
Cycle Accurate Memory Modelling: A Case-Study in Validation

Andrew Over, Peter Strazdins and Bill Clarke

Australian National University
sim-devel@ccnuma.anu.edu.au

Abstract

Simulation is an integral tool in performance analysis,
however without some knowledge of a simulator’s underly-
ing accuracy and limitations, the results may prove wrong
or misleading. Timing validation is one aspect of develop-
ment which is easy to overlook, typically due to the lack of
a comparison target at the time the simulator was written.
This paper discusses the design and validation of an ac-
curate timing model for an UltraSPARC IIICu–based sys-
tem. An existing functional simulator was augmented with
a cycle-accurate model of the memory hierarchy of a ref-
erence system. Key features of the model include the use
of a ‘bridge’ for the processor / memory system interface,
the use of event windows between the simulated backplane
and processors, implementation of pipelined transactions,
and the extension of the processor run loop to support this.
The modelling of the store buffer and prefetch mechanisms
proved both challenging and important for the model’s ac-
curacy.

Using a combination of documentation, microbench-
marks, and comparisons of the NAS parallel benchmarks
between the simulator and a real machine, it was possible to
uncover several undocumented architectural artifacts, and
validate the simulator to a reasonable degree. Hardware
performance counters and timing information were used to
identify the source of discrepancies. Surprisingly, the over-
head of introducing the model was within a factor of two,
compared with the original functional simulator.

1. Introduction
Detailed modelling of computer systems can yield much

deeper insights into the behaviour of both hardware and
software than simple high-level metrics of application per-
formance. One key advantage is the ability to extend a
model to examine machines which do not exist, or to which
the researchers do not have access. At every stage of sim-
ulator design, decisions are made regarding which system
aspects are modelled in detail, and which are approximated,
and here lies the key tradeoff of simulator design. Too much

detail results in an extremely slow and complex simulator,
while too little detail may fail to capture subtleties of system
behaviour.

Validation is an essential consideration which is easy to
overlook, however, without careful comparison to the target
in question under a variety of workloads, it is impossible
to have faith that a simulator correctly models its authors’
intent.

Memory system effects are becoming increasingly im-
portant in modern multiprocessor design, and the effect of
prefetching, cache behaviour, coherency protocols and the
locality of memory access can have an important effect on
memory performance, particularly for scientific and com-
mercial applications with large memory footprints and non-
regular memory access patterns. The accurate and detailed
simulation of modern memory systems is important for un-
derstanding both the effectiveness of the design of a given
memory system, and the performance of applications run-
ning on that system.

One project requiring such simulation is the ANU’s CC-
NUMA project [1]. Its goal is to evaluate high performance
computational quantum chemistry algorithms on NUMA
platforms. Through detailed modelling of existing systems,
it is hoped that insight may be gained into either algorithmic
or hardware modifications which may yield performance
improvements, especially for ‘fast’ computational methods,
which while parallelisable, have largely irregular memory
access patterns with little temporal locality.

This paper documents the design, implementation and
validation of a detailed memory simulation model em-
bedded within the Sparc Sulima simulator framework [6],
an (almost) complete machine simulator developed at the
ANU. This simulation model provides a detailed timing
simulation of the memory hierarchy of mid-range Ultra-
SPARC III-based Sun servers, and is a key component in
the performance evaluation framework of the CC-NUMA
project.

In Section 2, general background information is pro-
vided on simulator validation, and on Sparc Sulima, while
Section 3 presents the design changes required for a more
accurate memory model. The validation methodology is ex-

1

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

plained in Section 4, with results in Section 5. The perfor-
mance of the model is briefly discussed in Section 6. Finally
future directions for this work are discussed in Section 7,
with conclusions summarised in Section 8.

2. Background
Validation remains an exceedingly important (but fre-

quently overlooked) aspect of simulator development, for
without an overall view of an implementation’s shortcom-
ings, it is not possible to draw meaningful conclusions.

Functional validation (as far as execution driven simula-
tors are concerned) is so essential it is rarely mentioned; er-
rors in functional behaviour typically manifest as a crashed
application within the simulator.

Timing validation is far more subtle. Errors in the timing
model merely produce incorrect results, without any obvi-
ous sign of error. The only practical way to discover such
shortcomings is careful examination of every facet of sim-
ulator behaviour. Given the complexity of modern archi-
tectures, where behavioural characteristics of the processor
and its memory subsystem can interact to give very different
behaviour under varying workloads.

One underlying reason for a general lack of validation
is the nature of computer architecture research. Typically
researchers are far more interested in considering the per-
formance of next generation of processors, memory hierar-
chies and interconnects rather than existing machines. The
need to look forward constrains the ability to compare a
simulator against an existing machine, since in the major-
ity of cases there is no reference.

In such cases, the best that can be done is to attempt
to verify the validity of the implementation, and compare
behaviour of aspects of the model which closely resemble
real systems (and may be appropriately isolated).

On the other hand, in cases where researchers do have
access to a real machine, more direct methods of validation
are available.

