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Abstract—Although shared memory programming models
show good programmability compared to message passing pro-
gramming models, their implementation by page-based software
distributed shared memory systems usually suffers from high
memory consistency costs. The major part of these costs is inter-
node data transfer for keeping virtual shared memory consistent.
A good prefetch strategy can reduce this cost. We develop
two prefetch techniques, TReP and HReP, which are based on
the execution history of each parallel region. These techniques
are evaluated using offline simulations with the NAS Parallel
Benchmarks and the LINPACK benchmark.

On average, TReP achieves an efficiency (ratio of pages
prefetched that were subsequently accessed) of 96% and a cover-
age (ratio of access faults avoided by prefetches) of 65%. HReP
achieves an efficiency of 91% but has a coverage of 79%. Treating
the cost of an incorrectly prefetched page to be equivalent to that
of a miss, these techniques have an effective page miss rate of
63% and 71% respectively. Additionally, these two techniques
are compared with two well-known software distributed shared
memory (sDSM) prefetch techniques, Adaptive++ and TODFCM.
TReP effectively reduces page miss rate by 53% and 34% more,
and HReP effectively reduces page miss rate by 62% and 43%
more, compared to Adaptive++ and TODFCM respectively. As
for Adaptive++, these techniques also permit bulk prefetching
for pages predicted using temporal locality, amortizing network
communication costs and permitting bandwidth improvement
from multi-rail network interfaces.

I. INTRODUCTION

Due to the high complexity of the message passing program-
ming paradigm on cluster systems, there is much interest in
developing alternative programming paradigms that are easier
to use but without significant performance penalties. The most
widely used such paradigm, the shared memory programming
model, can be facilitated on clusters via software Distributed
Shared Memory (sDSM) systems, which have the advantage
of both the programmability of shared memory programming
models and the low cost of distributed memory architectures.
sDSM systems designed with OpenMP compiler support are
also known as cluster-enabled OpenMP systems [1], [2], [3],
[4], [5].

With the release of Intel Cluster OpenMP in 2006, cluster-
enabled OpenMP systems became the mainstream of sDSM.
Although cluster-enabled OpenMP systems show acceptable
performance on some scientific applications, for example

selected workloads from the Gaussian Quantum Chemistry
code (Gaussian03) [6], they still suffer from high memory
consistency costs [7], [8]. The major part of the cost is
inter-node data transfer, due to the memory consistency work
within global synchronization points [9]. An effective prefetch
strategy can reduce memory consistency costs by overlapping
computation and communication. Furthermore, if prefetched
pages are aggregated, it becomes possible to amortise com-
munication latencies and to leverage multirail techniques to
achieve better inter-node bandwidth [9], [10].

However, it is quite complex to effectively prefetch in
cluster-enabled OpenMP systems due to two major problems.
The first is that the simple techniques proposed for hardware
prefetches are not usually effective for sDSMs, because the
larger granularity of access (page-level vs cache-line level)
hinders prediction and the much higher latencies requires
prefetches to be issued much earlier. The second reason is
that prefetches generate significant overhead when they are
issued unnecessarily or incorrectly [11].

In this paper, we have designed a set of Region-based
Prefetch (ReP) techniques which address the first problem
by considering how the patterns of page accesses vary both
across executions and within the execution of each identifiable
parallel and serial region. The second problem is addressed by
avoiding the issue of prefetches for non-repeatable regions or
non-repeatable page access patterns.

There are some existing prefetch techniques for sDSM
systems, including Dynamic Aggregation technique [12] de-
signed by Amza et al., B+ [13] and Adaptive++ [11] designed
by Bianchini et al., and the third-order differential finite
context method (TODFCM) [14] adopted by the Delphi sDSM
system [15] by Speight et al.. This paper compares two
new ReP techniques with some of these existing techniques
by running offline simulations based on page fault records.
The records are collected via executing the OpenMP NAS
parallel benchmarks [16] and an OpenMP LINPACK (LPK)
benchmark using Intel Cluster OpenMP (CLOMP) [1].

The rest of this paper is organized in seven sections.
In section II, we briefly introduce background knowledge
including parallel regions and memory consistency models of
sDSM systems. Related work on sDSM prefetch techniques



   

Single Thread 

Thread1 Thread2 Thread3Thread0

Start parallel region, implicit barrier

Explicit barrier

Thread1 Thread2 Thread3Thread0

End parallel region, implicit barrier

Single Thread 

Thread1 Thread2 Thread3Thread0

Start parallel region, implicit barrier

End parallel region, implicit barrier

Single Thread 

Sequential Region #1

Parallel Region #1

Parallel Region #2

Sequential Region #2

Parallel Region #3

Sequential Region #3

Fig. 1. Illustration of regions in an OpenMP parallel program.

is in section III. In section IV, our new ReP techniques are
described in detail, after first noting some of the limitations
of current prefetch techniques and analyzing an OpenMP
LINPACK program. Simulations are set up in section V and
results are presented in section VI. Conclusions are drawn in
section VII and future work is briefly described in section VIII.

II. BACKGROUND

A. Regions of a Parallel Program

A major challenge for shared memory programing is deter-
mining what data will be manipulated by which process/thread
and how this is coordinated between the processes/threads.
Synchronization operations are used to not only exchange
data updates and write notices, but also keep the consistency
of the data. Often a parallel program is decomposed into
several regions separated by global synchronization points in
a fork/join programming model. Fig. 1 illustrates this for an
OpenMP parallel program.

