training
- dense linear algebra computations
 - e.g. LINPACK, least-squares, symmetric eigensolver
- regular grid computations, molecular dynamics and (naive) particle simulations
- computational fluid dynamics (e.g. NAS Parallel Benchmarks)
- complex semi-regular / irregular
 - e.g sparse matrix factorizations, multigrid, fast-multiple methods
5 Extending Symphony for Numerical Applications

- service tasks receive input (also common data) from client; send output back to client for aggregation
- multiple service tasks may run on on a single service instance process
 - possibly large overhead per setting up an SI, but potentially low overhead for individual service task
 - requires computation granularity large enough to mitigate cost of moving data
- opportunity for fault-tolerance (restart uncompleted tasks on failed SI) and load balancing (send more tasks to am SI that finishes early)
 - a simple solution to the problem of heterogeneity!
 - wish to retain relative simplicity of programming in any extensions
- initial idea: service tasks communicate via OpenMP or MPI
 - OpenMP slow! loss of load-balancing and fault-tolerance
 - what is role of Symphony anyway?
 - are there more service-oriented approaches?
6 Conjugate-gradient Linear System Solver in Symphony

- solve positive definite symmetric linear system $Ax = b$, A is $N \times N$
- repeatedly compute $w = Au$ ($O(N^2)$), using a ‘batch’ of service tasks; plus a number of ($O(N)$) vector-vector operations (on client task)
 - w from output of service tasks; what are their inputs, common data?
- a parallelization strategy ($p = 3$ tasks):
 \[
 \begin{align*}
 &A \times u = w \\
 &\text{number of iterations } r \text{ is generally largish, but slowly grows with } N
 \end{align*}
 \]
- can avoid communicating A on each iteration if whole computation is performed in a single Symphony session with $r \times p$ service tasks
 - the whole of A is common data
 - slightly wasteful, as each SI may not need all of A
 - for each ‘generation’ of service tasks, u could be regarded as ‘secondary’ common data
7 Parallel LINPACK: Introduction

- **general** dense linear system solution of $Ax = b$ via LU factorization with partial pivoting
 - $A \rightarrow LU$, A is $N \times N$
- used in many apps.; LINPACK is the #1 scientific benchmark
- represents a whole class of dense linear algebra computations
 - use of blocked algorithms to optimize memory hierarchy performance
 - from registers to interconnects!
 - both right-looking and left-looking variants
 - symmetric matrix computations have some extra challenges
8 Blocked (Right-looking) LU Factorization Algorithm

- uses Gaussian elimination with partial pivoting on an $N \times N$ matrix A

\[i_1 = i_\omega, i_2 = i_1 + \omega \]
\[\text{for } (j=i_1; i<i_2; j++): \]
\[\text{find } P[j] \text{ s.t. } |L^i P[j],j| \geq |L^i_{j:M,j}| \]
\[L^i_{j,:} \leftrightarrow L^i P[j],: \]
\[l_j \leftarrow l_j / L^i_{j,j} \]
\[L_j \leftarrow L_j - l_j u_j \]
\[\text{for } (j=i_1; j<i_2; j++): \]
\[A_{j,:} \leftrightarrow A P[j],: \text{ (outside } L^i) \]
\[(\text{row broadcast of } T^i, L^i) \]
\[U^i \leftarrow (T^i)^{-1} U^i \]
\[(\text{column broadcast of } U^i) \]
\[A^i \leftarrow A^i - L^i U^i \]
9 Parallel LINPACK: Message Passing Implementations

- basic algorithm is efficient for the bulk of the computation (update trailing sub-matrix)
- uses a $P \times Q$ logical processor grid (minimize communication volume) and the block-cyclic matrix distribution (load balance)
- has $O(N \lg P)$ messages, $O(N^2)$ communication volume, $O(N^3)$ FLOPs
 - thus inherently scalable (for large enough N)
- panel formation (L^i, U^i)
 - basic technique: storage blocking (ScALAPACK)
 - advanced techniques (load-imbalance / communication overhead trade-off):
 - lookahead: portable HPL (UTK, 2000)
 - algorithmic blocking (ANU, 1995–2000)
- these implementations assume homogeneity and are not fault-tolerant!
10 Parallel LINPACK: the Block-cyclic Matrix Distribution