2.1. Previous Work

Simulators written without hardware validation (but with
access to the hardware designers) have been compared to
the final implementation of their target hardware. Gibson
et al [7] reported a disappointing fidelity between the Stan-
ford FLASH simulation toolsuite and the performance of
the completed FLASH prototype. However, there were a
number of interesting conclusions drawn from this compar-
ison. In spite of their intimate knowledge of the architec-
ture, their models’ projections were inaccurate to varying
degrees, but did predict performance trends as a result of
scaling quite well. Perhaps most surprisingly the simpler
pipeline models predicted performance somewhat more ef-
fectively than the more complex pipeline models.

The overall conclusion of the FLASH comparison was
that — provided all “important effects” are modelled — the

simulator may be trusted to yield decent speedup predic-
tions. The difficulty is identifying in advance which partic-
ular subsets of memory, processor, interconnect and oper-
ating system behaviour are important to the application of
interest.

Talisman is a simulator of MIT’s Meerkat architecture,
and is discussed by Bedichek [2]. Its intent was to accu-
rately model the existing prototype, to allow the exploration
of design spaces, and to project the behaviour of systems
larger than the prototype. As this simulator was written with
the reference target available for comparison, the resulting
validation is of particular interest.

An iterative comparison process was followed, with
small benchmarks identifying specific performance regimes
run on both simulator and the prototype. Underlying causes
for performance discrepancy were identified, and appropri-
ate compensation was added to Talisman’s timing model.
This process was repeated until the desired degree of accu-
racy had been attained. The careful enumeration and test-
ing of the timing of system behaviours allowed the develop-
ers to develop timing models which provided the necessary
degree of accuracy, without modelling too much detail, or
compromising the simulator’s performance.

2.2. Original Simulator Design

Sulima’s original design goal was to provide a func-
tional full-system simulator modelling an UltraSPARC I-
based system. The simulator model employed a simple
fetch/decode/execute loop, and simple fixed laten-
cies for cache and memory accesses. This implementation
is documented in some detail by Clarke et al [6].

Instructions were executed one at a time, and assumed
to have a single cycle latency, potentially with additional
delays due to memory latency. As only a single instruction
could be in progress, the caches were effectively blocking.
Multiprocessor support was handled through a round robin
scheme which interleaved the execution of each processor.

A system-call emulation environment known as Solemn
[5] was used to run unmodified Solaris applications (includ-
ing dynamically linked). This also allowed the observation
of page faults and TLB misses.

2.3. System Model

With the availability of a suitable machine for compari-
son, it was decided to extend Sulima to model machines of
the same class as a Sun V1280, the basic specifications of
which are shown in Table 1.

The UltraSPARC IIICu [12] is composed of a relatively
simple processor microarchitecture coupled to a complex
cache hierarchy. Instructions are executed strictly in-order
using a 14 stage pipeline, with loads stalled on a cache miss
blocking until data is available. Up to 4 instructions may be
issued per cycle if sufficient functional units are available.

2

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

Table 1. Sun V1280 configuration
Processor count 12
Processor 900 MHz Ultra IIICu
Interconnect 150 MHz Sun FirePlane
Coherence Snooping MOESI
Coherence Line Size 64 B

I-Cache 4-way 32 KiB

D-Cache write-through 4-way 64 KiB

E-Cache 2-way 8 MiB

E-Cache Block Size 512 B (64 B subblocks)
Store Buffer 8 entry

A small low-latency prefetch cache (henceforth referred
to as the P-cache) is checked for data on floating point
loads in parallel with the D-cache (and a P-cache load may
be performed from an ALU pipeline rather than the mem-
ory pipeline). This cache may be filled either by specula-
tive hardware prefetch or through prefetch instructions
(though only one of software or hardware prefetch may be
active).

The typical split instruction/data level one cache is em-
ployed, however neither are inclusive. A large level two
cache (known as the E-cache) is used which stores tags on-
chip, but data off-chip. Due to bandwidth limitations caused
by storing data off chip, a write cache (W-cache) exists in
parallel with the E-cache. The W-cache has per-byte valid
bits and is used to coalesce dirty data prior to write out to
the off-chip E-cache, thus reducing bandwidth requirements
on the off-chip data. The W-cache is inclusive with respect
to the E-cache.

Finally a store buffer is used for all stores. Although
under certain specific circumstances stores may be merged,
this does not happen in practice. Data from the store buffer
may be forwarded to satisfy pending loads.

Due to the in-order execution of the processor, making
good use of the memory hierarchy (in particular prefetch) is
essential to obtaining good performance on this processor.

The coherency protocol used between processors is doc-
umented in great detail by Charlesworth [4]. Low and mid-
range systems are composed of a single snooping coherency
domain, employing the MOESI protocol.

The data bus is a multi-level bidirectional crossbar-
switched network used only for point-to-point data trans-
mission.

This complexity presents potential bottlenecks at a num-
ber of locations. Stores may be throttled either entering the
store buffer, or allocating space within the W-cache. The
need to access off-chip data in the E-cache restricts both
loads and stores. Furthermore load behaviour is different
depending upon the destination register (integer or floating
point). This constitutes a source of substantial complexity.

Processor
Model

MMU

I-Cache

D-Cache

E-Cache

Memory

Foreign E-Cache

Figure 1. Original module layout

3. Design
In order to accurately examine workloads on the desired

target system, a fetch/decode/execute functional
simulator with a simple timing model and blocking caches
needs to be modified into a simulation tool which can ac-
curately analyse the behaviour of a complex interconnect,
including a pipelined coherence protocol and non-blocking
caches. Due to the in-order nature of the processor, cor-
rect support of prefetch is essential as it is the only means
available to overlap read misses. A data cache miss will
still stall the instruction stream (and is therefore effectively
blocking).

