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Abstract—Approximate solutions to labelling problems can be
found using binary graph cuts and either the α-expansion or
α− β swap algorithms. In some specific cases, an exact solution
can be computed by constructing a multilabel graph. However, in
many practical applications the multilabel graph construction is
infeasible due to its excessively large memory requirements. In
this work, we expand the concept of α − β swap to consider
larger sets of labels at each iteration, and demonstrate how
this approach is able to produce good approximate solutions
to problems which can be solved using multilabel graph cuts.
Furthermore, we show how α-expansion is a special case of
multilabel swap, and from this new formulation, illustrate how α-
expansion is now able to handle binary energy functions which
do not satisfy the triangle inequality. Compared to α-β swap,
multilabel swap is able to produce an approximate solution in
a shorter amount of time. We demonstrate the merits of our
approach by considering the denoising and stereo problems.
We illustrate how multilabel swap can be used in a recursive
fashion to produce a good solution quickly and without requiring
excessive amounts of memory.

Index Terms—graph cuts; optimization; labelling; Markov
Random Field;

I. INTRODUCTION

In this work we are concerned with algorithms for solving
labelling problems, where one is given a set of variables
X = {X1, X2, . . . Xn} and must assign each variable a
label xi from a set of ! + 1 labels L = {0, 1, 2, . . . , !}. In
computer vision applications, the labelling problem is often
treated within the context of a Markov Random Field; mainly
because images tend to have inherent spatial relations — i.e.,
neighbouring pixels usually have the same label. Previous
work [1] has demonstrated how the MRF formulation is quite
useful for problems such as stereo, image enhancement and
segmentation.

Roof dual [2] is able to solve a binary labelling problem in
an efficient manner. However, in general, there is no guarantee
that the algorithm will assign every variable a label. When
this occurs, one can use the probe or improve [3] extensions
to obtain a complete labelling which is respectively optimal
or approximate. However, if the problem is submodular (or
more correctly, if the problem can be made submodular by
complementing some binary variables), roof dual will produce
a label for each variable without needing the probe or improve
extensions.

When the label set contains more than two labels, move-
based algorithms such as α-expansion and α−β swap [1] can
be used to find an approximate solution. If a decision about

each variable is required (i.e., the binary move problem must
be submodular), each algorithm has restrictions on the types
of energy functions it can handle — in particular, according to
[1], α-expansion requires the binary energy terms to satisfy the
triangle inequality. It is a surprising outcome of this paper that
α-expansion can also handle convex functions, which certainly
do not satisfy the triangle inequality.

Alternatively, instead of using move algorithms, one can
encode a multilabel problem using a series of binary variables
[4]. If the multilabel problem is submodular, an exact solution
can be recovered [5], [6], [7]. Generally, one is only guaranteed
to obtain a permissible sub-range of labels for each variable
(where the sub-range could be the entire label set). Again, the
extensions probe and improve can be used to identify a single
label for each variable. Although multilabel constructions have
useful optimality properties, the approach is rarely used in
practice. For a typical vision problem, the required computing
resources for multilabel graphs usually exceed the capabilities
of the computer.

Finally, we note that there are many other algorithms for
estimating the optimal configuration(s) of an MRF. However,
as Szeliski et al. [8] demonstrated, algorithms based on max-
flow perform particularly well for vision problems. As a result,
we will focus solely on these methods.

A. Contributions

We present the ‘multilabel swap’ algorithm as a suitable
compromise between the optimality properties of multilabel
encodings and the minimal memory requirements of move
algorithms. For convenience, we will focus on submodular
problems, but emphasize that this is not a necessary require-
ment of multilabel swap.

We explain how multilabel swap can be implemented using
different strategies, and focus on a new iterative refinement
scheme. Although the method operates in an iterative fashion,
unlike α-expansion or α-β swap, it does not move from one
configuration to the next. Instead, multiple restrictions of the
energy function are considered, and each is minimized. The
quality of the solution, speed of the algorithm, and its memory
requirements are all dependent on the restrictions. A larger
restriction results in a smaller multilabel graph and lower
memory requirements. However, the explored state space is
also smaller, which means more iterations may be necessary
to find a good solution.



We show how α-expansion and α-β swap correspond to
particular strategies of the multilabel swap algorithm. Here,
however, α-expansion uses a new encoding to indicate whether
a variable should switch to the label α. This new scheme
permits the algorithm to handle some functions which do not
satisfy the triangle inequality; a situation that had previously
been deemed infeasible [1]. Specifically, our algorithm applies
to functions that satisfy an ordered “reverse triangle inequal-
ity”, and, in particular, it works for pairwise functions of label
difference which are convex.