In Fig. 1, parallel regions can be distinguished by an
explicit barrier within a fork-join section, such as parallel
region #1 and #2. Moreover, a parallel region can also be
distinguished by fork-join operations, such as parallel region
#3. The remaining regions, which have only one executing
thread, are sequential regions. The CLOMP runtime generates
an unique ID for each region (parallel or sequential).

These regions are often enclosed in a loop, which will cause
each region to be executed multiple times. The executions
of the same region will have their memory access patterns
determined by the loop index.

B. sDSM Memory Consistency Model

The majority of sDSM systems are page-based [17], [18],
[1]. These partition and manage the globally addressable mem-
ory into pages. In addition, page-based sDSM systems can be
categorized into two classes, “home-based” and “homeless”.
TreadMarks and CLOMP are homeless sDSM systems, while
JIAJIA, Omni/Danui, Omni/SCASH, Delphi are home-based
sDSM systems.

For home-based sDSMs, each page in the shared address
space is assigned a home where the master copy of the page
is maintained. The status of the page at its home node is
what defines the most “up-to-date” view of that page. Global
synchronizations involve all threads sending their page modifi-
cations (diffs) to the relevant home threads. In this way, master
copies can be brought up-to-date and invalidation notices sent
back to all nodes holding copies of those pages. An access
to an invalid page that occurs after a barrier is resolved by
copying the up-to-date page back across the network from its
home location.

In contrast, homeless sDSM systems [1] do not use page
homes. Instead, changes made to a page by other nodes are
patched into the local view as required. At a synchronization
point, records are made of what pages have been modified
since the last synchronization point, and this information is
communicated to all other threads as “write notices”. The
aggregation of these write notices allows a thread to create
a map detailing the pages that have remote modifications,
and where those changes are located. Using CLOMP as an
example, the actual page modifications are only obtained if
and when they are required. This may require the requesting
thread to retrieve modifications from multiple other threads.

Besides the difference that a page has a home or not, for
both home-based and home-less sDSMs, i) write notices are
sent and invalidations are performed at synchronization points,
ii) the actual data retrieving happens only when the invalid
page is accessed, which avoids unnecessary data transfers,
and iii) data fetching to keep memory consistent is the major
overhead [7], [8].

III. RELATED WORK

The most relevant existing prefetch techniques include
Dynamic Aggregation technique [12], B+ [13], Adaptive++
techniques [11], and third-order DFCM [15].

A. Dynamic Aggregation Technique

The Dynamic Aggregation technique [12] records all page
access faults as a fault sequence list, that is divided into
multiple groups with a pre-defined group size.

After a global synchronization point, when the first access
fault occurs to any page in a group, prefetches are issued for
all other pages in that group. In order to record the page
fault history, only the faulting page is set to valid after the
requested data arrives. After the group is fetched, it is freed.
All prefetches need to be guaranteed to arrive before the next
synchronization point.

At the next synchronization point, groups are re-calculated
based on the access faults experienced by the processor prior
to the synchronization point.

B. B+ Technique

B+ [13] is an invalidation-driven prefetch technique, which
uses page invalidation to guide prefetching. The B+ technique
assumes that a page that has been invalidated within a global



synchronization operation will likely be referenced again in
the near future.

Thus, the B+ technique prefetches diffs for each of the pages
invalidated at synchronization points. Prefetches are issued
right after synchronization points.

C. Adaptive++ Technique

In [11], Adaptive++ technique is developed, which relies on
two recorded page fault lists and two modes of operation to
predict which pages to prefetch. These two page fault lists
are maintained for the previous two regions. Then, during
the current barrier, the similarity between the two lists is
calculated, and the page fault list for the previous region
(p list) will be chosen if the similarity is greater than 50%.
Otherwise, the list for the “before previous” region (bp list)
will be chosen.

The first mode is named the repeated-phase mode. In
the current barrier, p pre-defined pages from the chosen list
(starting from the first page) will be prefetched. Post the
barrier, at each page fault, if the page is in the chosen list,
the q pre-defined pages following the faulting page from the
chosen list will be prefetched1.

The second mode is named the repeated-stride mode. The
most frequent page fault stride of the chosen list is used to
determine the pages to prefetch in the next phase. Post the
current barrier, at each page fault, if the faulting page is in
the chosen list, the next q pages with a multiple of the most
frequent stride from the faulting page are prefetched.

The decision of which mode to use for the next phase is
made during the barrier. If the repeated-phase mode is used for
the last region, the efficiency of previously issued prefetches
is calculated, using page fault information collected during the
execution of the previous regions. If the repeated-phase mode
is not used for the last region, the efficiency of what would
be issued by this mode is calculated. If the efficiency of the
repeated-phase mode is greater than the frequency of the most
common stride for the chosen list, the repeated-phase mode
is chosen; otherwise the repeated-stride mode is chosen. If
neither is greater than 50%, prefetching is avoided until the
next barrier.

D. Third Order Differential Finite Context Method

The third-order differential finite context method (TOD-
FCM) is used to predict the most likely page to be accessed
next for the Delphi sDSM system [15]. A predictor that
continuously monitors all misses to globally shared memory
is implemented for TODFCM. For any three consecutive page
misses, the predictor records the page number of the next miss
in a hash table. During a prediction, a table lookup determines
which page miss followed the last time the predictor encoun-
tered the same three most recent misses. The predicted page
needs to be prefetched before the next actual page miss.

