
Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 1

The Analysis and Optimization of Collective Communications
on a Beowulf Cluster

Wi Bing Tan and
Peter Strazdins

Department of Computer Science,
Australian National University,

http://cs.anu.edu.au/∼Peter.Strazdins/projects/ClusterComm

20 December 2002

ICPADS 2002
JJ J • I II ×

http://cs.anu.edu.au/~Peter.Strazdins
http://cs.anu.edu.au/~Peter.Strazdins/projects/ClusterComm


Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 2

1 Talk Outline

1. talk outline

2. motivations for optimizing collective communications

3. the Beowulf cluster ‘Bunyip’

4. types of collective communications: all-gather, all-reduce and reduce-
scatter

5. algorithms for collective communications: traditional

6. algorithms for collective communications: from repeated sub-operations

7. results: comparison of algorithms

8. results: comparison with performance models

9. a simulator for understanding collective communication performance

10. conclusions

ICPADS 2002
JJ J • I II ×



Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 3

2 Motivations for Optimizing Collective Communications

• clusters made from commercial-off-the-shelf (COTS) networks are in-
creasingly popular

• eg. Beowulf clusters built from switch-based networks

• such networks typically slow; also may be different from vendor-designed
networks (eg. contention-free)

• optimization of collective communications is thus particularly impor-
tant

• may require different techniques to the ‘traditional algorithms’ built for
networks on custom-made vendor-designed parallel computers

• our goal: to evaluate and understand collective communication perfor-
mance for COTS network clusters

ICPADS 2002
JJ J • I II ×



Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 4

3 The Beowulf cluster ‘Bunyip’

• 550 MHz dual Pentium III nodes,
in 4 groups of 24

• each node has 3 100 Mb NICs

• can communicate with 3 other
nodes simultaneously

• contention-free switches

• ‘Bunyip’ is an monster in Aus-
tralian mythology

• won Gordon-Bell Award for
Price/Performance in 2000

• (MPI) communication startup cost
is α = αs + αr = 24µs + 180µs;

bandwidth is 8 MB/s (= 8/β),

ie. communication cost per double
is β = βs + βr = 0.082µs + 1.063µs

ICPADS 2002
JJ J • I II ×



Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 5

4 Types of Collective Communications

• All-Gather:

start: node i, 1 ≤ i ≤ p, has n words of data (xi
1:n)

end: all nodes have all of the pn data (x1

1:n, . . . , x
p
1:n)

• Reduce-Scatter:

start: node k, 1 ≤ k ≤ p, has np words of data (yk
1:p, 1:n)

end: node i has n words of summed data (xi
1:n, xi

j = Σp
k=1

yk
i,j)

• All-Reduce

start: node i, 1 ≤ i ≤ p, has n words of data (yi
1:n)

end: all nodes have n words of summed data (x1:n, xj = Σp
k=1

yk
j )

• these operations are widely-used (e.g. in dense linear algebra) and are
in the MPI standard

• as we can model the time to send a message: t = α + βn = (αs+αr) +
(βs+βr)n,

we similarly can have performance models for collective communica-
tions, e.g. tag = f(n, p, αs, αr, βr, βs)

ICPADS 2002
JJ J • I II ×



Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 6

5 Algorithms: traditional

• widely-used; good performance
on traditional parallel computers

• bi-directional exchange:

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

tag = α log2 p + (p − 1)(βn)

tar = log2 p(α + βn)

• fan-in/fan-out: slowest, but often
used

• recursive-halving/doubling:

(v. complex for non-power-of-2 p!)

tag = trs + log2 p(α + βn
2
)

trs = α log2 p + (p − 1)(βn)

tar = 2(α log2 p + (p − 1)(βn
p))

• ring (rotation) – no contention :
0 1 2 3

0 1 2

3

0 1 2 3
3

2

10

0 1 2 3

1

032

tag = trs = tar = (p − 1)(α + βn)

• above models assume an ex-
change is as fast as a single mes-
sage

ICPADS 2002
JJ J • I II ×



Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 7

6 Algorithms: based on repeated sub-operations

• tree-like and ring-like patterns occur frequently in dense linear algebra

• in the case of All-Gather:

• tree: binary-tree broadcast from each node i, 1 ≤ i ≤ p

trs = p log
2
p(α + βn) (no overlap) tag ≈ min[log

2
p, 2]p(α + βn)

• pipeline: pipelined broadcast from each node i, 1 ≤ i ≤ p

tag = trs = 3(p − 1)(α + βn)

