
Portable Multi-Megapixel Camera with Real-Time
Recording and Playback

Peter Carr Richard Hartley
Australian National University and NICTA

Canberra, Australia

Abstract—We are interested in the problem of automatically
tracking football players, subject to the constraint that only
one vantage point is available. Tracking algorithms benefit from
seeing the entire playing field, as one does not have to worry
about objects entering and leaving the field of view. However,
the image of the entire field must be of sufficient resolution to
allow each of the players to be identified automatically.

To achieve this desired video data, several high definition video
cameras are used to record a football match from a single vantage
point. The cameras are oriented to cover the entire playing field,
and their images combined to create a single high-resolution video
feed. The user is able to pan and zoom in real-time within the
unified video stream while it is playing. The system is achieved
by distributing tasks across a network of computers and only
processing data that will be visible to the user.

Index Terms—mosaic; video; distributed; resolution; real-time

I. INTRODUCTION

In this work, we describe the development of a camera
system to be used for post-game analysis of football matches.
Although much work has already been done in automated
sports tracking, our approach focuses on a suitable mecha-
nism for data collection and review. Furthermore, the design
requirements and constraints for our solution were established
through consultation with the Australian Institute of Sport,
making our system practical for real-world use.

Existing commercial systems usually require an extensive
installation phase, making them difficult to transfer from site to
site. As a result, they are of limited use for teams which spend
a significant amount of time away from their home stadium.
Our solution, on the other hand, is designed to be highly
portable. In addition to being small, light-weight and quick
to set-up, we also minimize the amount of access required
to the grounds, as visiting coaching staff are usually limited
to a single vantage point from which to record the game at
opposition stadiums.

Several sports analysis systems simplify the tracking prob-
lem (at least in terms of data collection) by focusing on the
immediate action—i.e, either following the ball using pan-
tilt-zoom cameras, or using a collection of fixed cameras for
sports such as tennis [1], cricket [1] and baseball [2], where
the majority of the action is confined to a relatively small
location. However, for the recorded footage to be useful to
the coaching staff, the video must contain all players (from
both teams) at all times. Furthermore, having information on
the locations of all players at all times should improve the

robustness of any tracking algorithm. In addition, the video
sequence needs to be of sufficient quality so that players can
be recognized automatically, and that the intricate details of
one-on-one player interactions can also be reviewed.

To obtain a video recording of the entire field with suitable
image quality for both the coaching staff and automated
analysis (such as tracking the positions of the players and ball),
our work focuses on fusing data from multiple cameras into
a single multi-megapixel representation (see Figure 1). The
camera system also includes a specialized viewer to provide
the coaching staff with an intuitive interface to explore the
multi-megapixel video stream. During playback, the user is
able to pan and zoom within the stitched video sequence. As
a result, members of the coaching staff are able to observe the
strategic developments of the game when viewing the entire
field, as well as particular actions of an individual player or
group of players when necessary. Real-time performance is
achieved by distributing the playback load over a network of
computers.

A. Related Work
ProZone [3] is a commercially available solution for anal-

ysis of football matches. It requires multiple cameras placed
around the field, each manually controlled by an operator [4].
The analysis is exceptionally thorough, but takes a significant
amount of time to produce, as it is only partially automated.
Installing ProZone is a complex and expensive task, which
means the system can only be used in the stadium in which
it was set-up. Alternative systems, such as [5], [6], [7], also
rely on multiple pan-tilt-zoom cameras for input and are not
suitable for our circumstances.

A research group at KTH [4], [8], [9], [10] combined the im-
ages from four DV cameras (located at the same vantage point)
to produce a single high-resolution image of the entire football
field. However, their primary focus was on off-line tracking,
and avoided an investigation into “affordable methods to view
[the] video sequences at their maximum resolution” [4]. Our
implementation, on the other hand, directly addresses the need
to view the unified multi-megapixel video sequence.