• ‘standard’ for most parallel dense linear algebra applications
 • good load balance for tri. & sub- matrices; r affects performance
• divide matrix A into $r \times s$ blocks on a $P \times Q$ processor grid;
 block (i, j) of A is on proc. $(i\%P, j\%Q)$
• eg. if $r = 3, s = 2$ on a 2×3 grid, a 10×10 matrix A is distributed:

\[
\begin{array}{cccc|cccc|cccc}
 a_{00} & a_{01} & a_{06} & a_{07} & a_{02} & a_{03} & a_{08} & a_{09} & a_{04} & a_{05} \\
 a_{10} & a_{11} & a_{16} & a_{17} & a_{12} & a_{13} & a_{18} & a_{19} & a_{14} & a_{15} \\
 a_{20} & a_{21} & a_{26} & a_{27} & a_{22} & a_{23} & a_{28} & a_{29} & a_{24} & a_{25} \\
 a_{30} & a_{31} & a_{36} & a_{37} & a_{32} & a_{33} & a_{38} & a_{39} & a_{34} & a_{35} \\
 a_{40} & a_{41} & a_{46} & a_{47} & a_{42} & a_{43} & a_{48} & a_{49} & a_{44} & a_{45} \\
 a_{50} & a_{51} & a_{56} & a_{57} & a_{52} & a_{53} & a_{58} & a_{59} & a_{54} & a_{55} \\
 a_{60} & a_{61} & a_{66} & a_{67} & a_{62} & a_{63} & a_{68} & a_{69} & a_{64} & a_{65} \\
 a_{70} & a_{71} & a_{76} & a_{77} & a_{72} & a_{73} & a_{78} & a_{79} & a_{74} & a_{75} \\
 a_{80} & a_{81} & a_{86} & a_{87} & a_{82} & a_{83} & a_{88} & a_{89} & a_{84} & a_{85} \\
 a_{90} & a_{91} & a_{96} & a_{97} & a_{92} & a_{93} & a_{98} & a_{99} & a_{94} & a_{95}
\end{array}
\]
11 Candidate Data Services: Global Arrays

- Global Arrays is an MPI-compatible library supporting access to a logically global array
 - parallel tasks specify a (blocked) multi-dimensional array distribution
 - initialize contiguous sections in a local array, and then put this into a global array
 - from then, other tasks can access via get operations into local array, and and put (or accumulate-put) sections back into global storage
 - communications are one-sided; regular barriers are required
- potentially some performance disadvantages over MPI implementations using collective operations
 - partially mitigated by synchronous versions of get/put
- current implementation has no support for fault-tolerance
- a wide range of applications can be implemented in this, but:
 - only *rumours* of support for block-cyclic distribution
 - row or column replicated sub-arrays problematic
12 Candidate Data Services: Data Fabrics

- GemFire is a general distributed data fabric
- support for various modes of replication
- in-core caching for fast access if data is local
- already some experience in use in conjunction with Symphony
- support for get / put in array sections? block-cyclic?
 - however, linear algebra communication libraries provide this (via a general matrix copy function)
 - *in principle*, should not be too difficult to integrate this into GemFire
13 Parallel LINPACK under a Service-oriented Paradigm