In vision applications, labelling problems with large label
sets are usually discrete approximations to continuous op-
timization problems. We consider the denoising and stereo
scenarios, and show how restrictions in the continuous domain
can be applied in an iterative fashion. Although the conditions
for an optimality guarantee are quite stringent, our experiments
illustrate how multilabel swap is able to outperform α-β swap
in terms of speed as well as producing an equal, if not better,
solution while maintaining reasonable memory requirements.

II. BACKGROUND

The most probable labelling x! of an MRF corresponds to
the configuration with the minimum potential energy [9]. In a
second-order MRF, the energy function E : Ln → R∪{+∞}
is a summation over cliques of size one (individual pixels) and
two (pairs of neighbouring pixels):

E(x) =
∑

i∈C1

Ei(xi) +
∑

(i,j)∈C2

Eij(xi, xj) (1)

A. Binary Graph Cuts
When the variables X take binary values, the energy

function (1) is a quadratic pseudo-boolean function E :
Bn → R ∪ {+∞}. Boykov et al. [1] demonstrated how
the global minimum of certain pseudo-boolean functions can
be found in polynomial time using the max-flow algorithm.
The approach expresses the labelling problem as a directed
graph G = (V,W) with vertices V corresponding to variables
Xi and edge weights W to terms in the energy function
(1), such that the energy of a configuration x is equal to
the cost of a corresponding cut of the graph. The max-flow
algorithm is used to find the minimum cut of the graph, which
corresponds to a minimum configuration x! of E(x). The
max-flow algorithm requires a graph with non-negative edge
weights, which means all quadratic terms must be submodular
[10]:

Eij(0, 0) + Eij(1, 1) ≤ Eij(0, 1) + Eij(1, 0) (2)
for all i, j ∈ P

B. Move Algorithms
Binary graph cuts can be employed to minimize a multilabel

energy function by formulating the optimization strategy in
terms of binary decisions. Boykov et al. [1] proposed two
‘move’ algorithms which start at a configuration x and try to
find a labelling x′ with a lower energy. Neither is guaranteed to
find an optimal solution, but both do quite well in practice. The

binary graphs used in each iteration of either algorithm must
be submodular [11]. In α-expansion, the decision is whether
a variable should take the label α:

Eij(α,α) + Eij(xi, xj) ≤ Eij(xi, α) + Eij(α, xj) (3)
for all α, xi, xj ∈ L

for all i, j ∈ P | {xi, xj} '= α

In α-β swap, the decision is whether the variables labelled
α or β should change their labels to β or α respectively:

Eij(α,α) + Eij(β,β) ≤ Eij(α,β) + Eij(β,α) (4)
for all α,β ∈ L

for all i, j ∈ P | {xi, xj} ∈{ α,β}

C. Multilabel Graph Cuts

The max-flow algorithm can be used to compute the optimal
labelling of a multilabel function if all multilabel variables can
be represented using a set of binary variables, and the resulting
pseudo-boolean function is representable as a valid flow graph.

Previous work [5], [6], [7] has already addressed this prob-
lem. Although each presents a slightly different methodology,
the results are equivalent. Since the details are available else-
where, we only provide an overview of the graph construction
here; mainly to establish consistent terminology for explaining
our multilabel swap algorithm.

Each multilabel variable Xi is encoded using ! binary
variables:

Xi ≡ {Z0
i , Z1

i , Z2
i , . . . , Z"−1

i } (5)

where a binary variable Zp
i represents the condition xi ≤ p.

There is an implicit restriction that all binary variables Z0
i

through Zp−1
i must be equal to zero, while the remaining Zp

i
to Z"−1

i must be equal to one. Fortunately, this constraint can
be realized in a graphical representation.

Each binary variable Zp
i is represented as a vertex in the

graph. For a given multilabel variable Xi, we will refer to its
set of binary variables (5) as a chain. Each chain is connected
to the source and sink (see Figure 1), which permits !+1 pairs
of forwards and reverse intra-chain edges. Therefore, one can
associate assigning the label p to Xi with the edge from Zp−1

i
to Zp

i (where the first boundary condition, −1, refers to the
source and the second, ! + 1, to the sink). To ensure that Xi

can only take one state at any given time — i.e., the restriction
that Z0

i through Zp−1
i are zero and Zp

i to Z"−1
i are one —

the edges in the reverse direction are assigned infinite weight.
Edge Weights Since there is a direct correspondence be-

tween states of Xi and forwards intra-chain edges, one can
define these edge weights as:

wp−1,p
i = Ei(p) (6)

Although there are alternative mappings [6], [7], the graphs
are functionally equivalent, and each can be “reparametrized”
[10] into the other form.



