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Abstract
Clusters with multiple CPU nodes are becoming increasingly popu-
lar due to their cost/performance ratio. Due to its many potential ad-
vantages, interest in using virtualization on these systems has also
increased. Although several studies on the applicability of Xen for
high performance computing have been made, most overlook the
issue of multiple network interfaces. In this paper, we present an
update to the state of art of Xen and give a comprehensive per-
formance evaluation of the various network configurations that can
be implemented using multiple gigabit ethernet (GigE) interfaces.
We introduce new Xen network configurations, which enable the
Xen guests to efficiently utilize the available network infrastructure
compared to the default Xen network configurations. The evalua-
tion of these configurations show 10-50% improvement in the NAS
Parallel Benchmark suite compared to the default configurations.
For these new configuration on multiple SMP nodes, the results also
indicate that the need for fast intra-domain communication mech-
anisms is not compelling. We also detail the MPI implementations
in the case of multiple GigE interfaces and their impact on a virtu-
alized environment.

Keywords Virtualization, SMP Clusters, Communication Inter-
faces, Xen, MPI

1. Introduction
Cluster computing has recently seen an evolution from single pro-
cessor systems to multi-core SMP systems. Commodity-off-the-
shelf (COTS) SMP systems are increasingly becoming popular due
to their low cost/performance ratio.

This trend has coincided with the revival of virtualization tech-
nology. The virtualization technology is receiving widespread
adoption mainly due to the potential benefits of server consoli-
dation and isolation, flexibility, security and fault tolerance. Vir-
tualization also offers other benefits, which include develop-
ment/testing of applications, live migration and load balancing.
Virtualization has also generated considerable interest in High Per-
formance Computing (HPC) community mainly for the reasons for
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high availability, fault tolerance, cluster partitioning and balancing
out conflicting user requirements (7; 14). Another potential benefit
is that the concept of live migration of virtual machines (VMs) can
be utilized to maximize the throughput of a compute farm and bet-
ter turnaround times of the submitted jobs. In the context of an HPC
job, this means migrating a process seamlessly from one physical
node to another physical node.

Despite all these advantages, the HPC community is still wary
of the performance disadvantages associated with virtualization
especially in the case of network I/O (8) and disk I/O (14), which
are critical for many HPC applications.

This paper investigates the use of virtualization for SMP/multicore
clusters with multiple network interfaces, where one can effectively
partition the cluster to one CPU per virtual machine (VM). This
will not only make cluster administration easier, but will enable
better scheduling of jobs, as the minimum grain of migration will
be a process.

In this paper, we present an update to the state of art of Xen
with special emphasis on HPC applications and analyze the inter-
and intra-domain communication characteristics in the current ver-
sion of Xen. Using micro- and application-level benchmarks, we
give a performance evaluation for a virtualized cluster for network
configurations which utilize multiple Gigabit Ethernet (GigE) in-
terfaces. These configurations include VMM by-pass and various
Xen network bridge configurations, some of which are novel, using
two popular implementations of MPI, namely OpenMPI (OMPI)
and MPICH. Due to differences in their use of multiple interfaces
and routing mechanisms, we show that different configurations are
optimal for each.

The rest of the paper is organized as follows: Section 2 gives a
brief introduction to the Xen hypervisor and its I/O capabilities. We
will discuss related work in Section 3. In Section 4, we will detail
the network configurations that were compared and tested. Section
6 will present and analyze experimental results. Section 7 contains
the conclusions and future work.

2. Background
Xen is an open source Virtual Machine Monitor (called Hypervi-
sor or VMM) that enables running multiple operating systems on
a single machine (6). Xen gives users the options of running either
in fully virtualized mode or para-virtualized mode. In full virtual-
ization, the guest operating system is presented with the full ab-
straction of underlying physical hardware. In para-virtualization,
the guest domain is presented with hardware which is similar but
not identical to the physical hardware. The hypervisor runs in the
most privileged ring and provides necessary mechanisms (e.g. vir-
tualizing resources) for controlling and running the guest operating
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Figure 1. Xen bridge architecture.

systems. Xen also requires a special privileged guest domain called
domain 0 to control the guest domains e.g. start, shutdown and mi-
grate the guest operating systems across the infrastructure.

