
Optimizing User-Level Communication Patterns on the Fujitsu AP3000

Jeremy Dawson and Peter Strazdins,
Department of Computer Science,

Australian National University
Acton ACT 0200 Australia

fjeremy,peter g@cs.anu.edu.au

Abstract

In this paper, we present techniques and algorithms to
improve the performance of various communication pat-
terns on message-passing platforms where, for reasons of
safety, user-level communications must be buffered in (spe-
cial) memory on both the send and the receive. These al-
gorithms can not only minimize message copying but over-
lap the copying to/from the special memory with the actual
transfer, enabling full bandwidth to be achieved. These pat-
terns include tree broadcast and reductions, (ring-based)
multiple broadcasts and reductions, pipelined broadcast
and buffered point-to-point sends. In each case, the mes-
sages may have a simple stride. All of these patterns are
used in dense linear algebra applications, although they are
also used in many other contexts.

These algorithms are implemented and their perfor-
mance evaluated on the Fujitsu AP3000, a message passing
multicomputer having many characteristics of the cluster
model. Some aspects, such as the performance character-
istics of the special memory, are specific to the AP3000;
however, the algorithms still apply to any platform using
a similar mode of user level communications. Worthwhile
performance increases are obtained, especially for patterns
involving moderate-large number of processors.

1 Introduction

The Fujitsu AP3000 [3] is a distributed memory mul-
ticomputer, comprised of RISC scalar processors (Ultra-
SPARC) with a deep memory hierarchy (having a 16KB
top-level data cache and a 1MB 2nd-level cache, both
direct-mapped, and a 64-entry TLB). Each node supports
a standard Solaris operating system. It has communication
networks with characteristics shared by most other state-of-
the-art distributed memory computers, that is, high commu-
nication costs relative to floating point speed, and row or
column broadcasts having to be simulated by point-to-point

messages. The AP3000 also has many properties of the
cluster computing model; this extra flexibility contributes
to its communication costs.

Under the APruntime V2 runtime system [5], the
AP3000 effectively behaves as a cluster: many parallel
and serial jobs can run simultaneously, and on overlapping
subsets of processors. Furthermore, information may be
transferred using a system level ‘transport’ (TCPIP) or a
user level transport; for programs using message passing li-
braries (eg. MPI [2]), the transport can be selected transpar-
ently [5]. Thus high availability of the system is achieved;
however, the current lack of global scheduling means that
overlapping parallel jobs cause overall performance degra-
dation.

MPI is implemented in APruntime in terms of a lower-
level library called VPPLib, which is in turn implemented,
with very low additional overhead, in terms of the LWSLT
low-level library [5]. This library has yielded latencies of
26:3�s and bandwidths (for large messages) of 85 MB/s on
a U170-based AP3000 [5].

The main original contributions of this paper are to de-
scribe techniques and algorithms for optimizing commu-
nication patterns on platforms where messages must be
buffered upon both send and receipt, and the actual trans-
fer of the messages occurs in chunks (which can be over-
lapped with the buffering). It evaluates these algorithms on
the AP3000.

This paper is organized as follows. Section 2 gives de-
tails of user-level communication on the AP3000, and Sec-
tion 3 describes the communication patterns to be opti-
mized. Their implementation is described in Section 4, with
their performance on the AP3000 is given in Section 5 and
conclusions being given in Section 6.

2 User Level Transfers on the AP3000

On the AP3000, a message transfer to and from user
memory must occur in three stages, as the message must

1



be copied to and from ‘special memory’, that is, (mes-
sage buffering) memory that can be accessed by each
node’s Message Controller (MSC). The MSC is connected
to the node by an SBUS. This memory includes 12 MB
of SDRAM memory directly attached to the MSC, and 12
MB of ‘KMEM’, a reserved part of the node’s memory,
allocated for use by the MSC [5]. Figure 1 summarizes
message transfer paths [5]. Such a convention helps en-
sure safety and security in a multi-user environment, as a
message transfer to and from user memory requires the co-
operation of both the source and destination nodes. This
convention may similarly be expected on other cluster ar-
chitectures using user-level communications.

However, this mode of message transfer can potentially
degrade communication performance seriously, with for ex-
ample 8KB messages (a typical size for a vector) being
transferred at a rate of only 30 MB/s, whereas the AP3000’s
hardware inter-node bandwidth is 200 MB/s [3].