• fan-in: gather from other nodes into node i, 1 ≤ i ≤ p

tag = trs ≈ 2(p − 1)(α + βn)

• full fan-in: each node i in parallel:
for each k = 1 : n, send data to node i + k;
for each k = 1 : n, receive data from node i − k;

tag = trs = p−1

o
(α + βn)

o is degree of overlap on simultaneous receives, 1 ≤ o ≤ 3 on Bunyip

• simple to implement; not contention-free;
but may be fast if there is overlap between the sub-operations

• exact performance models are in terms of αs, αr, βr, βs

ICPADS 2002
JJ J • I II ×



Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 8

7 Results: comparison of algorithms

0 200 400 600 800 1000
Number of Elements

0

10000

20000

30000

40000

T
im

e 
(u

s)

MPI Implementation
Pipeline
Repeated Tree Broadcast
Full Fan-in
Recursive-Halving Recursive-Doubling
Bi-Directional Exchange
Full Fan-out

.

0 200 400 600 800 1000
Number of Elements

0

2000

4000

6000

8000

T
im

e 
(u

s)

Ring
Repeated Tree Broadcast
Pipeline
Recursive-Halving
Full Fan-in
MPI Implementation
Full Fan-out

..

• results for All-Gather (left) & Reduce-Scatter (right),

for p = 8 (single Bunyip group)

• for All-Reduce, bi-directional exchange was best (as expected), and also
significantly faster than MPI

• for 1000 ≤ n ≤ 10, 000, results were similar except some degradation at
n ≥ 8, 000 for ring, fan-in and full fan-in

ICPADS 2002
JJ J • I II ×



Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 9

8 Results: compare with performance models & scalability

0 200 400 600 800 1000
Number of Elements

0

10000

20000

30000

40000

T
im

e 
(u

s)

Pipeline
Repeated Tree Broadcast
Full Fan-in
Recursive-Halving Recursive-Doubling
Bi-Directional Exchange
Fan-in Fan-out

.

2 4 6 8 10 12 14 16
Number of Processors

0

20000

40000

60000

80000

1e+05

1.2e+05

T
im

e 
(u

s)

MPI Implementation
Fan-in Fan-out
Ring
Recursive-Halving Recursive-Doubling
Bi-Directional Exchange

.

• results for All-Gather: compare with performance models for p = 8 (left),
and performance at n = 1000 (right)

• close match for all ops, with full-fan-in’s overlap factor oag≈1, ors≈1.2

• larger p requires the operations to be ‘inter-group’ on the Bunyip:

• a hierarchical algorithm (based on ring or bi-directional exchange
worked ≈ 20% better for n ≥ 1000

(can avoid large messages between groups)
ICPADS 2002

JJ J • I II ×



Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 10

9 A Simulator for Collective Communications

• a message simulator and diagramming tool
was developed to understand performance
overlap

• generated timing diagrams based on both
performance model predictions and actual
timestamps for MPI send & receive calls

• was useful in understanding message over-
lap effects
and deriving the performance models for
tree and fan-in
(predicted diagram for fan in, p = 8, on right)

• is generic; source code is available from

http://cs.anu.edu.au/
∼Peter.Strazdins/
projects/ClusterComm

ICPADS 2002
JJ J • I II ×

http://cs.anu.edu.au/~Peter.Strazdins/projects/ClusterComm


Tan/Strazdins (ANU): The Analysis and Optimization of Collective Communications on a Beowulf Cluster 11

10 Conclusions

• LAM MPI performance was sub-optimal for these operations

• for clusters like Bunyip

• bi-directional exchange worked well for small messages, ring slightly
better for large

• significant overlap can occur on algorithms based on repeated sub-
operations:

• required more complex performance models (with separated send
and receive components)

• full fan-in (believed novel) modestly faster for Reduce-Scatter
• would be even better if overlap factor o → 3

• these are very simple and reliable to implement

• close match of actual results with performance models indicate a
good understanding of performance is achieved

• hierarchical algorithms slightly better for ‘inter-group’ communications

• message simulator was a useful tool in understanding performance

ICPADS 2002
JJ J • I II ×


	Talk Outline
	Motivations for Optimizing Collective Communications
	The Beowulf cluster `Bunyip'
	Types of Collective Communications
	Algorithms: traditional
	Algorithms: based on repeated sub-operations
	Results: comparison of algorithms 
	Results: compare with performance models & scalability
	A Simulator for Collective Communications
	Conclusions 