The predictor contains two levels of records. The first level
retains the page numbers of the three most recent misses.

1In [11], p and q are set to 24 and 4 respectively.

However, only the most recent page number is stored as an
absolute value. The remaining values are the strides between
consecutive page numbers. The second level is a hash table
which stores the target stride to calculate the next possible
page. The entry of second level can be calculated by a given
hash operation on the strides stored in first level. The records
will be updated when the prediction is not correct. The target
stride is replaced by the new stride and the corresponding first
level records are updated with the new stride as well.

IV. REGION-BASED PREFETCH TECHNIQUES

In this section, we will first discuss the limitations of related
prefetch techniques and analyze an example parallel program.
Then, we will propose a set of Region-Based Prefetch (ReP)
techniques.

A. Limitations of Current Prefetch Techniques for sDSM Sys-
tems

There are some obvious limitations to the above prefetch
techniques. The Dynamic Aggregation technique assumes that
the page faults that occurred in the current parallel region
will occur again in the consecutive parallel region. The B+
technique has a similar assumption. This is obviously not
suitable for most parallel applications.

The Adaptive++ technique assumes that a region will expe-
rience the same page access strides (same fault pages) as either
the previous region or the region before that. Thus, Adaptive++
improves Dynamic Aggregation and the B+ techniques by
having page fault records for the two most previous regions
and choosing one as target region for prediction, but it is still
not adequate for complex parallel applications with multiple
parallel regions.

TODFCM is a more generic prefetch technique; however,
it does not consider the characteristics of the sDSM memory
consistency models. Furthermore, as it only predicts one page
faults at a time, only one page can be prefetched in advance,
which limits the overlap of computation and communication.
Some attempts have been done by Speight et al. to reduce the
number of network communications via prefetching multiple
pages at one time instead of only one page. However, these
attempts resulted in a significant reduction in the prefetch
efficiency (∼45% reduction for 8 pages and ∼25% reduction
for 4 pages) [15].

B. Parallel Application Example

To understand better the execution paging behavior of
(parallel) regions, we analyze the LINPACK (LPK) OpenMP
benchmark as a parallel application example. 2

Fig. 2 shows pseudo code for the parallelized section of the
LINPACK OpenMP benchmark.

In this scheme, the parallel region is re-executed several
times. The number of pages accessed in each iteration is
decreased, and not all pages accessed in the current execution
of the region will be accessed again in the next execution.

2This OpenMP LINPACK benchmark is available at
http://cs.anu.edu.au/∼Jie.Cai.



/* A is a column-major n x n matrix,
nb is the blocking factor */

for (j = 0; j < n; j += nb) {
/* region 1 -- sequential */
read/write(A[j:n-1, 0:n-1]);
#pragma omp parallel for default(shared) private(jv,jk)
/* region 2 -- parallel */
for (jh = j+nb; jh < n; jh++) {
for (jv = j+nb; jv < n; jv++) {

for (jk = j; jk < j+nb; jk++){
read(A[jk,jv]);
read(A[jh,jk]);
write(A[jh,jv]);

}
}

} /*end of region 2*/
}

Fig. 2. Pseudo code of a LINPACK OpenMP benchmark for a n × n
column-major matrix A with blocking factor nb.

Fig. 3. Illustration of the paging behavior of the LINPACK benchmark for
two threads over two iterations.

However, the access pattern changes in a regular fashion. Fig. 3
illustrates the paging behavior of the LINPACK benchmark
for four threads over two iterations. In order to simplify the
scenario, we set n = 8nb in Fig. 3.

All write operations to the matrix explore both temporal and
spatial data locality. All read operations explore only spatial
data locality. However, as the memory of matrix A is allocated
contiguously, both write and read operations performed by one
thread will explore multiple spatial localities (different stride
patterns). The stride along rows is 1 page, and the stride along
column is n

SystemPageSize pages. However, when n
nb is large,

the dominant stride of the application will be 1 page.
While this is not an optimal LINPACK implementation for

cluster-enabled OpenMP systems, it provides an interesting
pattern of page accesses to test prefetch techniques.

Based on observations of the above LINPACK program and

the NPB-OMP suite, we found that these applications exhibit
the three major types of behavior:

1) A region executed previously is likely to be executed
again in the near future.

2) The page accesses will either show good temporal or
spatial locality. In other words, either faulting pages or
the strides between the consecutive page faults in an
execution of a region are likely to be repeated in the
future execution of the same region.

3) Executions of the same region usually exhibit the most
similar paging behavior if they are temporally proxi-
mate; i.e. in the two previous executions of that region.

In order to address the limitations of those existing sDSM
prefetch techniques and fulfill the observations for paging and
region execution behavior of parallel applications, we designed
two Region-Based Prefetch (ReP) techniques. The first ReP
technique only considers the temporal paging behavior, and
the second ReP technique addresses all observations.

C. Calculation of Metrics

Before describing ReP techniques, we briefly introduce
some metrics which will be used for ReP techniques.

Similarity: the similarity of two page fault lists (l1 and l2)
is calculated as follows.

Sl1
l2 =

Nsame

Nl1
(1)

In Equation (1), Sl1
l2 denotes the ratio of Nsame against Nl1.

Nsame stands for number of fault pages belonging to both list,
and Nl1 stand for the number of page faults in l1. Similarly,
Sl2

l1 can be calculated. A similarity of greater than 50% means
both Sl1

l2 and Sl2
l1 need to be greater than 50%.