A method to improve performance for larger messages is
theprotocol method[5], which involves breaking the mes-
sages into large (eg. 32 KB) chunks and pipelining the trans-
fers of chunks over the three stages. This is possible be-
cause the SBUS can perform read and write transfers si-
multaneously without loss of bandwidth. In this way, 1 MB
or larger messages can be transferred at the rate of 85 MB/s.
This method is already incorporated into VPPLib and MPI
message send and receive calls on the AP3000; the details
of its effective implementation are however quite subtle.

3 Improving Communication Pattern Perfor-
mance

The idea of the protocol method can be extended tocom-
munication patterns, where the pipelining can be performed
over the several messages involving any one node in the pat-
tern, and/or the copies to special memory can be amortized
over different messages.

For example, in blocked parallel matrix factorizations
using the storage blocking method [1, 7], the horizontal
panel (contained in a processor column) (sub-matrix) is
communicated using a pipelined row broadcast [1], and the
vertical panel (contained in a processor row) is communi-
cated via a tree column broadcast. Using the algorithmic
blocking method, [7] where the panels are distributed across
all processors (see Figure 2(a)), these operations tend to oc-
cur on long vectors instead, and/or are replaced with a panel
multi-broadcast or spread operation [7]. QR and LDLT fac-
torizations may also use row or column reductions [7, 6].
Point-to-point messages are use for explicit transposition
(QR and LDLT) and row/column interchanges (LU, LDLT).
In many dense linear algebra libraries such as ScaLAPACK,
a buffered sendis required to fulfill the required communi-
cation semantics, that is sender must return from the send

call regardless of the state of the receiver; this is generally
achieved by buffering the message on the sender.

In the dense linear algebra context, the data to be com-
municated are in the form ofM �N (row-major) matrices,
with a row stride ofLda � N . If Lda > N andM > 1, the
message is notcontiguous; it is important that extra mem-
ory copying be avoided where possible fornon-contiguous
messages.

The main cost in parallel matrix factorization for
moderate-large matrices on the AP3000 is in communica-
tion volume overheads [6]. We are primarily interested
in improving the performance of such applications; how-
ever, these patterns occur in many other diverse applica-
tions, which could also benefit from this work.

This idea’s main potential in enhancing performance is
for moderate-sized messages, that is in messages too small
for the (full) benefit of the protocol method. For smaller
messages, performance might be improved by looking at
alternate memory copy routines than Solarismemcpy()
(which we have found to be very efficient on moderate-large
data sizes to and from special memory).

3.1 Communication Patterns to be Optimized

A binary tree broadcast is a well-known pattern; overP
cells, the root node must sendlg

2
P messages; hence the

cost of the broadcast relative to a single message islg
2
P .

The binary tree reduce can be thought of as the reverse of
this operation, where each node receiving a message adds to
that message its corresponding contribution, before sending
that message up to its parent node in the tree. Thus, the
root node receives the sumnation of all cell’s contributions.
Like the tree broadcast, its relative cost islg

2
P ; however, as

the memory operation is a (vector) add, rather than a vector
copy, it is generally slower than the broadcast.

The pipelined orincreasing ringbroadcast [1] can be
used as a faster alternative to the tree broadcast in compu-
tations. A pipelined row broadcast can be used in compu-
tation having at leastQ stages, where the broadcast source
changes in a round robin fashion in each stage, and no com-
munications need flow in the opposite direction. As illus-
trated in Figure 2(b), a ‘bubble’ of sizeQ is introduced;
hence the cost ofQ pipelined broadcast, relative toQ nor-
mal message sends is 2, and is thus faster than a tree broad-
cast ifQ > 2.