Xen follows a split device driver model for I/O device virtu-
alization. The native devices are run under the Isolated Device
Domain (IDD) which is essentially domain 0. Domain 0 (Dom0)
provides a back-end driver for the guest domains (also called do-
mUs). The guest domains use their front-end drivers to communi-
cate with the back-end drivers provided by Dom0. In the case of
network I/O1, the physical device can be multiplexed, so that it can
be used by a number of guest domains. Such network interfaces
are called virtual interfaces (vifs) for the guest domains. When a
packet arrives from the outside world, it is handled by the ethernet
driver of Dom0 and is eventually sent to a software bridge called
XenBridge(N), where ‘N’ is the ethernet interface connected to the
bridge2. The bridge distributes the packet just like a normal switch
to the destination guest domain. If two VMs are co-located and are
attached to the same bridge, then a packet destined from one VM
to another co-located VM is routed through this software bridge.
In the case where co-located VMs are attached to different Xen-
bridges, the packets are routed through the physical switch. The
high-level bridge routing mechanism is shown in Figure 1.

Xen also gives the user a facility to by-pass the driver domain
(Dom0) and export the device directly to guest domain. For net-
work interfaces, this method provides better performance compared
to virtual interfaces. A major drawback of this method is that the
guest domain cannot be migrated from one VMM to another.

3. Related Work
A lot of research work has been done in the performance evaluation
of Xen or similar VMMs, Most of the current research focuses on
fault tolerance and the viability of using Xen in high performance
computing (HPC).

Nagarajan et al. (5) utilized Xen 3.0.2 for fault tolerance in
a cluster environment. They evaluated the NAS benchmarks on
a compute cluster and concluded that compute clusters can be
successfully virtualized with the Xen VMM. The paper found that
for class C benchmarks, virtualization was quite competitive on a
16 node dual core cluster. However, each node was only running
a single virtualized guest domain, which resulted in the under-
utilization of compute resources. As we show in later sections, this
does not represent SMP cluster and Xen network performance in
the case of intra and inter domain communication.

1 The back-end driver is called Netback and front-end driver is called Net-
front.
2 From Xen 3.2, XenBridge(N) has been changed to Eth(N). To avoid
confusion we will use the older convention.

Strazdins et. al (12) evaluated a number of Gigabit ethernet net-
work configurations for performance enhancement of SMP clus-
ters under Xen virtualization. Channel bonding and VMM bypass
were considered, with comparisons being made to equivalent native
Linux configurations. The best performance came from configura-
tions using Xen virtualized hosts with VMM-bypass for network
I/O. It was also concluded that the intra-node communication be-
tween Xen guests on the same node is an order of magnitude slower
than the native shared memory transport. This counteracts the ad-
vantages of VMM-bypass for configuring an SMP cluster with a
Xen guest on each CPU. It was suggested to implement a shared
memory transport for network communication for the guests shar-
ing same physical host. However, this conclusion was reached only
from the consideration of micro-benchmarks.

Numerous attempts have been made to enhance the network per-
formance of Xen. Among them Xensocket (15), Xway (9), IVC
(8) and Xenloop (13) are notable. Xensocket provides a one way
communication socket between two guest domains on the same
physical host using a grant table mechanism. Xensocket is partic-
ularly useful for the applications which are aware of being hosted
on the same Xen virtualization platform. The biggest drawback of
Xensocket is that its implementation is not binary compatible with
other socket implementations and it does not support migration of
the operating system. Xenloop and Xway are attempts to provide
binary compatibility with native socket implementations. Xenloop
uses netfilter to steal packets destined towards the co-located do-
main and uses grant table operations to deliver the packet. Our test-
ing of Xenloop revealed that Xenloop’s performance for OSU and
NAS Benchmarks was equal to the default Xen mechanism. Xway
is a similar open source attempt, but it requires certain changes to
Xen hypervisor itself. To our knowledge, no one has been able to
replicate the efforts of XWay team.