Efficiency: this is the ratio of prefetches which were useful.
Prefetch techniques usually need to improve this metric to
avoid unnecessary prefetches and to eliminate the associated
overhead. It can be calculated as follows.

E =
Nu

Np
(2)

In Equation (2), E stands for efficiency, while Nu and Np

denote the number of useful pages, and number of prefetched
pages. A useful prefetch is a page prefetch issued before the
actual access to that page within an execution of a region.3

Frequency: it represents how often a stride appears in a
page fault list. The most common stride frequency of a given
page fault list can be calculated as follows.

Fc =
Nc

Ns
(3)

In Equation (3), Fc stands for frequency of the most common
stride (c). Nc denotes the number that the most common stride
(c) appears in a give page fault list, and Ns = Nl− 1 denotes
the number of stride in the list.

3When a prefetch is not useful for the next execution of a region, it may still
be useful for a later execution if the page is not invalidated during the period.
However, this is not counted as a useful page in the following simulations.



Fig. 4. The page fault record entry for TReP and HReP prefetch techniques.

D. The Temporal ReP (TReP) Technique

Only the temporal paging behavior is considered in the
Temporal ReP (TReP) technique.

All experienced page faults are recorded at region-basis for
the TReP predictor. Each record entry contains the region ID,
number of page faults occurred in the region, and fault page
IDs, as shown in Fig. 4.

On the first access to an invalid page after a barrier, the
TReP predictor will look-up the previous executions of the
current region ID in the records. If there are at least two
previous executions, the TReP will issue prefetches for this
region. Otherwise, the TReP will not do any page prefetch
operations in this region.

To issue prefetches, TReP treat the two recent executions
of the current region as two page fault lists. If the two lists
are “highly similar”, the application is deemed to show good
temporal locality, and the whole list of pages for the most
recent previous execution of the current region is prefetched.
Otherwise, TReP will not prefetch any pages for the current
region. The term “highly similar” means that the similarity of
these two lists is above a pre-defined threshold (this will be
defined and examined in section VI).

E. The Hybrid ReP (HReP) Technique

Based on TReP, we designed a more complex prefetch
technique to target both temporal and spatial data locality and
all observations listed in section IV-B.

This prefetch mechanism firstly verifies whether the current
region has been executed previously. If the current region
was executed previously (even only once), the predictor will
predicts possible pages that will be accessed in the region
by utilizing a hybrid prefetch technique combining TReP and
Adaptive++. Therefore, we name it the Hybrid ReP (HReP)
technique. The details of the HReP prefetch mechanism is as
follows.

In the HReP predictor (Fig. 5), there are totally three
prefetch modes, whole-phase prefetch mode, repeated-phase
prefetch mode, and repeated-stride prefetch mode. The
whole-phase prefetch mode utilizes the TReP technique, while
the repeated-phase mode and repeated-stride mode utilize the
prefetch mechanisms from the Adaptive++ technique (refer
to section III-C). Three paging behaviors were considered:
full temporal locality (whole-phase), partial temporal locality
(repeated-phase) and spatial locality (repeated-stride).

When p list and bp list (refer to section III-C and Fig. 5)
are “highly similar”, whole-mode is used. Otherwise, either the
repeated-phase or the repeated-stride mode is used. Similar to
the Adaptive++ technique, whether picking the repeated-phase
or the repeated-stride mode depends on the paging behavior of
the chosen list. When the efficiency of the prefetches that the
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Fig. 5. A flowchart of the HReP predictor.

repeated-phase mode would have issued for the last execution
of this region is greater than or equal to the most common



stride frequency (temporal locality is more dominant than
spatial locality), the repeated-phase mode is picked. Otherwise,
the repeated-stride mode is picked. If the chosen list does not
show either good temporal or spatial locality, the HReP will
not issue any prefetches for this region. Good temporal or
spatial locality is determined by whether the efficiency or the
frequency is higher than a pre-defined value; this value will
be determined empirically in section VI.

Although the HReP predictor is developed based on both
TReP and Adaptive++ techniques, there are a few differences
which improve the prediction compared to the Adaptive++.

Firstly, p list and bp list are determined from the first
and second most recent executions of the region with same
region ID as the current region (in Adaptive++, they are
determined from the executions of the first and second most
recent regions). Since p list and bp list are determined from
the two most recent executions of the region with the same
ID, it is much easier to predict the page faulting pattern for
the same region.

Secondly, the determination of the chosen list is different.
If only one previous region is found having the same ID as
the current region, p list will be chosen.

Finally, if p list is “highly similar” to bp list, the HReP
will issue prefetches immediately for all the fault pages of
p list at once, then it exits the HReP predictor. This is the
whole-phase prefetch mode.

We will evaluate both the TReP and the HReP techniques
using offline simulation.

V. SIMULATION SETUP

According to a comparison of B+, Dynamic Aggregation
and Adaptive++, Adaptive++ performs better than other two
techniques in terms of efficiency [11]. Therefore, we will
only simulate and compare four different sDSM techniques:
TReP, HReP, Adaptive++ and TODFCM. Moreover, in [15],
evaluation of TODFCM showed that prefetch efficiency is
decreased by ∼45% and ∼25% when 8 pages and 4 pages
are prefetched at each fault. Therefore, in the simulation
for TODFCM, only one page is prefetched at each fault.
For repeated-phase mode and repeated-stride mode of both
Adaptive++ and HReP, 4 pages will be prefetched at each
fault.