For multi-broadcast orspreadoperations (see [4] and
the references within), we must consider matrices block-
cyclically distributed [1, 7] across aP � Q processor grid.
Here, all processors have an (often roughly equal) portion of
the data to be replicated. Figure 2(a) shows a row ‘spread’
of A (having 8 block columns) across a3 � 3 grid, storing
the result in the column-replicated matrixAsM. The pattern
can be achieved byQ individual broadcasts (including the

2



UltraSPARC UltraSPARC

memory

kmem buf

SDRAM

memory

kmem buf

SDRAMMSC MSC

RTC RTC

50 MB/s

30 MB/s

188 MB/s

90 MB/s

Figure 1. AP3000 inter-node communication configuration

pipelined broadcast, which is a potentially competitive way
of implementing this function). However, it can also be
achieved efficiently using a series ofQ � 1 ring-shift op-
erations [4]. Here, where each cell initially sends its own
contribution rightwards; it then receivesQ � 1 messages
from the left, copying the message into the corresponding
part ofAsMbefore passing it rightwards. Relative toQ� 1

normal message sends, the cost of the ring shift is between
1 and 2, depending on whether the cells in a target platform
can be simultaneously sending and receiving messages at
full speed.

The ring multi-reduce [4] can be implemented very sim-
ilarly to the ring multi-broadcast; each cell initially sends
rightwards its contribution inAsMbelonging to the cell on
its left; as that message is passed around, each intermediate
cells adds the corresponding contribution. Thus afterQ� 1

messages, the message arriving in each cell is added to that
cell’s contribution inAsM, which is then stored in that cell’s
portion ofA.

Note that all of these patterns, except for theincreasing
ring broadcast, are supported by MPI [2].

4 Implementation

This section describes how the above patterns can be im-
plemented efficiently. The first consideration is however the
performance characteristics of the platform’s (in this case
the AP3000’s) special memory, which has considerable im-
pact on design decisions. These patterns can be divided
into two classes: ‘synchronous’ patterns, where it can be
assumed that all cells participating in the pattern do so at
the same time, and ‘non-synchronous’ patterns. Each has
slightly different design considerations.

4.1 Memory Performance of the AP3000 Special
Memory

As depicted in Figure 1, direct user level transfers can
only occur to and from the SDRAM or KMEM special
memories, with the optimal path beings from SDRAM
to KMEM or SDRAM for large messages. Thus, to-
tal message transfer must include the efficient copying of
data to/from SDRAM or KMEM; to support the protocol
method, this copying occurs in chunks of sizec = 32KB.
While both SDRAM and KMEM are cacheable, in the mes-
sage transfer context, this is irrelevant as either the chunks
will not be in cache, or if they are, must be flushed on send
or invalidated upon receive. Thus, finding an efficient mem-
ory copy and add routines for the case when the chunk is
uncached is important.

We discovered that the Solaris memory copymem-
cpy() routine performed consistently in this situation,
achieving 100–180 MB/s for large contiguous messages be-
tween SDRAM, KMEM and normal memory. It achieved
such high consistent performance by using the UltraSPARC
block load and store instructions which bypass cache.

The AP3000’s SBUS has high latency; this has a strong
impact on any scheme to optimize strided memory accesses
to/from SDRAM, as between rows there is potential to
‘lose’ the SBUS, which could result this latency being in-
curred on each row. Even for contiguous messages of size
< c, KMEM was used to send messages, being faster here
than SDRAM.

For the DBLAS library, a general matrix copy routine
MatCopy() was developed for the UltraSPARC [8]. This
is highly software pipelined to hide top-level cache misses;
thus, if the data was in level 2 cache, it would out-perform

3



A AsM 0 !0

1 !0

2 !1 !0

3 !1 !0

4 !2 !1

5 !1 !2

6 !2 !3

7 !3 !2

8 !3

9 !3

(a) Row ‘spread’ on a3� 3 grid
(b) (multiple) pipelined b/c across a1 � 4

grid

Figure 2. Multi-broadcast communication patterns

memcpy() by a factor of 2 or more. However, for un-
cached data, it ran at 120 MB/s for normal memory, and
up to a factor of 3 slower if SDRAM was used. A highly
pipelined general matrix add routineMatAdd() was also
developed; it had similar performance characteristics.

For contiguous messages or messages with long rows
(eg.�8KB), the optimal method to copy a matrix to/from
a chunk of special memory was to usememcpy() to copy
each row individually. In however the case of a small (eg.
<8KB) message send,MatCopy() would be used as it is
faster, as the source is in normal memory and likely to be in
cache.

For messages with short rows, a moderately software-
pipelined memory copy routine was found to be optimal.
Due to the high S-BUS latencies, this only achieved good
performance if the source or destination was KMEM.