The additional complexity arising from these changes
will impose a noticeable performance overhead. Due to the
project’s interest in examining multiprocessor systems, this
slowdown is of particular concern, as the overhead will be
scaled by the number of processors being modelled. The
ability to run a simplified functional model without perfor-
mance degradation until the application reaches an area of
interest (this is an approach advocated by the SimOS devel-
opers [10]) should be preserved if at all possible. This ap-
proach requires a separation between the processor model
and the memory hierarchy, so that multiple models may co-
exist within the code base.

As parallelisation seemed a promising way of reducing
the slowdown of multiprocessor simulation on a multipro-
cessor host, potential parallel simulation techniques were
kept in mind throughout the design. Processor and cache
objects should not blithely observe or change the state of
other such entities within the system, as this situation would
be unworkable should multiple target processors be simu-
lated in parallel.

3.1. General Requirements

To effectively isolate the processor model from the mem-
ory model (of which there may exist more than one), a
new component, known as the “bridge” was added to the
simulator. In the original design (illustrated in Figure 1),
caches could examine (and modify the contents of every
other cache in the system (and indeed this is how coher-
ence was managed). This approach is deficient in many re-
spects, particularly when faced with multiple potential tim-
ing models, more complex coherence protocols, or a desire
to experiment with parallelism.

In the new design (shown in Figure 2), the bridge compo-
nent sits between the processor model and the caches, and

3

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

Processor

MMU

Bridge

Store Buffer

Prefetch Queue

Caches

Backplane
Foreign
Bridge

Foreign
Caches

Figure 2. Revised module layout

provides the interface between the processor model and the
memory model. By isolating these two components from
one another, multiple memory timing models may be used
with the same processor model.

Timing models of interest include a cacheless global
memory system (the simplest model), non-pipelined and
fixed latency cache/memory models (as in the original
Sulima design), and the detailed pipelined model (described
in this paper). These can be changed dynamically in order
to permit high-speed functional emulation, or alternatively
to permit detailed performance analysis when the simulated
workload reaches areas of interest.

When simulating an interaction with other processors in
more complex models, it is not possible to determine in ad-
vance the latency of a given memory transaction. It must be
possible to maintain state for a given memory transaction
until it can be determined that it has completed. Given the
desire to maintain the existing model, it was decided to as-
sociate a structure with each memory request, and to ensure
that the same instance of this structure was passed through
various layers of the hierarchy.

Additional state tracking — which associated requests
with their pending memory transactions — allowed the sim-
ulator to effectively track multiple simultaneous requests
(and to determine what to do with the provided data once
the request had completed).

Partitioning the simulation of processors into a form suit-
able for parallelisation required a careful split of communi-
cation and coherence logic. While the original implementa-
tion of Sulima directly manipulated all caches, doing so in a
parallel implementation would expose concurrency issues.
Instead a “backplane” object is used to manage communica-
tion between processors via their respective bridge objects.

In the more detailed timing models, this backplane is re-
sponsible for simulating the core interconnection network.
Rather than a simple round-robin timing loop, a modified
scheduler is run in which the backplane determines com-
munication events before processors are run for their time
slice. This is similar to the accurate model used in the
WWT [3].

3.2. Processor Run Loop Modifications

The traditional fetch/decode/execute style of
processor simulation requires a memory model which can

immediately return the desired latency when a memory
event occurs. This section describes how the run loop for
the processor has to be modified in order to support a mem-
ory system modelling pipelined transactions.

As the completion time of a memory event is not known
in advance, to avoid a complete restructure of the proces-
sor model, the in-built exception handling mechanism can
be extended for this purpose. A special dummy “stall” ex-
ception is returned to indicate that the processor should idle
the instruction stream for the given number of cycles before
re-executing the current instruction. This number of cycles
represents the minimum time that the operation could com-
plete, given the current state of the memory model. This
process is repeated until the instruction requesting the mem-
ory event succeeds, at which point normal execution re-
sumes.

The use of the backplane component also requires each
processor maintain an event queue, in order to process co-
herency events at the right time and in the right order. This
must be checked upon every cycle at the top of the run loop,
along with checking for processor interrupts.

The modified run loop then also checks whether it is in
an ‘idle’ state, due to the stall exception; in which case, it
simply advances its clock and performs no action apart from
checking its event queue. After any stage that can involve
a memory event (e.g., fetch, or execute load/store), the stall
exception is checked for. A state variable is set to suppress
the fetch/decode/execute stages on future iterations of the
loop until the required idle time expires. Thus, the structure
of the loop is only modestly more complex than the original.

3.3. Store Buffer

The store buffer masks store latency, by permitting a
store instruction to retire immediately and allowing the
buffer to perform the memory transaction. This implies
some additional processing of memory events outside of the
instruction stream.

A queue of pending stores must be maintained. If the
queue is full, the store instruction must stall until there is
room. Furthermore, this queue must be checked on the eval-
uation of each load instruction to determine whether data
may be forwarded. On a store buffer hazard (partial conflict
with data in the store buffer), the load must stall until the
store buffer no longer represents a hazard.