A. Offline Page Fault Records

The four different sDSM prefetch techniques have been
implemented and evaluated in a offline simulator. The LIN-
PACK benchmark analyzed in section IV-B (n = 2048 with
nb = 64 and nb = 16) and some of class A OpenMP NAS
Parallel Benchmarks (OMP-NPB) were chosen to generate
page fault records on a per thread and per region basis using
CLOMP. These records were then used as inputs for the offline
simulations.

B. Pre-defined Thresholds for TReP and HReP

The thresholds used in TReP and HReP are: the degrees of
similarity to identify “highly similar” and “similar” lists and

TABLE I
THRESHOLD EFFECTS OF TREP AND HREP FOR LINPACK BENCHMARK.

highly 2 threads 4 threads 8 threads
Tech similar E Np E Np E Np

(%) (%) (x1000) (%) (x1000) (%) (x1000)

TReP
70 87.5 83 84.3 90 87.9 75
80 88.0 80 88.2 86 91.2 72
90 90.6 51 90.9 59 91.5 69

HReP
70 83.2 97 81.2 142 80.8 150
80 85.0 97 81.8 139 81.8 148
90 85.2 91 82.3 130 82.1 146

the degrees of efficiency and frequency to identify whether
a region’s execution shows good temporal or spatial data
locality. They will be defined in this section.

Table I shows the effect of different values for the similarity
of “highly similar” lists for LINPACK benchmark (n = 2048
and nb = 64). The results show that both TReP and HReP
have an increasing efficiency (E) with increasing threshold
for “highly similar” lists. However, the number of prefetches
issued (Np) dropped with increasing threshold. A similar effect
is also observed for NPB-OMP benchmarks. Therefore, in
order to achieve a balance between the number of prefetches
and its efficiency, we chose 80%.

From tests using the LINPACK and NPB-OMP benchmarks,
we found that the the optimal similarity threshold for two
“similar” lists is 50%. The optimal efficiency and frequency
thresholds, indicating good temporal and spatial data locality,
were found to be both 50%. These results are similar to what
been tested and chosen by Bianchini et al. in [11] and Lee et
al. in [19].

VI. RESULTS AND DISCUSSIONS

In this section, the offline simulation results will be dis-
cussed in four aspects: reduction of network communications,
prefetch efficiency, prefetch coverage, effective page miss
reduction, and a breakdown analysis for the HReP technique.

In general, the fewer useless prefetches (high efficiency)
and the fewer subsequent page faults (high coverage), the more
effective is the prefetch technique. These metrics correspond to
the well-known metrics of precision and recall in text retrieval.
The effective page miss reduction is a combination of these
metrics corresponding to the impact on prefetch and page fault
overhead on execution time.

A. Reduction of Network Communications

As the TReP technique only prefetches once per region
execution, it maximally reduces number of network transfers
required to serve page misses. HReP is not quite as good,
because the repeated-phase and repeated-stride modes are used
for runtime prefetch as well. HReP can achieve the same
number of reduction in network accesses as TReP only when
whole-phase mode is used; and it would reduce network
communications by a factor of q when either repeated-phase
or repeated-stride mode is used. By contrast, Adaptive++
has the same number of network communications as the
worse case for HReP. TODFCM cannot reduce any network
communications, as it prefetches a single page at a time.



B. Efficiency
Table II shows simulation results using a different number

of threads for the LINPACK and NPB-OMP benchmarks. The
total number of page faults (Nf ) and the number of prefetches
issued (Np) are presented in thousands, and the number of
useful prefetched pages is presented as a ratio to Nf . The
efficiency of each prefetch technique is calculated based on
Equation (2).

As can be seen from Table II, Adaptive++ maintains
prefetch efficiency for LINPACK as the thread number varies;
however, it decreases from ∼81% at nb = 16 to ∼76% at
nb = 64. A similar trend is observed for both TReP and HReP
as well. Recalling the LINPACK analysis in section IV-B,
the memory region accessed at each iteration of the parallel
region changes more with increasing block size, thus reducing
temporal locality. On the contrary, TODFCM shows a roughly
stable prefetch efficiency (∼99%) as the block size is changed.
This is because TODFCM only issues prefetch when the
same consecutive three faults appears, which avoids useless
prefetches in this case.

However, for TReP, the prefetch efficiency slightly increases
with increasing number of threads. This is because, with more
threads employed, the data is partitioned into finer chunks,
and the memory access pattern changes less each iteration.
In another words, increasing the number of threads improves
temporal locality. On the other hand, HReP shows a slightly
decreasing prefetch efficiency of the LINPACK benchmark
as more threads are employed. This is because, with a finer
grain data distribution, exploiting spatial locality becomes
more complex. The portion of consecutive faults with a stride

n
SystemPageSize becomes more significant, resulting in an
increase in the number of useless prefetches.

For the NPB-OMP benchmarks, the prefetch efficiency of
Adaptive++ shows a large variance. Adaptive++ shows good
efficiency, 98.1% and 94.7%, for FT and IS respectively.
However, less than 45% efficiency is achieved for all other
benchmarks. The major reason for this is that its assumptions,
namely a consecutive or alternating region repeat pattern, do
not hold for the NPB-OMP benchmarks.

In contrast with Adaptive++, the TODFCM prefetch tech-
nique shows good prefetch efficiency, around 87.5% to
∼100%, for all NPB-OMP benchmarks except CG. For CG,
a ∼70% efficiency is observed, due to the paging behavior
of CG being irregular due to sparse matrix access [20]. This
breaks TODFCM’s assumption of a regular stride.