For the memory add, no corresponding vendor-supplied
routine exists; however, a minimally pipelined routine was
found to significantly faster thanMatAdd() in the same
circumstancesmemcpy() out-performedMatCopy() . It
should be noted that in either case, performance was de-
graded by a factor of 2 if the destination matrix was from
SDRAM, so that KMEM is the preferred type of memory
for this operation, even if used for a subsequent send.

4.2 ‘Synchronous’ Patterns: (Multi-) Broadcast
and Reduce

The AP3000 SDRAM and KMEM memory is a precious
resource that must be shared between all parallel tasks cur-
rently executing on an AP3000 node. As it can be assumed
that all cells participating in these patterns do so at the same
time, it is possible and desirable to use a fixed number of
special memory chunks in these routines, regardless of the
total message size. Thus, the algorithms for these routines
consist of an outer loop iterating over the number of chunks,

and an inner loop iterating over the number of messages
(that the current cell is involved in).

A second principle was to initiate sends (denoted as an
’ ISend() ’ call in MPI terminology [2]) as early as the
chunk had the correct value, and to defer the corresponding
call to wait for completion (‘WaitSend() ’) only when the
chunk had to be reused (or deallocated). Similarly, the re-
ceive would be initiated (‘IRecv() ’) on a (KMEM) chunk
as soon as it was safe to start overwriting the chunk. By thus
putting the minimal constraint on when the message trans-
fer of a chunk actually occurred maximized the chance that
the transfer could be overlapped by the copy to/from other
chunks.

The tree broadcast overP cells was thus implemented
requiringnc � 4 (send) chunks to be allocated; the root
node would copy each chunk into SDRAM and post their
ISend() as soon as each copy was complete. Other nodes
postedIRecv() callsnc�1 chunks in advance, and copied
the chunks into the destination memory only after sending
that (KMEM) chunk onto its child nodes. This not only re-
duces the amount of memory copies by a factor oflg

2
P=2

but also maximizes the chance of the copies being over-
lapped with the sending of the same chunk and the receipt
of new chunks.

The tree reduce requirednc � 2 chunks for receiving
andnc chunks for sending. All non-root cells first copy their
contribution to the respective send chunk. There are less op-
portunities for overlapping here as intermediate nodes must
add each (KMEM) chunk it receives to its send chunk; only
when that completes can it be sent to its parent cell. The
root cell adds each received chunk directly into the destina-
tion matrix.

The ring multi-broadcast and reduce are implemented
using a single routine. It should be noted from Figure 2(a)
that strided messaging is needed whenever there are> P
block columns. In either case,nc � 4 send andnc receive

4



chunks were required. Here, there areP � 1 messages in-
volved with each chunk; thus this pattern has more scope
for reducing memory copies and overlapping than does the
tree broadcast or reduce, providedP > 2. For the first mes-
sage in the pattern, each cell would copy the next chunk as
it sent the current chunk to the cell on the left. In the case
of the ring multi-broadcast, when a cell received a chunk,
it would immediately post anISend() and begin copying
that chunk into its destination matrix; for the multi-reduce,
as for the reduce, theISend() had to be deferred till the
corresponding add into its (KMEM) send chunk was com-
pleted (except for theP � 1th message, where the received
chunk would be copied directly into the destination matrix).

4.3 ’Non-Synchronous’ Patterns: Buffered Point-
to-Point Send and Pipelined Broadcast

Consider the context of an application calling ScaLA-
PACK with MPI-BLACS (BLACS implemented using MPI
[1]) on the AP3000. The layered design of the BLACS, MPI
and VPPLib software has the result that data to be sent in a
message is copied several times, for different reasons:

1. to or from special memory, which can be accessed by
the MSC

2. (for a send call) to a local buffer, so that the send call is
locally blocking (guaranteed to return promptly, leav-
ing the sending user’s message space free for reuse,
whether or not the receiver has issued a receive call)

3. to pack/unpack non-contiguous data (eg. matrices)

The BLACS codes use a single copying step for purposes
2 and 3 above, but the copying to and from the AP3000
special memory is performed at a lower level, where the
software is specific to the AP3000 hardware. The routines
described here aimed to do a single copy for all three pur-
poses. This required that enough special memory be used
to buffer the entire message. Furthermore, for a matrix with
short rows, copies to/from special memory could now oc-
cur in relatively small contiguous portions (eg. 32 double
words).