As the processor itself explicitly denies any possible con-
flicts between an in-progress store and a pending load, this
does not present substantial complications.

Care must be taken to fully drain the store buffer on
atomic instructions in order to avoid violating the proces-
sor’s consistency model (total store order).

3.4. Prefetch

Accurate modelling of prefetch is essential for realistic
performance estimates of this processor. It was decided not

4

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

to model hardware prefetch, as the algorithm for determin-
ing which addresses to fetch is not documented. Instead, the
prefetch instruction was modelled. This instruction al-
lows the user manual control over whether a line is fetched
into the P-cache (only), the E-cache (only), both the P-cache
and the E-cache, or the E-cache with exclusive access.

There are two immediate complications. The need to
process asynchronous transactions (as in the case of the
store buffer), and the need to detect conflicts between later
load instructions, pending stores (from the store buffer), and
instruction fetches. Of particular concern are conflicting re-
quests for exclusive and shared access (if an exclusive re-
quest arrives while a shared request is outstanding, it must
stall). While a request that begins as a prefetch may be des-
tined only for the prefetch cache, if a later load request over-
laps, it needs to be “upgraded” to a real load as far as the
cache is concerned.

After some consideration it seemed the simplest reso-
lution to this problem was to implement the equivalent of
MSHRs (Laudon [8, §5.1] provides a good overview). State
tracking within the bridge was implemented to keep track
of the origin and destination of all requests, and this logic
merged compatible requests, while stalling incompatible re-
quests.

Additional overhead is inflicted by the need to check the
prefetch cache on each floating point load, the need to in-
validate the prefetch cache on each snoop or store, and care
must be given to ensure that prefetches that cause a TLB
miss are silently dropped without faulting.

4. Methodology
Overall model validation is a critical concern in simula-

tor development. Without having confidence in the accu-
racy of a simulator, it is not possible to draw conclusions
from the provided data.

Part of the motivation for choosing this particular system
configuration as a reference was the authors’ access to the
reference system. This permits direct comparison to a run-
ning system, and allows us to directly evaluate our model.
Although we are modelling only user level applications (in-
cluding system libraries, page faults and TLB misses, but
not including kernel activity), careful selection of compari-
son applications allows verification of the simulation areas
we hope to model accurately. The intended focus on sci-
entific applications allows us to ignore kernel-level effects
(aside from considerations of page coloring, memory place-
ment and processor affinity).

A two-pronged approach was taken to validation. Firstly,
the low-level processor model (including the memory tim-
ing of caches, and the behaviour of the store buffer) was
examined using a system of carefully written microbench-
marks. Secondly, higher level benchmarks were examined
using the NAS parallel benchmarks [9], in conjunction with

the processor’s performance counters. This enabled a direct
comparison of a number of aspects of system behaviour (be-
yond simply overall run time). The NAS benchmarks made
for particularly good baseline applications for validation, as
they are scientific applications which (once running) do not
interact with the kernel in any noticeable way.

On several critical measures, validation of the high-level
benchmarks was made possible through an accurate CPU
simulation module [11]. This provided a good estimate of
the behaviour (particularly IPC) of the real system’s CPU,
and accurately timed requests issued to the memory subsys-
tem.

Although some documentation was provided regarding
the memory latencies of the system, it seemed judicious
(and as it turns out, justified) not to place undue faith in
this documentation, but rather to validate the latencies our-
selves.

4.1. Microbenchmarks

The aim of microbenchmarking was to determine the la-
tency of a full range of memory transactions. A simple
framework was written to allow benchmarking on either
single or multiple processors (which was necessary to force
certain cache transitions).

When running these benchmarks care was taken to en-
sure that the following assumptions were satisfied:

• All threads within a benchmark are on processor si-
multaneously

• Each thread is assigned its own processor

• Threads did not migrate between processors

• No other application would access the memory or pro-
cessors being used by the microbenchmark

• Nothing could perturb cache state beyond victimisa-
tion due to OS interference (or interrupts)

• All threads are run on the same processor board (and
where possible the same processor pair) to minimise
data transfer latency

Care was also taken to ensure that device related inter-
rupts were not serviced on the processor used for bench-
marking. All tests were run on the reference host using So-
laris 9.

A typical microbenchmark is illustrated in Figure 3.
Note that the assembly is slightly simplified, and branch
delay slots are ignored for brevity. Once the cachelines
were manipulated into the appropriate state, the processor’s
%tick register (which counts processor clocks) was used
to time the instruction.

Flushing the cache from userspace proved surprisingly
difficult as the UltraSPARC IIICu uses a pseudo-random

5

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

Processor A Processor B

st %g0, [A] call _cache_flush
call _barrier call _barrier

rd %tick, %l0
ld [A], %g0
rd %tick, %l1
sub %l1, %l0, %l0

call _barrier call _barrier

Figure 3. Microbenchmark to measure cache-
to-cache transfer latency

Table 2. Latencies on UltraSPARC IIICu
Benchmark CPU clocks

ld (E$ I) 206–240
ld (D$ inv, E$ valid) 18–23
ld (D$ valid) 1
st (E$ I) 180–205+
st (E$ S) 126–134
st (E$ E/M) 1
ld following st (RAW bypass) 1
cache to cache transfer 269–273
cas E 47–55
cas M 42–50
cas S foreign S 171–183
cas S foreign O 171–183
cas O 171–183
cas I 243–264
cas I foreign M 301–321

LFSR-based replacement policy for the E-cache (a fact
which is poorly documented), and the only reliable means
of flushing is privileged. As a result, a range of pages with
appropriate physical addresses must be acquired to flush the
E-cache, while contiguous virtual addresses suffice for the
D-cache. In each case, displacement flushes must be per-
formed numerous times to ensure a flush.