Huang et. al. (8) implemented an inter-VM communications
library (IVC) to support shared memory communication between
guest operating systems on the same physical host by implementing
a VM-aware MPI based on MVAPICH2 (called MVAPICH2-ivc).
The results show that inter-VM communication mechanism yielded
approximately 11% better performance with the NAS benchmarks
as compared to native Xen implementation. Some micro-level
benchmarks comparing Xen and native Linux environment were
also carried out in the paper. However, performance results across
cluster nodes were not given, and in any case IVC is specific to
MVAPICH2 and hence Infiniband.

4. Network Configurations
In this section we discuss the various network configurations that
were tested for determine the viability of utilizing Xen for HPC
applications. It is assumed that on each node, there are (at least)
one CPU and one physical network interface for each guest domain,
and that each guest domain will host a single application process.

Each guest domain is provided with two virtualized GigE in-
terfaces, eth0 and eth1. Eth0 is normally reserved for cluster man-
agement tasks, whereas eth1 is used for MPI communication. All
the eth0’s for the guest domains are virtualized and attached to
XenBridge0 (also called Xenbr0). XenBridge0 is connected to the
physical eth0 of Dom0. Eth1 is configured in a different manner as
discussed below.

The first configuration is called Exported Interfaces or VMM by-
pass. In this configuration we export the PCI bus to the guest do-
main via the PCI-back mechanism, and connect this to the guest’s
eth1. This configuration enables all the guest domains to have a
dedicated, non-virtualized GigE interface for MPI communication.
This mechanism is proven to give high performance in latency and
bandwidth (12). Currently Xen provides no mechanism to migrate
a guest domain which has a bypassed interface.
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Figure 2. Xen multiple shared bridges configuration.

The second configuration is the Shared Bridge configuration. In
this configuration, the eth1 interface of the guest domains is con-
nected to XenBridge1, which is in turn connected to the physical
eth1 of Dom0. This means that all the guest domains on the same
VMM are using only one physical GigE interface, and hence the
bandwidth is divided between the guests. The advantage of using
this configuration is that intra-domain communication should be
relatively fast, since it goes through XenBridge1.

We also use a variant of Shared Bridge called Multiple Shared
Bridges as shown in Figure 2. In this configuration, the eth1 inter-
face of all the guest domains is attached to XenBridge1 as in Shared
Bridge. In addition, the guest domains are also provided with eth2
interface, which is connected to XenBridge2. XenBridge2 is con-
nected to the physical eth2 of dom0. The eth1 and eth2 interfaces
are on different subnets and hence in the case of OMPI this creates
the effect of Shared bridges for intra-domain communication and
utilization of two interfaces for inter-domain communication.

The third configuration is the Separate Bridge configuration.
This configuration is similar to Exported Interfaces, except the
network interfaces are virtualized. This means that the eth1 of
each guest domain is connected to a different Xen Bridge, which
is connected to a distinct GigE interface on Dom0. This results
in each guest domain having a dedicated but virtualized GigE
interface for MPI communication. The disadvantage of using this
configuration is that intra-domain communication is not as fast as
the Shared Bridge configuration because communication is routed
through physical switches.

The last network configuration is Shared-Separate, which is
mix of the Shared Bridge and Separate Bridge configurations. In
this configuration we utilize both the interfaces (eth0 and eth1) for
MPI communication as shown in Figure 3. Eth0 of each guest VM
is connected to XenBr0 and eth1 of each VM is connected to a
distinct Xen bridge (Separate bridge). We set the routing tables of
each guest VM so that the network packets destined towards co-
located VM are routed through eth0, resulting in use of the Shared
Bridge (XenBr0), whereas packets destined for outside VMM are
routed through eth1. This effectively results in the utilization of
a software bridge intra-domain communication and the utilization
of distinct virtualized network interfaces (vifs) for inter-domain
communication.

To our knowledge the Separate Bridge and the Shared-Separate
Bridge configurations have never been presented or tested by the
HPC community.

We do not consider configurations involving channel bonding
as this has been shown to yield poor performance (12). Our subse-
quent experiments have shown this to be still the case.