Pintaric et al. [11] developed a 1.6 MPixel portable
panoramic video system. Their five camera system captured
a 360◦×72◦ field of view, which was mapped to the inside
of a virtual cylinder and viewed interactively using a special-
ized head-mounted display. The bandwidth requirement was
minimized by only loading the data that would be visible in



Fig. 1. The individual camera images are aligned into a common co-ordinate frame producing a unified image of the field (top). The user can pan and zoom
within the mosaiced video stream, effectively defining a region of interest within the canvas co-ordinate system (below).

the user-defined region of interest. To achieve this, a post-
processing stage was incorporated to stitch the individual video
sequences together and then spatially segment the resulting
mosaic into several smaller video streams.

Recent work at HP [12] has focused on constructing a
mosaiced high resolution image from a collection of standard
resolution cameras. However, custom FPGA hardware was
used to transfer the contents of each video stream into a
pre-allocated memory location within the single computer.
Although the work mentions the need to specialize software
for multiple cores, there is no mention of distributing tasks
over multiple processors. Moreover, the concept of a scalable
display/data access was identified as an area of future work.

Finally, the gigapixel image project at Microsoft Research
[13] produces an extremely high-resolution composite image
from many multi-megapixel images, captured from a spe-
cialized tripod. The system employs a similar panning and
zooming strategy to allow the user to switch between the
context of the full scene and arbitrary regions where intricate
details are not visible in the larger view due to down-sampling.
In their implementation, a significant amount of pre-processing

was performed to stitch the individual images into a single
mosaic. In addition, image pyramids were used to reduce the
computational and bandwidth requirements of the computer
running the viewer application. Although we also aim to
provide fluid responses to panning and zooming actions, the
methods of [13] are presently too computationally intensive
for video.

II. DESIGN

When travelling to other stadiums, the team’s technical staff
are usually only guaranteed access to a single vantage point.
Although different perspectives would help overcome occlu-
sions, a multi-perpsective system is prohibited by our design
specifications. To compensate for the monocular limitation, we
aim to record the game at a high image quality.

Our solution uses multiple static cameras located at a single
vantage point, and produces a unified image of the entire
field by registering each perspective to a common canvas co-
ordinate system (see Figure 1). In addition, our interface allows
the user to pan and zoom within the mosaiced video stream —
effectively defining a region of interest (ROI). Such a design
allows the user to switch rapidly between monitoring the entire



Server #n

Stitching Display

User Input for 

Pan/Zoom

Record to Disk

Image ProcessorCamera #1

Frame Buffer

Image ProcessorCamera #2

Frame Buffer

Image ProcessorCamera #n

Frame Buffer

Server #1

Server #2

Client

Record to Disk

Record to Disk

Fig. 2. Each camera is augmented with a dedicated computer to record the captured frames, as well as managing playback bandwidth. The ‘image processing’
module crops and resamples each frame (with parameter values depending on the current user-defined region of interest on the canvas). Dark lines represent
the flow of video data, and lighter lines represent control signals.

field and/or individuals or groups of players. The recording and
playback load is distributed over a network of computers (see
Figure 2) and controlled from a single machine.

Like Pintaric et al. [11], our implementation makes efficient
use of bandwidth by only transmitting the video streams which
are visible in the user-defined region of interest. Whereas
Pintaric et al. incorporated a post-processing step to sub-divide
the video stream into spatial blocks, we incorporate a computer
to manage each video stream, and crop the full frame images
in real time. The advantage of this method is that is allows
for greater bandwidth efficiency, as the required image sub-
region to transmit is determined to the nearest pixel, and not
the nearest block.

As the user-defined region of interest grows to encompass
a wider view of the field, the resolution at which each
camera image is displayed on the screen decreases. Kopf et
al. [13] also handle changing region of interest scales, but
their methodology is quite different from ours. Since they
are dealing with a single image, a reasonable amount of off-
line pre-processing can be invested to accelerate the on-line
experience. For instance, their system pre-computes tiled im-
age pyramids, and the viewing application only extracts pixels
from the appropriate pyramid image level when generating the

region of interest image. We, however, avoid image pyramids
and instead dynamically resample the cropped video frame to
match the desired display resolution.