It is also important to avoid undesired artifacts of the
microarchitecture. When benchmarking stores, store buffer
behaviour must be considered (and overcome), while when
benchmarking loads, consideration must be given to the
difference between pipeline recirculation stopping (and the
next instruction commencing), and the time at which the
loaded value is usable.

The basic results of microbenchmarking are illustrated
in Table 2. This table considers the latency of a variety
of memory related operations, with the MOESI state of the
cacheline in question given in bold.

Observation of the load/store results yields several basic
latencies. The D-cache and E-cache hit latencies are fixed at
1 and approximately 20 cycles respectively. Cache to cache

Table 3. Store buffer latencies on Ultra IIICu
Storebuf Benchmark CPU clocks

RAW (D$, E$ hit) 1
RAW (D$ miss, E$ hit) 1
RAW (D$, E$ miss) 13
RAW overlap (D$, E$ hit) 25
RAW overlap (D$ miss, E$ hit) 43
RAW overlap (D$, E$ miss) 220–250
RAW same line (D$, E$ hit) 1
RAW same line (D$ miss, E$ hit) 40–43
RAW same line (D$, E$ miss) 220–250
RAW past hazard (D$, E$ hit) 36–43
RAW no hazard (D$, E$ hit) 1

transfer latency is of the order of 270 cycles, while upgrade
latency is 125. Finally the basic overhead for performing an
atomic operation is around 40 cycles.

These measurements can be compared to the observed
results for more complex scenarios (the atomic operations).
An atomic operation which requires the update should be
expected to consist of the upgrade latency and the atomic
latency (i.e., 165 cycles) which compares well to the ob-
served 171 cycles. Similarly, an atomic requiring a cache to
cache transfer would be expected to take 310 cycles (com-
pared to an observed 300–320).

A sufficiently detailed series of microbenchmarks allows
us to determine some internal latencies which could not oth-
erwise be observed directly.

The store buffer behaviour (shown in Table 3) proved
quite interesting, and demonstrated several undocumented
peculiarities. Read after write bypassing does not forward
data if there is a miss on the E-cache. Instead there is a 13
cycle penalty. This is unusual behaviour, but is unlikely to
influence timing projections of typical workloads.

Overlapped accesses (for example writing 8 bytes, then
reading the lower or upper 4) inflicts quite a severe penalty
(and in all cases it is about 20 cycles slower than an equiv-
alent load without the preceding store). This result is quite
surprising, as the requisite data is resident in the store buffer.
Attempting to access a non-overlapping region of a cache-
line with a pending store also imposes the same penalty on
a D-cache miss.

When a series of stores are performed to a given cache
line, an attempt to read back anything except the final store
will inflict a 30 cycle penalty. This final latency is particu-
larly troubling, as this access pattern is quite common when
transferring data between integer and floating point registers
via the stack (as there is no way to do this directly).

These penalties came as something of a surprise, and
are not documented in the processor literature. Although
the majority of the microbenchmarks closely matched doc-
umented behaviour, the store buffer proved to defy expec-

6

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

Table 4. NAS Benchmark validation (1 processor)
Metric bt.S ft.S is.S lu.S lu-hp.S mg.S sp.S

real 598580922 625336080 10076197 185462563 183257234 20072195 251648809
Cycle cnt sim 604697080 492572873 10841070 184472044 176643478 17664892 230838376

norm 1.01 0.791 1.08 0.995 0.964 0.881 0.9173
real 1535717 2697685 90791 1414765 1164821 302577 2550524

DC rd miss sim 807333 1034429 83300 1415994 1162283 233134 1876017
norm 0.526 0.384 0.918 1.01 0.998 0.770 0.736

real 33441391 73342393 1873771 31024520 24648855 6334474 57440254
Re DC miss sim 16158660 21416846 1666400 28325080 23483020 4668760 37556340

norm 0.483 0.292 0.889 0.913 0.957 0.737 0.653
real 3558661 2654169 89542 686327 1271659 101407 1138007

Re RAW miss sim 1098114 1562686 4880 131901 519532 199588 2425778
norm 0.309 0.589 0.0545 0.192 0.409 1.96 2.13

real 161642730 257997086 5423461 28103945 26136530 514236 38924631
Rstall storeQ sim 173557526 213641772 6099283 29472842 18891858 502118 28057554

norm 1.07 0.828 1.12 1.05 0.723 0.976 0.721

tations, and was a significant source of inaccuracy prior to
validation.

4.2. NAS Parallel Benchmarks

The NAS parallel benchmarks are a set of benchmarks
from a variety of scientific applications which include a
number of different problem sizes, and may be scaled from
uniprocessor up to 256 or more processors.