A native Linux configuration will be used as a performance
baseline. Here, the same number of processes as guest domains
are allocated to Dom0, and the system is configured to use exactly
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Figure 3. Xen shared-separate bridge configuration.

the same number of network interfaces. Communication for intra-
node processes is carried out through shared memory. For inter-
node communication, the MPI implementation will determine how
the GigE interface are used, as is explained below.

5. MPI Implementation Differences
We discuss two popular MPI-2 compliant implementations, namely
OpenMPI (OMPI) (3) and MPICH2 (1). These two implementa-
tions are fundamentally different from each other, especially in
terms of architecture and routing issues. Both of these implemen-
tations claim to have highly configurable and efficient TCP and
shared memory communication infrastructure.

One noticeable difference is that in OMPI the basic unit of rout-
ing is a process, not an IP address (4). In the case of TCP, this rout-
ing mechanism enables every OMPI process to use all the network
interfaces in a round-robin fashion. During the initialization, OMPI
determines the interfaces which are routable and then the MPI mes-
sages are striped across the network utilizing all of the routable
interfaces. This theoretically can achieve the aggregate bandwidth
of all individual network interfaces. This of course is limited by
the PCI bus speed and other hardware limitations. This means that
for the native Linux configuration, all processes on the same node
share all the network interfaces.

Channel bonding in particular is not preferred in the case of
OMPI as it will almost always yield poor results (2). This is due
to the fact that channel bonding requires packets to be delivered
in order, whereas OMPI can effectively utilize all the available
interfaces to stripe and send the message. Especially in the case
of large messages, OMPI can write part of the message to user-
space without worrying about the order of the packets. This enables
OMPI to yield better bandwidth compared to channel bonding.

In the case of MPICH, the default routing mechanism only
allows for one GigE interface. However, through the use of multiple
IP addresses for each node and routing tables, messages coming
into different processes on the same node can be routed through
separate interfaces (12).

6. Results
In this section, we present the performance of the various network
configurations. All the results are for OpenMPI (OMPI) unless
specified otherwise.

6.1 Experimental Setup
We primarily use a 2×4 cluster (2 nodes, with 4 CPUs each) for
our experimentation. Each node consists of two SMP dual-core 2.2
GHz AMD Opteron processors with a 2-way 64 KB level 1 data
cache and an 8-way 512 unified L2 cache, and 4 GB of RAM.
The nodes have an IWILL DK8-HTX 815 motherboard, with 800
MB/s HyperTransport links. The motherboard has in-built dual
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Intel 82541GI/PI GigE controllers. External NICs can be connected
to two slots on the same 64-bit 100 MHz PCI-X bus, and to one
slot on a third 32-bit 33 MHz PCI 2.2 bus. For external NICs with
dual Ethernet ports, this permits up to 8 Gigabit Ethernet interfaces
on this motherboard. The in-built dual Intel GigE controllers are
configured as Eth0 and Eth1. The nodes also have a Pro/1000
MT NIC (Intel 82546GB chips) with dual interfaces; these are
configured to eth2 and eth3 utilizing PCI-X bus. A Pro/1000 MT
NIC with an Intel 82541PI chip is configured to eth4.

We also use an 8×2 cluster, with dual core AMD Opteron
processors with similar specification as that of 2×4 machines. The
Eth0 and Eth1 are the in-built GigE interfaces. The Eth2 of each
machine is connected to 32-bit 33 MHz PCI bus.

The system software is based on the Ubuntu Hardy distribution,
with Xen 3.3 compiled from source using GCC 4.2.4. The kernel
of Dom0 and domU is Linux 2.6.18.8. We use the OpenMPI 1.2.2
and MPICH2 1.0.7 implementations. For microbenchmarks, we use
the OSU benchmarks (11) for latency, bandwidth and bidirectional
bandwidth. For application-level benchmarks we use the NAS Par-
allel Benchmarks 3.2 (10). For Exported Interface configuration we
used Xen 3.1.4 as we were not able to bypass the PCI buses to Guest
VMs on Xen 3.3.0 due to some issues. However we do not expect
any performance difference between the two implementations as
we are utilizing a paravirtualized environment.