A significant feature of our design is that the required band-
width is primarily dependent on the output screen resolution
(1440 × 900 in our case) — not the number of cameras.
Although bandwidth requirements will grow as image overlap
increases, our design easily incorporates additional cameras
without requiring significant changes to the underlying infras-
tructure.

III. HARDWARE IMPLEMENTATION

A regular DV camera (720×480 pixels) was deemed to have
sufficient image quality if the operator were allowed to pan,
tilt and zoom the camera to follow a player. An HD camera
(1920×1080 pixels) with a wide lens covering approximately
80% of the field (essentially observing all players except
for the two goaltenders) provided suitable resolution for the
coaching staff, but lacked sufficient resolution to estimate the
identity of a player using standard computer vision methods
(from either biometric features or the number on their jersey
[14]). Our approach combines the data from six static HD
cameras arranged to record the enitre field at a relatively



Fig. 3. Six cameras are used to record the game from the same vantage point. Camera poses were chosen to produce consistent spatial resolution across
the playing surface. Each pose is illustrated by projecting the resulting camera frustum onto a model of the playing surface.

consistent spatial resolution (see Figure 3). Two cameras with
short lenses are used to cover the front-half of the field,
with the far side covered by four long lens cameras. The
cameras are placed close together in an effort to minimize
the distances between the centres of projection, which should
reduce parallax artifacts when combining the different images.

HDV cameras are used to film the games, as they provide
an appropriate compromise between image quality and cost.
Although not true high-definition (the format is recorded in an
anamorphic 1440×1080 format, and then stretched to 1920×
1080 during playback [15]), the cameras still produce an image
quality superior to regular DV at a minimal cost increase.

Although portability is an important aspect of the design
requirements, our implementation also needs to operate within
a reasonably quick-turnaround time. To avoid the lengthy off-
line process of transferring taped video to disk, we record
directly to computer hard drives. We maintain portability
by using Apple’s Mac Mini1 computers, as they are quite
small, cheap and contain sufficient processing power for our
recording and playback needs. A standard Gigabit ethernet
switch is used to connect the computers together.

Finally, an Apple MacBook Pro2 with a screen resolution
of 1440× 900 is used as the central controlling machine, and
each Mac Mini is configured for remote administration. To
enable OpenGL acceleration, dummy monitor connectors are

12.0 GHz Intel Core 2 Duo, 2 GB RAM, Intel GMA 950
22.2 GHz Intel Core 2 Duo, 2 GB RAM, NVIDIA GeForce 8600M GT

attached to each Mac Mini.

IV. SOFTWARE IMPLEMENTATION

Playback is managed through two separate software ap-
plications. The ‘server’ component is installed on each Mac
Mini and controls access to each camera feed. The ‘client’
application is installed on the MacBook Pro, and is controlled
by the user.

A. Image Processing
Image resampling is a major aspect of both applications’

operation, and needs to be conducted efficiently to maximize
system performance. As a result, our software implementa-
tion makes use of two accelerated image processing libraries
included in OSX 10.4:

• Core Image [16] provides an API for common graphics
processing unit (GPU) accelerated image operations, such
as scaling, cropping and perspective transforms. Although
the GPU is optimized for displaying results to the screen
(as it has direct access to video memory), it is possible
to leverage the GPU to accelerate image processing
operations and transfer the results back to main memory
[17]. However, there is usually a significant performance
overhead obtaining the results from the GPU.

• Alternatively, vImage [18] implements vectorized ver-
sions of common image operations. Unlike Core Image,



vImage works in the same memory space as the CPU.
Although there is still a minor overhead moving data
to and from the registers in the vector processing unit
(VPU), this is usually minimal relative to the time it
takes to perform the actual image processing operations.
Furthermore, the framework allows the image to be bro-
ken up into blocks and processed in parallel on multiple
threads, if multiple processors and/or cores exist.

B. Server
Each Mac Mini is responsible for extracting a region of

interest from its recorded video file and resampling it to the
requested output resolution. Once this operation is complete,
the data is transmitted to the central controlling computer (see
Figure 4).