As TReP will only prefetch when the most recent two
executions of the current region are “highly similar”, it has
achieved very good efficiency for all NPB-OMP benchmarks.
TReP shows greater than 99% efficiency for IS, SP, BT and
LU, and greater than 96% and 92% efficiency for FT and CG
respectively.

HReP is very effective on FT, IS, and BT, with efficiency
greater than 96.8%. For SP, the achieved efficiency is 94.1%,
91.9%, and 96.5% for 2 threads, 4 threads and 8 threads
respectively. HReP shows reasonable efficiency on CG, from
82.8% to 92.1% for differing number of threads. HReP shows

an 88.8% efficiency for LU on 2 threads, and a dramatic de-
crease to 56.1% efficiency on 8 threads. The reason is that LU
benchmark utilizes a lot of flush and lock synchronizations,
which will result in the same page faulting multiple times in
a region, breaking the repeated-stride mode assumptions.

Comparing the different prefetch techniques, we can find
that Adaptive++ shows the worst efficiency for all benchmarks.
TReP shows the best efficiency on IS, CG, SP, BT, and
LU, while TODFCM shows the best efficiency on FT and
LINPACK. Nevertheless, TReP, HReP and TODFCM are quite
comparable with each other.

C. Prefetch Coverage

The prefetch coverage corresponds to the ‘hit rate’ of
the pages that would have otherwise faulted in the absence
of prefetch. A major observation from Table II is that the
coverage (Nu/Nf ) of TReP and HReP are much higher than
both Adaptive++ and TODFCM.

On average, TReP shows a 46% and 35% better coverage
compared Adaptive++ and TODFCM respectively. HReP has
60% and 48% better coverage compared to Adaptive++ and
TODFCM respectively, and has the best coverage overall. This
is largely due to its use of the repeated-stride mode, enabling
it to take advantage of spatial locality when page faults, which
are not predictable by temporal locality, occur.

D. Effective Miss Rate Reduction

The main objective of an sDSM prefetch technique is
to effectively reduce the number of page misses. This is
equivalent to the number of effective prefetches, which can
be defined using Equation (4).

Ne = Nu − (Np −Nu) (4)

Ne stands for the number of effective prefetches, Np − Nu

stands for the number of useless prefetches. This definition
reflects the (worst-case) scenario where the cost of prefetching
a page is equivalent to the cost of servicing a page fault.

Subsequently, we can calculate the effective miss rate reduc-
tion via Equation (5), in which Rmr stands for the effective
miss rate reduction, Nf stand for the number of total fault
pages.

Rmr =
Ne

Nf
(5)

The effective miss rate reduction based on total page faults
(see Table II) is shown in Fig. 6.

This shows that Adaptive++ effectively reduces 24% of
the page misses for LINPACK (nb = 64) at 2 threads and
maintains it with less than 4% difference for 4 and 8 threads.
It effectively reduced ∼32% of the page misses for LINPACK
benchmark nb = 16. ∼50% of the page misses are effectively
reduced for IS benchmark, and ∼4% of the page misses are
reduced for FT. However, for the other benchmarks (CG,
SP, BT and LU), Adaptive++ shows a negative value for
the effectively reduced page miss rate, which means that the
program execution may slow down from using Adaptive++.



TABLE II
SIMULATION RESULTS FOR ADAPTIVE++, TODFCM (1 PAGE), TREP, AND HREP TECHNIQUES.

Faults Adaptive++ TODFCM (1 page) TReP HReP
Benchmarks (Nf ) Np Nu/Nf E Np Nu/Nf E Np Nu/Nf E Np Nu/Nf E

(×1000) (×1000) (%) (%) (×1000) (%) (%) (×1000) (%) (%) (×1000) (%) (%)
2 threads

LPK (nb = 64) 104 56 41.3 76.2 23 21.9 99.5 80 67.5 88.0 97 79.2 85.0
LPK (nb = 16) 412 239 46.6 80.6 122 29.4 99.7 392 92.0 96.8 407 94.5 95.8

FT 235 14 5.7 98.1 92 39.1 100.0 101 42.9 100.0 148 62.7 99.6
IS 12 6 46.2 94.7 3 28.2 99.5 6 48.7 99.8 7 56.4 99.2

CG 37 7 8.4 41.8 16 28.0 64.5 32 81.7 94.7 37 90.8 92.1
SP 1709 23 0.5 39.8 722 41.7 98.8 856 50.0 99.8 1608 88.6 94.1
BT 997 7 0.2 30.3 432 43.0 99.1 844 84.6 99.9 970 95.7 98.3
LU 3288 1469 3.9 8.8 782 22.0 92.3 2692 75.4 92.0 3084 83.3 88.8

Average 19.1 58.8 31.7 94.2 67.9 96.4 81.4 94.1
4 threads

LPK (nb = 64) 164 74 34.9 77.6 30 18.3 99.5 86 46.6 88.2 139 69.5 81.8
LPK (nb = 16) 628 334 42.8 80.7 170 26.9 99.3 593 89.8 95.2 619 92.7 94.1