All instances of domUs have only one VCPU, which is pinned
to a distinct CPU. In the case, where number of guest VMs equal
the number of physical CPUs, the Dom0s are not pinned to any
specific CPU, as we found that pinning VCPUs for Dom0 actually
reduced performance.

All tests involving native Linux were run with processor affinity,
similarly pinning each process to a particular CPU. The native
Linux case utilizes kernel 2.6.24.21, supplied by Ubuntu Hardy
distibution.

6.2 Inter-domain communication

By default, the OSU benchmarks determine the communication
behavior (sustainable latency, bandwidth and bidirectional band-
width) for one communicating pair of processes only. We modified
the benchmarks to enable them to span multiple pairs. In the case
of inter-domain communication, each communicating pair has two
processes, each on a different node of a 2-node cluster. We conduct
our test on as many pairs as (enabled) network interfaces (1 to 4
pairs).

For a clearer comparison between the network configurations
discussed in Section 4, we have summarized the latency results in
Tables 1 and 2 3. These tables present latency at 1 byte and 4 MB
message size respectively. Bandwidth and bidirectional bandwidth
results are summarized in Tables 3 and 4. These results show
average sustainable bandwidth results for messages sizes between
4 KB and 4 MB.

Figures 4, 5 and 6 give more detailed results for the band-
width benchmark. The detailed data for the bi-directional band-
width benchmarks is similar. The Shared-Saperate and Multiple-
Shared bridge configurations were not tested as they are not appli-
cable to point-to-point communication benchmarks.

Results for native Linux using OMPI and MPICH firstly indi-
cate a noticeable difference in the performance of the two MPI
implementations, with OMPI generally performing slightly better
than MPICH.

In the case of 1-pair communication, there is no significant dif-
ference between any of the network configurations, native or virtu-
alized. The exception is that the Shared and Separate Bridge con-

3 As OSU Latency benchmark is essentially a ping-pong benchmark; there-
fore the results of latency at 4 MB are shown in MB/Sec

figurations are slightly slower for bi-directional bandwidth where
the overhead of virtual interfaces begins to be felt.

For the two pair communication, the performance of all the net-
work configurations is still comparable for the latency and band-
width benchmarks, except that the Shared Bridge configuration
falls behind as expected because it is using only one GigE inter-
face. For the Shared and Separate Bridge configurations, the Dom0
kernel remained considerably busy (approximately 30%). As each
machine has four CPU cores, Dom0 had two CPU cores at its dis-
posal therefore its performance is competitive.

Table 1. Summary of Latency (µ Sec) at 1 Byte
Config 1 Pair 2 Pairs 3 Pairs 4 Pairs

Linux-OMPI 125 94 114 123
Linux-MPICH 106 104 124 123

Exported Interfaces 125 112 80 110
Separate Bridges 125 129 125 160

Shared Bridge 126 125 128 149

Table 2. Summary of Latency (MB/Sec) at 4 MB
Config 1 Pair 2 Pairs 3 Pairs 4 Pairs

Linux-OMPI 109 199 199 248
Linux-MPICH 109 218 202 240

Exported Interfaces 109 197 326 408
Separate Bridges 109 161 190 194

Shared Bridge 108 124 136 126

Table 3. Avg. Bandwidth (MB/Sec) for message size ≥4K
Config 1 Pair 2 Pairs 3 Pairs 4 Pairs

Linux-OMPI 109 165 300 397
Linux-MPICH 105 186 305 366

Exported Interfaces 105 183 312 394
Separate Bridges 102 182 177 142

Shared Bridge 102 119 105 96

Table 4. Avg. Bi-Bandwidth (MB/Sec) for message size ≥4K
Config 1 Pair 2 Pairs 3 Pairs 4 Pairs

Linux-OMPI 124 296 337 408
Linux-MPICH 124 273 350 361

Exported Interfaces 121 183 370 415
Separate Bridges 115 183 177 168

Shared Bridge 115 119 105 111

For three pair configurations, the performance gap between na-
tive Linux and the configurations utilizing the Xen bridge mecha-
nism becomes quite visible. The Separate Bridge is almost 2 times
slower than the native Linux. It is however 1.75 times faster than the
Shared Bridge. We observed an increased number of cache misses
for the Shared Bridge, as compared to the Separate Bridge config-
uration. Exported Interfaces out-performs native Linux; this is due
to the fact that it offers a better parallelization of the processing of
the TCP/IP stack, as explained in (12).