Crop Resample Compress

Image Processor

Fig. 4. Each server is responsible for transmitting the current video frame to
the client. To conserve bandwidth, the portions of the image lying beyond the
current region of interest in the canvas are cropped from the video frame. The
resulting image is also resampled (downwards only) to match the resolution
at which it will be displayed on the screen. Finally, the 24-bit RGB triplet is
compressed into the 16-bit RGB 565 format.

Resampling: As mentioned previously, there are multiple
ways to resample an image eficiently in OSX 10.4. Since the
client application needs to send the resampled image over the
network, GPU accelerated methods (if employed) will need to
read the results back to main memory.

The integrated Intel GMA950 chipset on the Mac Mini (or
the driver for it) appears to be optimised for synchronous data
transfer between the GPU and CPU. Average throughput using
OpenGL’s synchronous transfer command glReadPixels() is
approximately 40 MPixels/sec, whereas the equivalent asyn-
chronous operation glGetTexImage() is only 7 MPixels/sec.
Although glReadPixels() achieves greater performance, the
operation blocks the current thread execution. To overcome
this problem, we run the OpenGL operations on a separate
dedicated thread.

Although the GPU may be faster for large images, the
overhead to transfer data between video memory and main
memory may make it slower than a VPU implementation
for smaller images. To achieve maximum performance, we
use both implementations and invoke the appropriate method
depending on the current requested region of interest and video
size (see Figure 5). The most intensive situation occurs when
the entire 1920 × 1080 video frame needs to be resampled
to 1440 × 810 to fill the screen of the central computer .
Fortunately, the native anamorphic signal reduces the input
to 1440 × 1080 (1.48 MPixels), and output to 1080 × 810
(0.83 MPixels), which takes approximately 30 ms on the Mac
Minis.

0

5

10

15

20

25

30

35

40

0.0 0.2 0.4 0.6 0.8 1.0

Resampled Size (MPixels)

T
im

e
 (

m
s
)

GPU

VPU

Fig. 5. Performance resampling a 1.48 MPixel image using the VPU and
GPU. The overhead of reading data from the GPU is evident for smaller
image sizes.

As Figure 5 illustrates, above 0.6 MPixels both methods
have comparable performance. However, the VPU method
consumes a significant portion of the total available computing
resources. Off-loading the image processing tasks to the GPU,
even if marginally slower, leaves the CPU available for other
tasks (such as managing data transmission and responding
to requests from the central controlling computer for new
cropping and resampling settings).

Compression: Before the resampled image is transmitted,
the 24 bit pixels are down-sampled to 16 bits (5 bits for red, 6
for green and 5 for blue) using the vImage framework, since
the bandwidth of gigabit ethernet is insufficient to send more
than 1.67 MPixels at 25 fps (and 3 bytes/pixel). In most cases,
the cameras will overlap to some degree, which means that
data for certain display pixels will be sent more than once
(as the central computer decides which pixel data to display
based on the user-defined layer order). As such, it is important
to have sufficient bandwidth to transmit more than the final
display screen resolution. Reducing to 16 bit pixels allows up
to 2.5 MPixels to be transmitted for each frame.

In the worst case scenario, compressing a 1080×810 image,
the Mac Mini takes approximately 5 ms to compress the
image.

Recording: The HDV format encodes information in
MPEG2 in order to maintain the same data rate as DV [15].
The downsides of this codec are that the decoding process
is CPU intensive and temporal compression is employed. In
our implementation, the user is given control over playback,
and is able to jump to any frame in the image sequence
(giving the coaching staff the ability to stop, rewind, play
in slow motion, etc., for reviewing particular moments of the
game). Therefore, we incorporate an off-line transcoding stage
to convert to Apple’s intermediate codec [15]. This codec
provides a suitable trade-off between file size and decoding
complexity, and does not incorporate temporal compression.
As a result, it is well suited for playback from any point in a



file, unlike MPEG2. The Mac Minis are able to perform the
transcoding stage slightly faster than real-time (∼ 0.9×).