The OMP variants of these benchmarks were modi-
fied using Solaris’s libcpc to collect performance counts
around the computation phase of each benchmark (setup
and verification was ignored due to the probability of
greater operating system involvement). Initially the OMP
instances were run on a single processor to minimise
sources of error, while later in the validation cycle, these
benchmarks were tested on multiprocessor runs.

The counts returned from running these applications na-
tively were then compared with those from a simulation run
with the identical region of the application instrumented.
The “S” class was used as the basis of comparison against
the most detailed timing model in the simulator. In each
case they were run within a processor set on a quiesced pro-
cessor board of our target machine, to minimise external
disturbances. Results were reproducible to within 1–2%.

Initial attempts at validation revealed a number of model
inaccuracies. The store buffer proved a particular source of
trouble, as it is only capable of draining a store once every
second cycle. Repeated stores to cachelines which are in
memory (such as those performed by certain high-density
floating point codes) may quickly fill the store buffer and
experience unexpected stalls. This behaviour was not doc-
umented.

The W-cache also proved troublesome. Given the nature
of the cache (inclusive with the E-cache, operates in par-

allel, per byte validity, data merged from E-cache and W-
cache on a load), it was assumed that it could be effectively
ignored. Unfortunately the bandwidth limitation between
the W-cache and the E-cache’s off-chip data is something
which is hit all too easily. Experimentation reveals that it
takes approximately 30 clock cycles to shift a cacheline off
chip, and it is not possible to shift multiple cachelines in
parallel. Benchmarks which stride cachelines (such as IS),
were over twice as slow as projected by the simulator.

A bug in the prefetch implementation involving victimi-
sation of dirty E-cache lines when requesting prefetch with
exclusive access manifested as a massive inaccuracy in the
runtime of the FT benchmark (which makes particularly
heavy use of this form of the prefetch instruction).

In the first two cases, the inaccuracies were caused by the
(what seemed relatively minor) failure to accurately model
a bandwidth limitation inherent to the processor. However,
given the nature of the benchmarks, and the way they stress
hardware in a variety of different ways, this bandwidth lim-
itations proved to be responsible for much of the observed
performance.

Calibration against the NAS benchmarks tested a range
of system behaviour, and demonstrated numerous inconsis-
tencies in our model. At various points, the store buffer,
read after write forwarding, and integer memory behaviour
were tested, and all benchmarks (except IS) make extensive
use of the prefetch instruction. Together they yielded a
very good set of test cases for the memory behaviour of this
system.

5. Results
Table 4 shows the final event counts provided by the

detailed memory simulation model for uniprocessor runs
of several of the benchmarks, normalised against the real

7

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

Table 5. NAS Benchmark validation (OMP, 2 processors)
Metric bt.S ft.S lu.S lu-hp.S mg.S sp.S

real 315607317 340967363 172221912 175478383 13483880 160194823
Cycle cnt sim 324684948 256938597 168825732 168049551 11490780 145957236

norm 1.03 0.754 0.980 0.958 0.852 0.911
real 57259 236861 105057 229644 8561 120150

EC snoop cb sim 69737 253383 95727 280864 10630 143183
norm 1.22 1.07 0.91 1.22 1.24 1.19

real 55591 193448 91122 101858 5541 100152
EC snoop inv sim 65786 237247 98053 190609 8029 139308

norm 1.18 1.23 1.08 1.87 1.45 1.39

machine. The metrics describe UltraSPARC IIICu perfor-
mance counters [12]. While Cycle cnt represents the
overall projected execution time, the D-cache read miss
count is provided as a reference, and the remaining three
counts are the primary source of pipeline stalls aside from
register and functional unit dependencies.
Re DC miss indicates the total number of cycles stalled

due to misses on the D-cache, and includes all memory la-
tency as a result of the miss (such as time to retrieve data
from the E-cache).
Re RAW miss indicates the time spent stalled due to

read after write hazards between loads and stores pending
in the store buffer. This occurs any time that it is not possi-
ble to bypass the data directly to a load.
Rstall storeQ indicates time spent waiting while

the store buffer is full. Benchmarks which write a large
amount of data in sudden bursts are prone to stalling in this
fashion. There is a fixed limit at which stores may be dis-
patched from the store buffer to the cache hierarchy (as dis-
cussed above).

While very good accuracy was achieved for the overall
results of some benchmarks, others were well off the mark
(almost 12% in the case of MG). The typical culprit for
large inaccuracies was the total time spent on cache misses
(which in extreme cases was underestimated by a factor of
five).

The store buffer behaviour was somewhat more consis-
tent, however, due to the sheer magnitude of time spent
stalled on the buffer in FT, it contributed almost half of the
difference between projected and real execution time.

Although substantial effort has been expended to mimic
both the documented and the measured behaviour of the
UltraSPARC IIICu, in most cases the simulator remains
quite optimistic. Table 4 demonstrates that the benchmarks
for which predicted performance deviates most significantly
are those for which the predicted D-cache hit rate deviates.

In other cases, where the hit rate is predicted success-
fully, the predicted results are much closer to measured
performance. The cause for the underlying discrepancy in

miss rates is the pseudo-random replacement algorithm dis-
cussed briefly in Section 4.1. This algorithm is not con-
sistently documented, and has not yet been modelled suc-
cessfully. Instead an LRU replacement policy was used,
yielding (in some cases) vastly improved miss rates. Al-
though in some cases memory use patterns and effective use
of prefetch masked this difference, in other cases it is all too
apparent.