For four pair communication, both the bridge configurations
perform poorly. The Shared Bridge is approximately 3.5 times
slower than native Linux, whereas the Separate Bridge configura-
tion is 2.5 times slower. This is due to all the CPUs being required
for the domUs and no dedicated CPU left for Dom0.

From the experiments above, we can conclude that latency and
bandwidth are affected by a factor of two or more if the Xen bridge
mechanism is utilized. It is clear that using Separate Bridge mecha-
nism for vifs is better as it gives at least 50% improvement over the
conventional Shared Bridge mechanism. The reduced bandwidth in
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4-pair case compared to 3-pair shows that Xen’s netback-netfront
implementation is highly CPU intensive and Xen will always ben-
efit from having at least one CPU spare for inter and intra-domain
communications.

However the OSU benchmarks only give half the picture. For a
mix of scientific applications we decided to run NAS benchmarks
over the 2×4 and 8×2 compute clusters, as discussed in Sections
6.3 and 6.4.
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Figure 6. OSU 4 pair bandwidth benchmarks

6.3 Intra-domain Communication
For these experiments, we have two or more guests located on the
same VMM and study the performance of communication between

Table 5. Avg. bandwidth (MB/Sec) for message size ≥4K
Bandwidth Bi-Bandwidth

Config 1 Pair 2 Pairs 1 Pair 2 Pairs
Linux-OMPI 1250 1804 1163 1456
Exported Interfaces 87 196 82 127
Separate Bridges 84 94 85 98
Shared Bridge 344 300 366 338

processes on these guests. We thus used one node of the 2 × 4
cluster discussed in Section 6.1, and are thus limited to 4 guests, as
we do not want to over-subscribe the CPUs.

In the case of the OSU benchmarks, we can have up to two
communicating pairs. We tested Shared Bridge, Separate Bridge
and native Linux configurations using OMPI. The results of the
OSU Bandwidth results are shown in Figure 7 and 8. The summary
is provided in Tables 5.
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For 1-pair bandwidth and bidirectional bandwidth benchmarks,
Linux shared memory outperforms the Shared Bridge by 50%.
The Separate Bridge configuration is an order of a magnitude
slower, as routing is done by the physical switch. In the 2-pair
configuration we see this gap increasing compared to the 1-pair
configuration. Exported Interfaces and Separate Bridges actually
see improvement due to the use of two physical GigE interfaces
but the Shared Bridge configuration sees a decline, asserting the
fact that Xen’s page flipping mechanism is highly CPU intensive
and does not scale well.

To evaluate scientific applications, we evaluated the system
with the NAS parallel benchmarks. Normalized results with respect
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Figure 9. NAS parallel benchmarks on a 1×4 cluster.

to native Linux with OMPI are shown in Figure 9. The results
of the NAS parallel benchmarks (NPB) assert the fact that, for
communication intensive applications, Xen’s software bridge fails
to match the native shared memory transport. For applications
which require less communication bandwidth like EP, LU and MG,
the performance of Xen bridge is quite competitive. In the case of
IS, the performance of Xen bridges is quite bad, which is due to the
high communication rate in the benchmark.

We also tested the Exported Interface configuration. Its perfor-
mance was generally between that of the native and Xen bridge
configurations.

6.4 Inter-Intra Node Communication Mix
We employed the NAS parallel benchmarks (NPB) to evaluate
impact of above mentioned network configurations on applications
spanning multiple Xen hosts.