We found that for a block-size (eg the number of rows of
a column-major matrix being sent) of less than 2400 bytes,
it was better to use KMEM for sending messages as well
as for receiving them; for larger blocksizes SDRAM was
used for sending, and KMEM for receiving. For block-sizes
less than 400 bytes, the moderately pipelined routine was
used for copying data to and from special memory, whereas
memcpy() was used for larger blocksizes.

For the ring broadcast, each node except the first and last
receives the message and sends it on to the next node. For
these nodes, the one routine

� receives the message into special memory (SDRAM
was found to be fastest)

� sends it on to the next node

� copies it into user memory

In this way the amount of copying of the message is further
halved, since these nodes each do a receive and a send, but
only one copy between user and special memory.

5 Performance

This section describes the performance of these commu-
nication patterns on an U170 based AP3000 of 8 nodes. The
‘synchronous patterns’ could be compared using a multi-
spread or reduce benchmark; a ping-pong benchmark was
used for the point-to-point send.

The following sections gives results for the communica-
tion bandwidth, as bandwidth improvement is objective of
our techniques. It was found that these techniques gave only
a marginal improvement in latency, primarily due to having
less software overheads, eg. procedure calls.

5.1 (Multi) Broadcast and Reduce

As previously mentioned, the multi-broadcast (Figure
2(a)) can be implemented in terms of a series of (tree)
broadcasts. Thus, it forms a suitable benchmark for a tree
broadcasts, as root-to-leaf latencies dominate the overall
time, as the source of the broadcasts changes in a round-
robin fashion at each internal stage. Similar comments ap-
ply for the reduce.

Table 1 gives the performance in MB/s of the various
‘synchronous patterns’ of Section 4.2. The multi- broad-
cast (or reduce) operation was repeated sufficiently to get
an accurate timing, with the nodes being synchronized be-
fore a timing was taken. Note that this benchmark includes
a memory copy step for each cell to initialize its portion of
the workspace (see Figure 2(a)).

Columns ‘A’ use normal VPPLibI Send/Recv()
calls to perform the corresponding patterns. Buffers of nor-
mal memory are used to reduce packing/unpacking over-
heads for the case of multiple messages [8]; thus these rou-
tines are already optimized in some sense and present a per-
formance target for our optimized routines (columns ‘B’).
1000 � Q matrices do not require strided communication;
thus forP = 2, there is little scope for the optimized rou-
tines for performance improvement. The4000� 32 matri-
ces represent messages large enough for full overlapping to
be achieved via theprotocol method; similarly, for P = 2,
the optimized routines only have the advantage of reducing
some of the buffer packing overheads. Thus, for the middle

5



Q = 2 Q = 4 Q = 8

tree ring tree ring tree ring
M �N A B A B A B A B A B A B
1000�Q 26 23 36 36 11 14 19 20 6 10 15 15
1000� 2Q 24 28 33 39 10 15 19 23 10 13 15 21
1000� 32 40 34 37 45 15 20 24 29 11 14 15 23
4000� 32 28 32 44 41 19 22 25 28 16 15 21 24
1000�Q 31 21 33 32 12 11 17 18 7 7 14 14
1000� 2Q 20 23 29 33 11 12 17 19 8 8 15 17
1000� 32 27 33 29 31 15 18 20 20 9 9 15 19
4000� 32 24 32 31 29 17 14 24 20 11 10 21 18

Table 1. Row Multi-broadcast (top rows) and reduce (bottom rows) benchmark in MB/s for M � N
double precision matrices on a 1�Q AP3000

two sizes and forP > 2, there is most scope for improve-
ment of performance by the optimized routines.

We see from Table 1 that the optimized communication
patterns generally do achieve better performance, some-
times as much as by 50%, but that overall it is not as great as
might have been expected. This is partly because of the na-
ture of AP3000’s special memory, whose copy performance
is best on large contiguous messages, and partly because the
full overlapping of the protocol method is harder to achieve
for complex communication patterns than for individual
point-to-point transfers. This is particularly the case for the
reduce operations, where adding to special memory is par-
ticularly problematic, and the order of its sub-operations are
more tightly constrained than for the broadcast.

A comparison of our pipelined broadcast with that of
MPI BLACS indicated only marginal improvement for
small messages (< 16KB), but showed a clear advanatage
for large messages. This was most marked forQ = 2

(100% faster), but the difference decreased withQ, being
27% faster atQ = 8.

