Computer Science Project Courses: Learning, Assessment and Workload Issues

Peter Strazdins and Lynette Johns-Boast,
Department of Computer Science,
College of Engineering and Computer Science,
The Australian National University

DCS Retreat 2007, 06 Dec 2007
1 Overview

- why are projects important?
- project courses: watch out for 2008!
- lessons from the PhB advanced study courses
- existing models for individual projects
- group projects for SE
- assessment and other issues
- questions to be addressed
2 Why are project Courses Important?

- ‘capstone’ for many degrees (BIT (?), BSEng, BCS, BIT Hons, MCOMP (?), MCOMP Hons, MSE (??))
 - integrate specific knowledge and skills into a large piece of work
 - learn generic, ‘lifelong’, skills (communication, project management)
 - valuable in the long-term, even if technical specifics become irrelevant
- provide differentiation between programs (e.g. MITS and MCOMP)
- support research-based education
 - give students a richer, closer learning experience
 - provide pathways / recruitment to HDRs
 - may even result in useful artefacts, papers!
- seem to be an easy thing to add in to degree programs . . .
3 CS Project Courses in 2008 at a Glance

- (mostly) individual courses; in (rough) order from implementation to research orientation:
 - COMP3750/70: Project Work in Computer/Information Systems (6u)
 - COMP874/5/6/7/8/90: Project Work in AI/…/SE (12u)
 - COMP4720/30, COMP8720/30: Project Work in SE I/II (3u/6u)
 - COMP4540: Software Engineering Research Project (12u)
 - COMP3006/3130: CS Research / Group Project (6u/6u)
 - COMP4005/ COMP8800: Honours projects (12+12u)
- SE group courses: implementation-oriented with a well-defined methodology
 - COMP3100/ 3500 SE Group Project (6+6u, 7/19)
 - COMP4500 SE Practice (6+6u, 16)
- consider not only the number of courses but that of the students!
4 Lessons from the PhB Program’s Advanced Study Courses

- PhB (Science) program a “research-focused” Honours program
 - requires six advanced study courses (ASCs) over the first three years
 - usually in form of small research projects with an academic instructor
 - each student is also supplied a ‘mentor’ throughout
- assessment by Wilson, Wilson & Howitt (2006, GCHE project)
 - students: perceived benefit of ASCs mainly learning generic research skills & the resulting personal development
 - drawbacks: high workload, need more enthusiastic instructors, outcomes unclear, often felt unfairly assessed
 - instructors: a self-selected minority of eligible staff
 - few mentors had ever been instructors
 - many did not envisage any kind of educational outcome
 - lack of focus on generic skills
 - lack of consistency with assessment (still no guidelines!)
5 Some Established Models for Individual Projects

- Honour’s projects: cs.anu.edu.au/honours/projects.html
 - milestones well defined; description of what is expected; thesis template; some past examples available
 - assessment guidelines: qualitative requirements for IIB, IIA, I grades; suggested marking scheme; outline of nature of a suitable project
 - ‘at will’ offering of topics and supervision
 - shared assessment: 2 examiners, with input from supervisor

- eScience Projects: escience.anu.edu.au/project
 - ‘at will’ offering of topics and supervision
 - well-established guidelines (assessment scheme, report format, organization); many example reports and presentations
 - project management (including milestone timetabling) expected
 - assessed by co-ordinators, with input from supervisor
6 The SE Model for Group Projects

• use of tools to assist with management
 • per-group FAIS forums (accessible also to clients & tutor)
 • SVN used for tracking, assessment
 • Wiki also used for communication, collaboration, presentation
 • GPME used to manage project proposals, record Work Breakdown Structure (WBS), track progress / contributions

• assessment:
 • WBS proposes key deliverables & time-line for delivery
 • for COMP4500:
 • 15% for scope identification & planning (WBS)
 • 20% for requirements and architecture
 • 15% for prototyping and implementation
 • 15% for delivery and presentation
 • 5% for reflective report; 30% for oral exam
7 Assessment and Other Issues

- project topics: who provides them, when, are they appropriate for the course?
- student issues: learning outcomes (+ generic skills), expectations on supervisor(s)
- to what extent should supervisor be involved in the assessment
 - may be +bely / -vely biased; potential conflict of interest
 - may color relationship with student
 - may be the only person who can feasibly judge the quality of artefacts
- project outcomes / supervisor rewards: improve with
 - the quality / maturity of the student(s)
 - the size and duration of the project
 - the number of the students working on it?
8 Questions to Address

• how should we ensure quality outcomes for project students?
 • clear expectations, learning outcomes (+ generic skills?), fairness, feedback, satisfying experience

• to what extent should project courses be standardized? (same for group / indiv?)
 • topic definition, co-ordinator/supervisor/student guidelines, assessment schemes
 • to what extent should co-ordination be centralized?
 • to what extent is organization around research groups appropriate?

• to what extent should supervision / assessment workload be shared?
 • should student choice of topic be constrained?
 • or, what incentives should be provided to supervisors?

• how to reduce overall workload and enhance outcomes for supervisors?
 • should (pseudo-) group projects be used more?
 • what guidelines and standards are appropriate?