A 2×4 cluster will expose the impact of the configurations for
the situation where the amount of inter- vs intra- node communica-
tion is roughly balanced. With one process (one guest) allocated per
CPU, it also presents the situation where no CPU can be dedicated
to Dom0.

In order to evaluate the impact on larger clusters where inter-
node communication is more dominant, we also used the 8-node
cluster. We similarly tested one process (one guest) allocated per
CPU (‘8×2 cluster’). However, to create the situation where a CPU
is dedicated to Dom0 to support communication, we also tested one
process (guest) per node (‘8×1 cluster’). A comparison between
the two would thus expose the CPU overheads involved in Xen’s
network communications.

As OMPI and MPICH employ different mechanisms for routing
of multiple interfaces, we tested all the network configurations with
OMPI and MPICH. The results of MPICH with Shared Bridge,
Separate Bridge and Exported Interfaces were almost identical to
OMPI and therefore are not represented. We were not able to
run Shared-Separate-Bridge-OMPI because of the fact that OMPI
determines the routable interfaces through its own mechanism and
does not rely on the routing table information(4). The results of
NPB, Class A on the 2×4 cluster configuration are shown in Figure
10.

We see that MPICH and OMPI behave in a slightly different
fashion. In case of native Linux, OMPI generally has an advantage
over MPICH, as we saw in the micro-benchmarks. However, we
noticed that OMPI is unable to determine the fastest interface
and utilizes all the routable interfaces. This in particular causes
degradation in the case where one interface is faster than the other.

Exported Interfaces gives excellent performance (only 5%
slower at an average compared to native Linux), despite the fact
that the routing of packets is done through a physical switch. This
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configuration

indicates that the advantage of native Linux shared memory trans-
port for intra-node communication becomes relatively small once
inter-node communication is introduced.

The Shared Bridge configuration gives reasonable performance.
However,due to the attached CPU overheads, this configuration
results in a performance degradation of less than 40%, as compared
to the native Linux.

The slow performance of Separate Bridges (OMPI and MPICH)
is a surprise. This could be due to two factors. Firstly, the Xen
netfront-netback infrastructure is CPU intensive not only for intra-
domain communication but also for the communication with the
outside world. Secondly, the inter-VM communication of co-
located domains with Separate Bridges is routed through the physi-
cal switch; however, this factor does not seem to have hurt Exported
Interfaces.

The Shared-Separate Bridge configuration gives better results
compared to other two bridge configurations and is at an aver-
age only 8-10% slower than the native Linux configurations on all
benchmarks except the IS benchmark. The reason for better perfor-
mance is the fact that this configuration utilizes Shared Bridge for
the communication with co-located domains and Separate Bridge
for communication with domains on other VMMs, hence the VMs
end up using two network interfaces instead of only one.

The 2×4 configuration results assert that the netback-netfront
implementation of Xen is CPU intensive. As no CPU is available to
Xen to handle packet delivery therefore this results in Xen stealing
the CPU times of the guest domains, resulting in loss of precious
CPU cycles as well as high number of cache misses.

To test the above assertion, an 8×1 cluster configuration was
used to see if the availability of a CPU for inter-domain commu-
nication, coupled with the lack of intra-domain communication,
would result in improved performance of the virtualized configu-
rations. The results are shown in Figure 11. Note that here, there
is no distinction between Shared and Separate interface, and the
results of MPICH are not represented as they were similar.

We noticed that the benchmarks run was overall 30-35% faster
than the 2×4 configuration run. This is primarily due to having
single process per node, which reduces the effects of memory and
hypertransport bandwidth limitations. With the exception of IS, the
virtualized configurations were much closer to native Linux than on
the 2× 4 cluster, confirming the benefit of having a CPU available
to support Xen communication.