Fig. 1. The above graph represents a pair of multilabel variables Xi and Xj

which are assigned a label from L4 = {0, 1, 2, 3}. An edge from Zp−1
i to Zp

i
represents Xi = p. Each chain is connected in reverse with infinite constraint
edges (shown in red) to ensure only one state of Xi can be represented in any
min-cut/max-flow partition. Every vertex in a particular chain is connected to
all other vertices of neighbouring chains. The boundary effects of this pattern
connect vertices in the middle of a chain directly to the source or sink. The
graph can be simplified via re-weighting, but we leave it in this form for
clarity.

The binary terms Eij(p, q) produce inter-chain edges which
connect vertices between chains corresponding to neighbour-
ing variables:

wpq
ij = Eij(p + 1, q) + Eij(p, q + 1)

−Eij(p, q)− Eij(p + 1, q + 1)
(7)

Conditions As before, the max-flow algorithm requires
non-negative edge weights. If an intra-chain edge weight is
negative, it can be made positive by pushing flow along the
chain. However, it is impossible to conduct a similar re-
weighting to the inter-chain edges. The positivity of these edge
weights is determined by the binary terms Eij(xi, xj) alone.
Therefore, to ensure a valid flow graph, the pairwise function
must satisfy the multilabel submodularity condition:

Eij(xi, xj) + Eij(xi+1, xj +1) ≤
Eij(xi, xj +1) + Eij(xi+1, xj)

(8)

for all xi, xj ∈ L and all i, j ∈ P

When Eij(xi, xj) depends only on the difference in labels,
(8) simplifies to the condition that the second difference of
the function must always be non-negative. Equivalently, the
function must be convex [5].

Graph Size For an n×m lattice with cliques of two and a
label set of !+1 labels, the above graph construction requires
n×m×! vertices, and potentially !2[n×(m−1)+m×(n−1)]
non-zero edges between vertices. We neglect edges between
each vertex and the source and sink terminals, as these can be
represented efficiently within the vertex structure.

III. MULTILABEL SWAP

The multilabel swap algorithm is based on regular mul-
tilabel graph cuts. The difference is that multilabel swap is
defined over a smaller set of labels, which means the memory
requirements are much lower. Each iteration of the algorithm
begins by identifying a subset Li ⊆ L of permissible labels for
each variable Xi. A smaller multilabel graph representing the
restricted energy function is then constructed and its minimum
configuration found using max-flow. The process is repeated
several times, with each iteration using a different set of
permissible labels. The best estimate x̂ of the optimal con-
figuration corresponds to the solution of the iteration having
the lowest energy.

Related Work Our multilabel swap method shares similari-
ties with Boykov et al.’s α−β swap [1], Veksler’s α−β range
[12] and Zureiki et al.’s reduced graphs [13]. Unlike α − β
swap, multilabel swap considers subsets of two or more labels.
Moreover, in multilabel swap, a different subset of labels
can be selected for each variable. Furthermore, unlike the
α− β range algorithm, the subsets selected for any particular
iteration of multilabel swap do not have to correspond to
a sub-range of labels, nor do the sizes of the subsets have
to be identical for all variables. For example, if the original
problem contained sixteen labels L = {0, 1, 2, . . . , 15}, then
in a particular iteration, the variable Xi could be restricted to
a sub-range Li = {4, 5, . . . , 12} and its immediate neighbour
Xj restricted to the subset Lj = {0, 5, 8, 11}. In α− β swap,
the selected subset of two labels is identical for every pixel in
the image.

Zureiki et al. [13] employ a similar approach, but their
method requires the smoothness function to be the distance
metric — i.e., Eij(xi, xj) = λij |xi − xj |. Each label set
Li is determined by finding the N labels which produce the
lowest evaluations of the individual unary functions Ei(p)
in isolation. A multilabel graph is then constructed using
the restricted label set for each variable and defining new
mappings between terms of the energy function and weights
of the edges in the multilabel graph. In constrast, multilabel
swap is able to handle any energy function which satisfies (8)
— not just the distance metric. Our algorithm achieves this
generalization by starting with the complete multilabel graph
and producing a smaller graph by propagating the implications
of each restriction.