- assume a suitable data service exists; client initially pushes A to the service
 - `Get()`, `Get_H()`, `Get_V()`, `Get_HV()`:
 - get all, horiz. portion, vert. portion, horiz./vert. portion of sub-matrix
- service tasks progress in *phases*:
 - pull new / out-of-date matrix sections perform updates, and push updated matrix sections
 - this would effectively be a *commit operation* (synchronization point)
 - if a task fails to reach the point (in reasonable time), it could be restarted elsewhere
- issues:
 - if $O(N)$ phases are required, is this too much overhead?
 - how to write the application so that it is restartable at any phase?
 - retaining load-balancing ability (in heterogeneous environment)
14 Parallel LINPACK: Persisting Service Tasks

for (j=i_1; i<i_2; j++)
Get_V(l_j)
find local P[j] s.t. |L^i_{P[j],j}| ≥ |L^i_{j:M,j}|
Put-MaxAccum(P[j])
Get (P[j], v = l_j^{P[j]}) (scalars)
if task owns row j:
Get (L^i_{j,:}, L^i_{P[j],:})
perform local swap;
Put (L^i_{j,:}, L^i_{P[j],:})
if tasks owns column j:
\[l_j \leftarrow l_j / v \]
Put (l_j) (V)
Get_H (l_j); Get_V (u_j); Get_HV (L_j)
\[L_j \leftarrow L_j - l_j u_j \]
Put (L_j)

for (j=i_1; j<i_2; j++)
Get_HV (A_{j,:}; A_{P[j]}) (outside L^i)
perform local swap;
for (j=i_1; j<i_2; j++)
Put (A_{j,:}; A_{P[j]}) (outside L^i)
Get (T^i); Get_V (U^i)
\[U^i \leftarrow (T^i)^{-1} \]
Put (U^i)
Get_V (U^i); Get_H (L^i); Get_HV (A^i)
\[A^i \leftarrow A^i - L^i U^i \]
Put (A^i)
Parallel LINPACK: Persisting Service Tasks

- assumes the panels \((L^i, U^i)\) are only distributed along their length when they are being formed (storage blocking, panel scattering)
- performance issue: need smart \texttt{Get()}, which does not-reload up-to-date data already loaded
- fault-tolerance: system maintains implicit counter for implicit synchronization points \((\text{Put(); Get())}\)
 - for restarted tasks, \texttt{Get/Put()} calls are no-operations until start point reached
 - also, local computation code blocks should be skipped
- the number of SI is a factor of logical task grid \(P \times Q\)
 - some affinity should be retained, i.e. each SI gets a sub-grid of \(P \times Q\) (performance)
 - load balancing: at (major) synchronization points, if an SI appears consistently overloaded, tasks may be stopped & restarted elsewhere
 - left-looking variants will reduce volume of data from \texttt{Put()}s
Parallel LINPACK: Service Sub-task Formulation

- *client tasks* orchestrates $O(NPQ)$ a series of *different* get-compute-put service tasks

 for $(j=i_1; i<i_2; j++)$

 Determine $P[j]$ from l^j

 Get l^j, $P[j]$, $A_{j,:}$, $A_{P[j]}$ & to do swap & scale l^j

 Get l_j, u_j & L_j to update L_j

 Do Row Swaps of $A_{j,:}$, $A_{P[j]}$ (outside L^i)

 Get T^i & U^i to update U^i

 Get L^i, U^i & A^i to update A^i

- fault-tolerance and load-balancing much easier to implement

- need however extensions to enable multiple versions of invoke()

 • some common control information (e.g. j) needs also to be passed

 • stresses more heavily the client–SM–SSM–SI chain

 • programming a series of sub-tasks is arguably a little more tedious

 • affinity in that corresponding tasks in successive ‘generations’ are scheduled (all other things being equal) on the same SI
Conclusions: Extending Symphony for Numerical Apps

- it appears possible to do so for dense linear algebra applications
 - service-oriented paradigm can be maintained, together with potential for fault-tolerance
 - a suitable, highly efficient and fault-tolerant data service is required
 - none seems to currently exist
 - some intelligence require, i.e. optimize redundant portions in `get()`s
- changes required in Symphony
 - notion of ‘generations’ of service tasks
 - extension to mechanism of common data
 - inside SIs, we also need to cache data to ensure fast `Get()`s
- issue: can all of this be made robust, lean and efficient enough?
 - for performance, may consider using less frequent synchronization points
 - if successful for dense linear algebra, likely to be successful to other challenging applications (except complex irregular)