Benchmark results for the master thread of a two proces-
sor OMP run of the NAS benchmarks are illustrated in Fig-
ure 5. In all cases the benchmarks were run on a processor
set within a quiesced system. Two additional performance
counters are compared:
EC snoop cb indicates the number of cachelines

copied back to another processor. These copybacks arise as
a result of both shared and exclusive requests for the cache-
line in question.
EC snoop inv indicates cachelines invalidated for co-

herency reasons. Typically this is due to modification by
another processor.

Multiprocessor validation introduces additional inaccu-
racy due to shared memory. The precise timing (and even
counts) of events arising from coherency cannot be repro-
duced precisely without also reproducing the exact timing
of the target system.

Overall the simulator projected approximately 20% more
copybacks and 25% more invalidations due to coherence
than were observed in a real system for the two processor
case.

5.1. Discussion

With such coarse-grained information about what was
responsible for a stall, it is difficult to pinpoint the exact in-
accuracy responsible for the discrepancy. Furthermore, im-
plementation details may end up masking the severity of a
problem. During testing, a bug was discovered in the imple-
mentation of prefetch, and upon fixing it, cache miss rates
dropped further, making the projected execution time even
more optimistic.

The combination of using a series of microbenchmarks

8

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

(generated both from documentation and from observed be-
haviour) to begin calibration, coupled with a more high-
level benchmark to pinpoint areas to examine for further
inaccuracies, proved reasonably successful.

Through an examination of the performance counters,
we were able to focus our testing efforts on the regions fur-
thest from the observed results. It should be observed that
this frequently had unforeseen consequences. The mem-
ory hierarchy of a processor such as the UltraSPARC II-
ICu has complex interactions between its components, and
tweaking one component can have serious consequences
elsewhere. Uniprocessor FT was initially pessimistic and
demonstrated extremely poor store buffer behaviour (exces-
sive stalls). Upon discovery of a bug in the prefetch, it
became the most optimistic of the benchmarks due to its
extremely heavy use of “prefetch write many” (which ac-
quires exclusive access, and reduces the time spent draining
the store buffer).

The projected uniprocessor performance of IS was ini-
tially optimistic by a factor of 2 due to the aforementioned
undocumented bandwidth limitation of the W-cache. In
many cases reducing the latency of D-cache accesses had al-
most no effect on the projected execution time, and merely
increased the time spent stalled draining the store buffer, or
resolving read after write conflicts.

The location of the underlying model deficiency was not
always apparent from the breakdown of stalls, and although
this may provide a hint as to the problem, it does not always
help.

Contingent upon the cache replacement policy, this sim-
plified model has proven relatively accurate in comparison
to a real system. As long as the cache miss counts are sim-
ilar between the simulated model and the real system, rea-
sonable confidence may be had in the accuracy of at least
this family of scientific workloads. Validation against a real
system has demonstrated that by modelling only some of the
complexity (prefetch, multiple outstanding requests, store
buffer) and coupling it with a lightweight processor timing
model, it is still possible to retain a degree of accuracy.

Multiprocessor results indicate that the coherence be-
haviour matches the real system to within 25%, a sizeable
error. Further examination of the cache replacement al-
gorithm, and comparison of multiprocessor benchmarks in
more finely-grained sections (e.g. within each OMP paral-
lel region) may provide traction on this discrepancy. Some
error is expected due to timing variation, however, it may
prove possible to further reduce this with additional tuning.

6. Performance
Table 6 gives the overhead of the model, compared with

the original Sulima speed [6]. The column ‘plain’ refers
to the blocking non-pipelined memory model (see Section
3.1); this indicates the overhead introduced by the bridge

Table 6. Normalized Performance of Memory
Model

NPB plain detailed + store buffer + prefetch
bt.S 1.19 1.21 1.59 1.94
cg.S 1.21 1.32 1.40 1.98
lu-hp.S 1.17 1.24 1.52 1.95

and modifying the original run loop. ‘Detailed’ refers to
non-blocking pipelined model described in this paper; sur-
prisingly, it introduces very little extra overhead. The re-
maining columns indicate the more significant effect of en-
abling the store buffer and prefetch components.

7. Future Work
The validation completed thus far primarily focuses on

the upper regions of the memory hierarchy. Validation of
the interconnection network and the shared memory be-
haviour of the simulator may prove to be a challenging
problem, but is the logical next step in the validation of the
simulator. Preliminary two processor results indicate that
a finer-grained examination of synchronisation regions may
be required to fully validate shared memory interactions,
and multiprocessor validation must be scaled to cover more
processors.

Speed and accuracy are two conflicting goals. Once anal-
ysis of large shared-memory applications begins, avoiding
a serious slowdown will become a matter of great interest.
Given the manner in which the detailed memory model has
been designed, it is hoped that the system as a whole may be
parallelised on a shared-memory machine with a relatively
minor slowdown for multiprocessor simulation runs. This
will permit the examination of larger systems in a workable
time frame.

Still to be confronted is the issue of memory placement.
Memory placement and processor affinity are two aspects of
operating system behaviour which may be expected to have
a large impact on the behaviour of computation chemistry
codes on a NUMA system. Providing some means of tun-
ing this behaviour will be essential to achieving an accurate
characterisation, and its influence on algorithm behaviour
remains of some interest.