LogCut [14] estimates an optimal labelling by determining
the individual bit values in the integer representations of the
labels. The bit values are estimated in sequential fashion from
most significant to least significant bit. When estimating the
nth bit, the previous n−1 bits have already been determined,
and the remaining n + 1 . . . +log2 !, bits are temporarily
assigned values using a variety of different methods. The
algorithm employs roof dual and its extensions to estimate
the optimal nth bit labelling. For increased robustness, the
algorithm applies shifts to the labels (essentially changing the
bit ordering) and repeats the optimization process.

Very recently (while our multilabel swap algorithm was



being refined), Gould et al. proposed “Alphabet SOUP” [15],
an algorithm which employs a similar idea of minimizing
a series of restricted energy functions. The strategy uses
message passing to solve each restricted problem, since the
authors claim energy functions used in higher level image
reasoning are typically not submodular nor limited to pairwise
interactions. The authors do state that a max-flow based
optimization strategy could be used. However, since message
passing algorithms do not place conditions on the types of
functions that can be minimized, Gould et al. did not consider
whether the restriction of a submodular function remains
submodular. This observation is quite important if a max-flow
or roof dual optimization strategy is to be employed.

We will now formally describe our definition of a restriction
and show how this leads to a simplified multilabel graph.

Algebraic Restriction Each iteration of multilabel swap
identifies a subset of labels Li for each variable Xi. We refer
to the collection of these subsets as the permissible set R =
{L0,L1,L2, . . . } of configurations. A restriction ER(x) of
the energy function to the set of permissible configurations R
is defined as:

ER(x) =

{
E(x) if xi ∈ Li for all i

∞ otherwise
(9)

In general, the original energy function E(x) may have
more than one minimal configuration. To handle this situation,
we refer to the set of minimizers {x!} = {x!

0,x!
1,x!

2, . . . },
where x!

i is a labelling with minimum energy. If the entire set
of minimizers is contained within the restricted domain R,
then the minimization of the restricted function is identical to
the minimization of the unrestricted function.

arg min
x

E(x) = arg min
x

ER(x) (10)

for all x ∈ Ln where {x!} ∈ R

If multiple minima exist, usually one is only concerned
with finding a solution. Therefore, as long as the restriction R
does not exclude the entire set {x!}, the minimization of the
restricted function ER(x) will produce an optimal solution to
the original problem.

Graphical Restriction In any iteration of multilabel swap,
a restriction of the original function is produced by selecting
a subset of labels Li ⊆ L for every multilabel variable Xi.
If a particular label p is not within the restricted subset Li,
the restricted energy function (9) evaluates to infinity for any
configuration x where xi = p.

A restriction of the energy function (1) can be achieved
by imposing a similar restriction on the the unary functions
Ei(xi). In this example, the unary function is redefined such
that ER

i (p) = ∞ for any label p /∈ Li. Realizing the restriction
through the unary terms ensures the restricted function remains
submodular (8), since the binary terms Eij(xi, xj) remain
unaltered.

The restriction is implemented graphically by adding an
edge with infinite weight from Zp−1

i to Zp
i (see Figure 2a).

Since vertices Zp−1
i and Zp

i are now connected with infinite

capacity in both directions, one of the vertices can be removed
from the graph without affecting the flow. Generally, the
choice of which vertex to remove is arbitrary. However, if one
of the vertices corresponds to either the source or sink, the
other vertex must be removed. In this example, we arbitrarily
select Zp−1

i as the vertex to eliminate. To remove the vertex
from the graph, any edges originating from or terminating at
Zp−1

i must be redirected to Zp
i (see Figure 2b).

(a) (b)
Fig. 2. A restricted function is realized by setting the weight associated with
a disallowed label to infinity and then removing the corresponding vertex. In
this example, variable Xi is not allowed to take label p. An edge with infinite
weight, as shown in (a), is added from Zp−1

i to Zp
i . As illustrated in (b),

edges originating from Zp−1
i now emanate from Zp

i . Similarly, edges which
terminated at Zp−1

i are now incident on Zp
i . If an edge already exists in the

new location, the weight of the redirected edge is added to the existing edge.

The above process can be repeated for every disallowed
label associated with each multilabel variable. The resulting
graph will have |Li| − 1 binary vertices for each multilabel
variable Xi, and (|Li|− 1)× (|Lj |− 1) edges between each
pair of multilabel variables. If the subsets of labels are suitably
small for each variable, the graph of the restricted function
will fit within the memory capabilities of current mainstream
computers.