FT 357 22 5.8 93.7 139 39.0 99.9 184 49.9 96.6 230 62.6 96.8
IS 25 14 53.9 95.0 9 33.5 99.2 15 58.7 99.8 17 65.7 99.2

CG 108 30 10.7 38.6 43 30.3 75.2 75 66.9 95.5 105 87.7 89.6
SP 3103 104 1.0 28.5 1319 41.7 98.1 2303 74.0 99.7 3138 92.9 91.9
BT 1743 52 1.1 36.8 738 41.7 98.4 1604 91.7 99.6 1710 97.3 99.1
LU 5701 1769 5.8 18.6 1124 18.2 92.3 2332 40.7 99.6 4343 65.7 86.2

Average 19.5 58.7 31.2 95.2 64.8 96.8 79.3 92.3
8 threads

LPK (nb = 64) 211 73 26.8 77.4 34 16.1 98.7 72 30.9 91.2 148 57.3 81.8
LPK (nb = 16) 760 333 35.7 81.6 170 22.0 98.9 679 82.9 92.8 743 88.2 90.3

FT 423 27 5.7 87.4 163 38.6 99.8 227 52.9 98.3 270 62.0 97.1
IS 48 31 60.0 94.2 18 37.5 99.4 32 66.3 99.6 36 73.9 99.0

CG 275 45 3.7 22.5 105 26.7 69.8 144 48.1 91.8 269 81.0 82.8
SP 5122 199 0.9 24.4 1360 25.2 94.9 4431 85.9 99.3 5096 96.0 96.5
BT 2747 123 2.1 45.8 1099 39.2 97.9 2627 95.1 99.4 2716 97.9 99.0
LU 9249 3320 5.4 14.9 1670 15.3 84.7 3095 33.3 99.5 7935 48.1 56.1

Average 17.5 56.0 27.6 93.0 61.9 96.5 75.6 87.8

TODFCM effectively reduces ∼18% and ∼28% of the page
misses for LINPACK with nb = 64 and nb = 16 respectively.
Between 12% and 40% page misses are effectively reduced for
the NPB-OMP benchmarks. Although TODFCM shows best
efficiency for FT and LINPACK, and comparable efficiency
for IS, SP, BT, and LU benchmarks in Table II, the number of
page misses effectively reduced is very much less than TReP
and HReP for almost all cases, except for HReP on LU with
8 threads.

TReP effectively reduces more page misses than Adap-
tive++ and TODFCM for all benchmarks. 58.4% to 28.0%
and 89.0% to 76.0% of page misses are effectively reduced for
LINPACK (nb = 64) and LINPACK (nb = 16) respectively.
∼40% to ∼95% page misses are effectively reduced for NPB-
OMP benchmarks.

HReP effectively reduces the page miss rate the most
for most benchmarks, except for LU with 8 threads. 65.2%
to 44.5% of the page misses are effectively removed for
LINPACK benchmark with nb = 64, and 90.0% to 79.0% of
the page misses are effectively removed for LINPACK with
nb = 16. This observation on effectively reduced page miss
rate reflects on the HReP efficiency observed for LINPACK
benchmarks in the above section. Moreover, ∼56% to ∼97%
of the page misses are effectively reduced for NPB-OMP
benchmarks, except for LU with 8 threads. To analyze the
reason, we will break down prefetches issued by HReP to find
out what is the contribution from different prefetch modes in
next section.

On average, TReP effectively reduces page misses 53% and

34% more than does Adaptive++ and TODFCM respectively.
HReP technique effectively reduces 62% and 43% more page
misses than Adaptive++ and TODFCM respectively.

E. Prefetch Mode Usability Analysis for HReP

Table III shows the number of prefetches issued by different
modes and using different chosen lists in the HReP technique.

In Table III, Tot Pref stands for total prefetches issued
for the benchmark. W-phase, R-phase, and R-stride stand for
the number of prefetches issued by the whole-phase prefetch
mode, the repeated-phase mode, and the repeated-stride mode
respectively (refer to section IV-E). Np l and Nbp l stands for
the number of prefetches issued by using p list and bp list
as the chosen list respectively.

Except the total prefetches, all other data is presented as
a ratio of the total prefetches. For most benchmarks, the W-
phase is the dominant part of the total prefetches, except LU
and LINPACK with nb = 64 on 8 threads. R-phase only
contributes less than 12% of the total prefetches for most
benchmarks, except CG, LU, LINPACK (nb = 64) with 4
and 8 thread. Moreover, R-stride contributes more than 30%
for FT and SP with 2 threads, and LU and LINPACK with 8
threads.

The contribution to total prefetches by Np l and Nbp l

equals that of R-phase and R-stride. As shown by Table III,
the ability to select the bp list is necessary for the FT and SP
benchmarks. This is because an alternating behavior of page
misses occurs for several regions of thread 0, making bp list
a better predictor than p list.



Fig. 6. The effective page miss rate reduction for different prefetch
techniques.

LU uses a number of flush and lock synchronization opera-
tions, which will not start or end a region but does invalidate
pages. This will cause the same page to fault multiple times
within a region. 4 When data is more finely partitioned (the
8 threads case), this effect becomes more distinct and more
frequent. Both temporal locality and spatial locality become
worse with an increasing number of threads. Particularly, with
8 threads, the temporal locality becomes worse; however, the
most common stride still shows more than a 50% frequency,
and so contributes 36.1% of the total prefetches. As a result
of this, more useless prefetches are issued.

We have verified this by simulating HReP after removing
the page misses caused by flush and lock operations from the
collected page fault records of LU. The results are presented in
Fig. 7. As we removed some page misses, the number of total
faults is reduced, as well as the number of prefetches issued.
However, both the efficiency and the effectively reduced page
misses increase to ∼99%.