5.2 Blocking Point-to-Point Send

As expected, our routines performed better than the cor-
responding BLACS routines. Both were tried using block-
sizes of 256 bytes and 4000 bytes, and for contiguous mes-
sages. The graph in Fig. 3 shows the speeds for vari-
ous message sizes. We also compared the performance of
MPI ISend() for contiguous data, which is the target per-
formance of our routine. Its performance was generally
comparable to that of our routine, although its graph was
irregular: for some message sizes it performed significantly
worse.

Preliminary results for the pipelined broadcast indicate
similar speeds were attained.

6 Conclusions

On message-passing platforms where the safety of user-
level transfers requires buffering the message (in ‘special’
memory) at both the send and receive, there is twofold
scope for the improvement of communication patterns:
firstly, to reduce extra packing overheads in the case of
strided messages, and secondly, to overlap the buffering
with the transmission of the different messages involved
in the pattern. We have shown how algorithms for such
patterns can be designed in order to achieve such improve-
ments.

On the AP3000, peculiarities in the performance of the
‘special’ memory has made difficult achieving the full po-
tential of our optimized algorithms for these communica-
tion patterns. However, substantial performance improve-
ments were observed for the tree broadcast, the ring multi-
broadcast, the pipelined broadcasts and the buffered point-
to-point send. In general, the simpler the pattern the better
the improvement, as it is easier here to get full overlapping
of the message buffering and transmission in this situation.

We expect however that the improvements are great
enough for a substantial speedup for applications such
as dense linear algebra, which intensively use these pat-
terns. Future work includes integrating our routines into
and AP3000 implementation of the BLACS, so that ScaLA-
PACK applications may use these routines. Another av-
enue would be to investigate other contemporary message-
passing platforms for the suitability of these techniques.

References

[1] J. Choi, J. J. Dongarra, S. Ostrouchov, A. P. Pe-
titet, D.W. Walker, and R.C. Whaley. The Design
and Implementation of the ScaLAPACK LU, QR and

6



0

20

40

60

80

100

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

m
es

sa
ge

 s
pe

ed
 (

M
B

/s
)

messsage size (bytes)

ping-pong point-to-point (strided) message speed 

BLACS, blocksize 256 bytes
BLACS, blocksize 4000 bytes

BLACS, contiguous data
our own routine, blocksize 256 bytes

our own routine, blocksize 4000 bytes
our own routine, contiguous data

Figure 3. Message speeds, BLACS and our routine, various blocksizes

Cholesky Factorization Routines.Scientific Program-
ming, 5:173–184, 1996.

[2] Message Passing Interface Forum. MPI: A Message
Passing Interface Standard. Technical Report TCS-94-
230, University of Tennessee Knoxville, April 1994.

[3] H. Ishihata, M. Takahashi, and H. Sato. Hardware of the
AP3000 Parallel Server.Fujitsu Scientific and Techni-
cal Journal, 33(1):24–29, 1997.

[4] P. Mitra, D. Payne, R. van de Geijn L. Shuler, and
J. Watts. Fast Collective Communication Libraries,
Please. InProceedings of the Intel Supercomputing
Users’ Group, 1995.

[5] David Sitsky and Paul Mackerras. A high-performance
message passing Library for the Fujitsu AP3000. In
Proceedings of the Eighth Parallel Computing Work-
shop, pages 245–251, Singapore, September 1998. Na-
tional University of Singapore. paper P1-E.

[6] P. E. Strazdins. A Dense Complex Symmetric Indefinite
Solver for the Fujitsu AP3000. Technical Report TR-
CS-99-01, Computer Science Dept, Australian National
University, May 1999.

[7] P.E. Strazdins. Lookahead and Algorithmic Blocking
Techniques Compared for Parallel Matrix Factoriza-
tion. In PDCN’98: 10th International Conference on

Parallel and Distributed Computing and Systems, pages
291–297, Las Vegas, September 1998. IASTED.

[8] Peter E. Strazdins. Transporting Distributed BLAS to
the Fujitsu AP3000 and VPP-300. InProceedings of
the Eighth Parallel Computing Workshop, pages 69–76,
Singapore, September 1998. School of Computing, Na-
tional University of Singapore. paper P1-E.

7