C. Client
The client’s two main tasks are to produce the appropriate

portion of the unified view of the football field and update the
transmission requirements of each video server when the user
specifies a new region of interest (see Figure 7). Generating
the consolidated view of the field requires aligning and colour
correcting a set of synchronized frames from the individual
video feeds (see Figure 1).

Decompress
Affine

Transform
Enqueue

Frame Buffer

Stitching

Colour

Correction

Perspective

Transform

Source Over

Composite

Colour

Correction

Perspective

Transform

Source Over

Composite

Colour

Correction

Perspective

Transform

Source Over

Composite

Fig. 7. The central controlling computer manages a frame buffer for each
camera. As data is received, the 16-bit RGB 565 pixels are upsampled to
32-bit ARGB and transferred to the graphics processing unit. The pixels are
then translated and scaled to occupy the region of the video frame from which
they were originally extracted by the server. Finally, the frame is inserted into
the appropriate position within the frame buffer.

At each screen refresh, the client extracts the appropriate image from
each frame buffer. The images are colour corrected and warped using the
estimated homographies. Finally, the composite image is produced by layering
the images in a particular order (specified by the user during the set-up phase).

Homography Estimation: As video sources are discov-
ered by the central machine, the user is prompted to assist
in estimating the inter-camera homographies between the new
camera and the previously registered ones. For a given pair
of cameras, the controlling computer requests each camera to
send its image in full resolution. The user is then asked to
identify point correspondences on the ground planes in both
images. When a suitable number of points have been defined,
the homography is estimated using the direct linear transform
[19]. Since no inter-camera homography can be established
for the first camera, the co-ordinate system of that perspective
is used to define the co-ordinate system of the canvas.

Compositing: The Core Image framework is leveraged to
provide real-time compositing of the individual video feeds.
At each screen refresh, the appropriate image from each frame
buffer is colour corrected using an affine transformation [20]

(with user defined parameters) and warped to its appropriate
convex quadrilateral on the canvas using the previously de-
scribed homography. The individual images are sequentially
added to the canvas using the simple “source over” composit-
ing method. Finally, the currently viewed region of the canvas
is extracted and drawn to the screen.

Frame Buffer: In addition to the RGB 565 pixel data,
each Mac Mini also encapsulates the region of interest (relative
to the full camera frame) to which this pixel data belongs, as
well as a local timestamp indicating when this frame should
be displayed. The pixels are up-sampled to ARGB 8888 using
vImage, and transferred to the GPU’s video memory. The
pixels are then scaled and translated using a GPU accelerated
affine transformation to occupy the proper region of interest
in the camera’s local co-ordinate system. Finally, the frame
is inserted into the appropriate location of the frame buffer
(queued based on display time).

Synchronization: Since each camera is capturing at 25
fps, driven by its own internal clock, the timestamp assigned
to each frame (essentially the frame number) will not be
consistent across all cameras. Before playback can begin,
the user is requested to specify the relative temporal offsets
between the video files on each server. The client manages its
own playback clock, which ensures the screen refreshes at 25
fps. The relative temporal offsets between the canvas clock and
each video feed are then used to extract the appropriate frame
from each frame buffer, as the frame buffers are temporally
aligned to the original clock signal of the cameras.

Bandwidth Management: Given the user’s current region
of interest in the canvas, the client software calculates the sub-
region visible in each camera by warping the bounds of the
region of interest into the co-ordinate system of each camera
using the inverse homography (see Figure 6). The bounding
box of the resulting convex quadrilateral represents the re-
quired sub-region needed from that particular video source.
The required display size of each camera is then approximated
using the bounding box of the convex quadrilateral mapped
back in the canvas co-ordinate system. As the user pans and
zooms in the mosaiced image, the image requirements are
revised and transmitted to the appropriate server.

V. CONCLUSIONS

We developed a prototoype camera system for post-game
football analysis from a single vantage point. Our solution
does not compromise on the design constraints of portability or
cost. To achieve image quality suitable for both qualitative and
quantitative analysis, our system fuses the data from multiple
camera located at the same vantage point. Real-time playback
is achieved by distributing the playback load across a network
of computers. Along with being able to handle a variable
number of cameras, our implementation provides an intuitive
viewer to explore the multi-megapixel video stream. As a
result, the coaching staff are able to monitor the development
of the game over the entire field, as well as reviewing specific
one-on-one player interactions.