8. Conclusions
This paper has presented the design of a detailed mem-

ory model of an existing system (a Sun V1280), and the
validation of the resulting timing model against this system,
through a combination of microbenchmarks and small-scale
scientific applications (a workload appropriate for our even-
tual simulation goals).

Key features of the model included the use of a ‘bridge’

9

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

to provide a flexible interface between the processors and
the memory system, permitting the use of simpler and faster
models for workload positioning. The use of event windows
between the simulated backplane and processors enables
an efficient but accurate means of modelling interactions,
and will permit the model to be parallelized for improved
performance. Other important features included the imple-
mentation of pipelined memory and cache coherence trans-
actions, with the transaction state being modelled and up-
dated throughout this process, and the extension of the pro-
cessor run loop to support asynchronous event processing.
The modelling of the store buffer and prefetch mechanisms
proved both challenging and important for the model’s ac-
curacy.

Surprisingly, the overall overhead introduced by the cy-
cle accurate model is within a factor of two, as compared
with the original functional simulator model. Also surpris-
ingly, the pipelined backplane itself introduced little over-
head, the bulk being introduced by store buffer and prefetch
modelling.

Even with documentation and access to a real system
with reasonable performance monitoring infrastructure, this
has proven a remarkably difficult task. Primarily due to the
complexity of modern processors and memory hierarchies
there are a large number of potential performance bottle-
necks. While upon initial examination these may seem to
play no role, under certain workload regimes they dominate
performance.

Through a careful attempt to examine processor/memory
behaviour using a series of both low and high level bench-
marks, the processor’s performance counters and an iter-
ative approach, it is possible to obtain a good characterisa-
tion of a system, and incorporate this model into a simulator.
However, without absolute certainty that all behavioural as-
pects have been accounted for, accuracy on untested work-
loads remains in doubt.

The methodology presented above is fairly generic, and
relies on microbenchmarks tuned to the architecture, hard-
ware performance counters, and operating system support
for process pinning. It should be possible to validate in this
manner on most modern systems.

With detailed and accurate documentation, validation is
hard. Without documentation, validation may prove daunt-
ing. This work underscores the need to understand precisely
how a processor behaves at a low-level in order to derive an
accurate timing model.

Acknowledgements
The authors wish to thank the Australian Research Coun-

cil, Sun Microsystems Inc. and Gaussian Inc. This research
has been funded under ARC Linkage Grant LP0347178.

Yan Zhang and Nicolas Jean assisted instrumenting the
NAS parallel benchmarks, while David Hearnden and the

reviewers provided helpful feedback on drafts.

References
[1] Australian National University. The CC-NUMA project:

Computational Chemistry on Non-Uniform Memory-access
Architectures. http://cs.anu.edu.au/CC-NUMA.

[2] R. C. Bedichek. Talisman: Fast and Accurate Multicom-
puter Simulation. In Proceedings of the 1995 ACM SIGMET-
RICS Joint International Conference on Measurement and
Modelling of Computer Systems, pages 14–24. ACM Press,
1995.

[3] D. C. Burger and D. A. Wood. Accuracy vs. performance in
parallel simulation of interconnection networks. In Proceed-
ings of the 9th International Parallel Processing Symposium,
pages 22–31, 1995.

[4] A. Charlesworth. The Sun Fireplane System Interconnect.
In Supercomputing ’01: Proceedings of the 2001 ACM/IEEE
conference on Supercomputing (CDROM). ACM Press, New
York, New York, USA, November 2001.

[5] B. Clarke. Solemn: Solaris emulation mode for Sparc
Sulima. In Proceedings of the 37th Annual Symposium on
Simulation, pages 64–71. IEEE Computer Society, 2004.

[6] B. Clarke, A. Czezowski, and P. Strazdins. Implementation
aspects of a SPARC V9 complete machine simulator. In
CRPITS ’02: Proceedings of the twenty-fifth Australasian
conference on Computer Science, volume 4, pages 23–32,
2002.

[7] J. Gibson, R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and
M. Heinrich. FLASH vs. (Simulated) FLASH: Closing the
Simulation Loop. In Proceedings of the Ninth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 49–58. ACM Press,
2000.

[8] J. P. Laudon. Architectural and Implementation Tradeoffs
for Multiple-Context Processors. PhD thesis, Computer Sys-
tems Laboratory, Department of Electrical Engineering and
Computer Science, Stanford University, September 1994.
Available as Technical Report CSL-TR 94-634.

[9] NASA Advanced Supercomputing. NAS Parallel Bench-
marks. http://www.nas.nasa.gov/Software/
NPB/. Version 3.1.

[10] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete computer system simulation: the SimOS ap-
proach. IEEE Parallel and Distributed Technology: Systems
and Applications, 3(4):34–43, 1995.

[11] P. Strazdins. CycleCounter: an Efficient and Accurate Ul-
traSPARC III CPU Simulation Module. Technical Report
TR-CS-05-01, Department of Computer Science, Australian
National University, May 2005.

[12] UltraSPARC III Cu User’s Manual. Sun Microsystems,
Santa Clara, California, USA, January 2004. Version 2.2.1.

10

Proceedings of the 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS’05)
1526-7539/05 $20.00 © 2005 IEEE