4This is because that CLOMP flushes all shared memory instead of a single
variable.

TABLE III
BREAKDOWN OF PREFETCHES ISSUED BY DIFFERENT PREFETCH MODES

AND CHOSEN LIST DEPLOYED IN HREP.

Benchmarks Tot Pref W-phase R-phase R-stride Np l Nbp l

2 threads
LPK (nb = 64) 96562 82.4% 8.4% 9.2% 17.4% 0.1%
LPK (nb = 16) 406954 96.3% 1.4% 2.3% 3.7% 0.0%

FT 147653 68.2% 0.1% 31.7% 9.2% 22.6%
IS 6612 86.9% 0.1% 13.0% 13.1% 0.0%

CG 36625 87.5% 10.9% 1.6% 9.4% 3.0%
SP 1607569 53.3% 0.9% 45.9% 0.3% 46.3%
BT 970365 87.0% 0.5% 12.6% 0.2% 12.8%
LU 3084373 87.3% 11.9% 0.8% 12.5% 0.1%

4 threads
LPK (nb = 64) 138966 62.2% 18.1% 19.7% 36.8% 1.0%
LPK (nb = 16) 618882 95.8% 1.5% 2.8% 4.1% 0.1%

FT 230226 80.0% 0.1% 19.9% 9.0% 11.0%
IS 16880 88.4% 0.2% 11.5% 11.6% 0.0%

CG 105403 71.5% 27.3% 1.2% 25.9% 2.6%
SP 3137665 73.4% 0.8% 25.8% 0.6% 25.9%
BT 1710157 93.8% 0.3% 5.9% 0.5% 5.7%
LU 4343248 53.7% 46.0% 0.3% 35.5% 10.9%

8 threads
LPK (nb = 64) 147558 48.4% 18.3% 33.3% 45.9% 5.4%
LPK (nb = 16) 742836 91.4% 5.0% 3.6% 8.1% 0.4%

FT 269677 84.3% 0.1% 15.6% 9.5% 6.2%
IS 36033 89.0% 0.4% 10.6% 11.0% 0.0%

CG 269278 53.5% 45.4% 1.1% 44.0% 2.4%
SP 5095622 87.0% 6.4% 6.7% 1.1% 11.9%
BT 2715739 96.7% 0.3% 2.9% 0.6% 2.7%
LU 7934938 39.0% 24.9% 36.1% 15.9% 45.0%

It should be emphasized here that by using region-based
techniques, pages subject to invalidations due to flushes and
locks can be predicted in a similar fashion, so such improve-
ments are realizable in a practical sDSM system.

Fig. 7. Prefetch results of HReP for LU after filtered fault pages caused by
flushes and locks with 8 threads.

VII. CONCLUSIONS

In this paper, based on the page accessing behavior of
distinct parallel regions of a variety of benchmarks, we have
designed two region-based prefetch techniques, TReP and
HReP, for cluster-enabled OpenMP systems.

TReP utilizes the temporal locality of pages accesses from
the current parallel region to prefetch all pages deemed likely
to fault in its current execution. The fact that this can be done
in bulk promises reduced per-page prefetch overhead, due to
the reduction of network communications and the effective
utilization of multi-rail interfaces. HReP combines this with
the Adaptive++ techniques to prefetch a limited number of



pages each time a page fault occurs. The repeated-phase mode
exploits temporal locality in the faulting page (but unlike in
Adaptive++, the same region’s previous history is used, rather
that of previous two regions, which are not necessarily the
same as that of the faulting page). The repeated-stride mode
uses spatial locality within the current region (and so is the
same as in Adaptive++).

We ran offline simulations using page fault records collected
by CLOMP with a LINPACK OpenMP benchmark and some
NPB-OMP benchmarks to evaluate our proposed prefetch
techniques, comparing these with Adaptive++ and TODFCM.
On average, TReP and HReP effectively reduced page misses
by 63% and 71% for all benchmarks. This represents an
improvement of 53% and 34% (TReP) and 62% and 43%
(HReP) on Adaptive++ and TODFCM respectively. In terms of
efficiency, TReP showed the best efficiency overall, followed
closely by TODFCM. The main difference in effective page
miss reduction was however due to coverage, with HReP
achieving 14% better coverage than TRep, largely due to its
exploitation of spatial locality. TReP in turn achieved 35%
and 46% better coverage than TODFCM and Adaptive++
respectively.

Pages that are invalidated from locks and flushes, such as in
the LU benchmark, cause page misses that cannot be avoided
using prefetch techniques. These contributed to the miss rates
for all methods, and, in some cases, decreased the efficiency
as well. However, they can be predicted using region-based
techniques and removed from consideration of prefetching.

VIII. FUTURE WORK

Both whole-phase and repeated-phase rely on high temporal
locality in page fault lists between different executions of a
region. We are investigating techniques that also can make
predictions based on any spatial locality between the lists. This
involves grouping pages in each list into identifiable “blocks”,
and identifying how these blocks shift between the two lists.

In the future, we will attempt to implement these techniques
in the CLOMP runtime. This will raise several issues. To
reduce the storage and overhead of processing the necessary
page fault lists, we will look at compressed representations.
This is also likely to improve the efficiency of similarity calcu-
lations. Furthermore, the offline simulation is time independent
and assumes all the prefetched page will be available before
the actual access. However, some associated overheads may be
introduced for a real implemented system. These issues will
be considered during implementation.
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