The results for the 8×2 cluster configuration are shown in Fig-
ure 12. As expected, we see that Exported Interface configuration
performs almost equal and at times better than native Linux. This
suggests that if live migration of virtual machines is not required
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Figure 10. NAS parallel benchmarks on a 2×4 cluster
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Figure 12. NAS parallel benchmarks, Class A on a 8×2 cluster

in a compute cluster, then virtualization can be beneficial. The re-
sults for Shared Bridge and Separate Bridge configuration are sim-
ilar to each other, being 15–30% slower than native Linux. The
Shared-Separate bridge configuration gives excellent performance
considering it utilizes virtual interfaces. This is due to its effective
use of the second interface. As discussed Shared-Separate config-
uration cannot be used for OMPI, therefore we used an equivalent
Multiple-Shared bridge configuration. This configuration performs
slightly better than the Shared bridge and Separate bridge config-
urations, as it is utilizing two interfaces, but it fails to match per-
formance of Shared-Separate bridge configuration. This is due to
the fact that eth1 and eth2 of the guest VMs are not completely
isolated when sending the inter-domain messages. This results in
bandwidth sharing among the two co-located VMs and therefore as
seen previously, we see high cache misses.

7. Conclusions
From the inter and intra-domain communication results, it can
be concluded that in the case where a job spans a number of
physical machines, exporting network interfaces to guest machines
achieves near native performance. Therefore if job migration is not
an essential requirement, the HPC community can benefit from the
virtualization technology without any significant cost. This is even
in the absence of any fast intra-domain communication mechanism.

If exported interfaces cannot be utilized, then Xen virtualization
can be slow compared to non-virtualized environment unless there
are spare CPUs available for Dom0. We see that inter-domain
communication in Xen via Xen bridges is quite CPU intensive.
This weakness is only exposed if one is utilizing multiple GigE

interfaces on a SMP Xen host. This is in contrast to findings
in other previous work e.g. (5), where no significant degradation
in Xen’s network performance over native Linux was seen. We
conclude that Xen bridge infrastructure in general is CPU intensive
and depending upon communication requirements and patterns, can
give 20–40% degraded application performance as compared to
native Linux.

However, we have found that, compared to the default configu-
ration (Shared Bridge), using Separate Bridges can improve micro-
benchmark performance, and that using a combination of the two
can improve application performance to almost as good as native
Linux.

Another observation is that the current bridge architecture of
Xen is not aware of the fact that certain VM’s might be utilizing
another XenBridge for communication. In principle, all the guest
domains should use shared memory transport if they are hosted
on same VMM; therefore the bridge architecture should be made
co-VM-aware. Although this arrangement will not result in native
memory transfer rates, it will be at least much faster than utilizing
the physical switch in the case of Separate Bridge or Exported
Interface configurations.

Mechanisms like IVC (8) can be utilized for faster intra-domain
communication. However our experiments show that their impact
on applications spanning multiple VMMs will not be very high.
These solutions are not generic in nature as they are MPI imple-
mentation centric and Xen version specific. As Xen is continuously
evolving, these solutions quickly become obsolete or there is a re-
quirement to port them to newer versions. One such example is
Xenloop, which can only work with Xen 3.1 but fails on Xen 3.3.
The best way to ensure shared memory or equivalent intra-domain
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communication is by overhauling the netfront-netback implemen-
tation of Xen hypervisor in the official Xen trunk. This will result
in a generic solution, not requiring ports to various MPI implemen-
tations and domain drivers for every new version.

We have seen that in the presence of additional CPU cores for
VMM, Xen’s network performance is competitive to native Linux
for MPI application spanning multiple physical nodes. With the
evolution of heterogeneous core platforms, a simple but CPU inten-
sive operations like memory copying and page flipping can be of-
floaded to simple integer or similar low-end core. This will greatly
increase VMM’s performance in general. Under this scenario, the
need for fast intra-domain communication mechanisms would be
questionable.

We have also noted that MPI implementation is an important
factor in this context; in particular, routing mechanism can affect
the way multiple network interfaces may be used. It also affects
performance, with OMPI’s architecture better being able to use
multiple interfaces, as described in Section 5.

Future work includes extending these evaluations to other plat-
forms, in particularly to highly multi-core clusters with more pow-
erful communication interfaces. It also includes further develop-
ment and evaluation of fast inter-domain communication mecha-
nisms. In general, the outlook is positive that HPC can benefit from
the advantages of virtualization, at the cost of small or even negli-
gible performance loss.
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