Fig. 6. The region of interest within the canvas (top) is mapped into each camera’s local co-ordinate system (bottom) using the inverse homography (mapping
results shown in red). The bounding box of the resulting quadrilateral (white lines) defines the pixels that need to be transmitted. Dark regions of the images
are not transmitted.

The current prototype requires the user to specify corre-
spondences between pairs of cameras, as well as the pa-
rameters for colour correction and temporal alignment. We
plan to investigate methods for estimating these parameters
automatically. Furthermore, a significant amount of bandwidth
is presently devoted to transmitting background. With more
powerful serving computers, one could extract the players and
ball from the video and only transmit the foreground data.

Acknowledgements

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

REFERENCES

[1] Hawk-Eye Innovations Ltd., Winchester, UK.
[2] A. Guéziec, “Tracking pitches for broadcast television,” Computer,

vol. 35, no. 3, pp. 38–43, March 2002.
[3] ProZone Sports Ltd., Leeds, UK.
[4] V. Lumikero, “Football tracking in wide-screen video sequences,”

Master’s thesis, School of Electrical Engineering, Royal Institute of
Technology, KTH, Stockholm, Sweden, 2004.

[5] LiberoVision Inc., Zurich, Switzerland.
[6] S. Gedikli, J. Bandouch, N. von Hoyningen-Huene, B. Kirchlechner, and

M. Beetz, “An adaptive vision system for tracking soccer players from
variable camera settings,” in ICCV, 2007.

[7] J. B. Hayet, T. Mathes, J. Czyz, J. Piater, J. Verly, and B. Macq, “A
modular multi-camera framework for team sports tracking,” in IEEE
Conference on Advanced Video and Signal Based Surveillance, 2005.

[8] D. Setterwall, “Computerised video analysis of football — technical and
commercial possibilities for football coaching,” Master’s thesis, Depart-
ment of Numerical Analysis and Computer Science, KTH, Stockholm,
Sweden, 2003.

[9] J. Sullivan and S. Carlsson, “Tracking and labelling of ineracting
multiple targets,” in ECCV, vol. III, 2006, pp. 619–632.

[10] P. Nillius, J. Sullivan, and S. Carlsson, “Multi-target tracking — linking
identities using bayesian network inference,” in CVPR, 2006.

[11] T. Pintaric, U. Neumann, and A. Rizzo, “Immersive panoramic video,”
in ACM Multimedia, 2000.

[12] D. Tanguay, H. H. Baker, and D. Gelb, “Achieving high-resolution
video using scalable capture, processing and display,” in International
Conference on Computer Vision Theory and Applications, 2006.

[13] J. Kopf, M. Uyttendaele, O. Deussen, and M. Cohen, “Capturing and
viewing gigapixel images,” in ACM SIGGRAPH, vol. 26, no. 3, 2007.

[14] Q. Ye, Q. Huang, S. Jiang, Y. Liu, and W. Gao, “Jersey number
detection in sports video for athlete identification,” in SPIE Visual
Communications and Image Processing, 2005.

[15] “About HDV and the Apple Intermediate Codec,” Apple Inc., Cupertino,
CA, USA, 2005.

[16] “Core Image Programming Guide,” Apple Inc., Cupertino, CA, USA,
2007.

[17] “OpenGL Performance Optimization: The Basics,” Apple Inc., Cuper-
tino, CA, USA, Technical Note TN2093, 2004.

[18] “vImage Programming Guide,” Apple Inc., Cupertino, CA, USA, 2007.
[19] R. Hartley and A. Zisserman, Multiple View Geometry in Computer

Vision. Oxford University Press, 2003.
[20] G. Y. Tian, D. Gledhill, D. Taylor, and D. Clarke, “Colour correction for

panoramic imaging,” in IEEE Conference on Information Visualisation,
2002.