Optimality If the restriction to a specific subset of possible
configurations xR does not exclude all of the minimizers {x!}
of the original unrestricted function, then an optimal labelling
of the restricted problem will correspond to a solution of
the unrestricted problem (10). However, without knowing the
solutions to the original problem, it is impossible to determine
whether an arbitrary restriction excludes the entire set of
optimal configurations {x!}. As a result, like α− β swap, it
is impossible to guarantee the performance of the algorithm.



A. Strategies

The quality of the solution and the speed at which it
is acquired will be dependent on the size and number of
restrictions, as well as the underlying characteristics of the
energy function. Here, we provide a list of possible strategies
which may be useful for certain vision problems:

Data Priority A natural approach is to neglect the pairwise
terms and optimize each unary Ei(xi) term individually.
This configuration can then be used as a starting point for
generating restrictions. In each swapping iteration, one could
select a subset of labels centred around the minima of Ei(p), as
well as labels corresponding to the minima of its neighbours
(since most vision models assume neighbouring pixels have
similar values). The process would then continue in an iterative
fashion using labels clustered around xi and xj .

Model Priority Alternatively, one could down-play the
importance of the unary terms and conduct a sparse sampling
of the solution space. In this coarse to fine strategy, an initial
restriction is applied to the set of labels such that only every
nth label is considered. One can then consider a finer (yet
possibly still relatively coarse) sampling around the best label
for each Xi. We refer to this method as ‘iterative multilabel
swap’ and will discuss it in detail in the following section.

Alpha-Beta Swap The α-β swap algorithm identifies two
labels α and β for the entire image and allows any variable
labelled either α or β the opportunity to switch its label.
If a particular variable Xi is not labelled α or β, it retains
its original label xi. The same result can be achieved in a
multilabel graph by defining the permissible label set for each
variable as:

Li =

{
{xi} if the current xi /∈ {α,β}
{α,β} otherwise.

(11)

Alpha-Expansion α-expansion is also a specific case of our
multilabel swap framework. We define the permissible label
set for each variable as:

Li = {α, xi} where xi is the current label. (12)

This allows a choice of α or the current label xi at each
variable Xi. Our general multilabel swap algorithm will solve
the minimization problem that arises.

As we mentioned earlier, α-expansion is commonly believed
[1] to require the triangle inequality:

Eij(α,α) + Eij(xi, xj) ≤ Eij(xi, α) + Eij(α, xj) (3)

Cost functions Eij(xi, xj) = fij(|xi − xj |) when fij(·) is
convex do not satisfy this requirement. However, convexity is
required for multilabel graphs [5]. Therefore, an explanation
of how our multilabel swap algorithm can handle α-expansion
is necessary.

In Boykov et al.’s original formulation, the binary state
‘0’ represented the variable Xi keeping its label xi, and ‘1’
implied Xi should switch to the label α. In our approach, the
binary state ‘0’ means Xi should take the minimum of {xi, α},

whereas ‘1’ implies the variable should take the maximum of
the two labels.

We consider two variables currently labelled xi and xj and
let α be another label value. At each iteration, the binary
energy function EB(x) (which determines whether a variable
takes the label α or not) must be submodular:

EB
ij (0, 0) + EB

ij (1, 1) ≤ EB
ij (0, 1) + EB

ij (1, 0) (2)

Suppose that the ordering of the labels is xi ≤ α ≤ xj and
consider the term EB

ij (1, 0). Since the first parameter ‘1’ in this
case means “select α” (the greater of α and xi), and the second
argument ‘0’ also means “select α” (the lesser of α and xj),
we see that EB

ij (1, 0) is equivalent to Eij(α,α) in the original
multilabel cost function. Continuing in this fashion with the
other terms, the required submodularity condition becomes:

Eij(α,α) + Eij(xi, xj) ≥ Eij(xi, α) + Eij(α, xj) (13)

Note that this is the opposite of the usual condition (3)
for α-expansion. Equation (13) is satisfied if Eij(xi, xj) =
fij(|xi − xj |) and fij(·) is a convex function.

A similar analysis, for the orderings α ≤ xi ≤ xj and xi ≤
xj ≤ α, leads to the usual triangle inequality (3). However,
this inequality will always be satisfied when α ≤ xi ≤ xj or
xi ≤ xj ≤ α and fij(·) is a monotonically increasing function.
If fij(·) is both convex and increasing, then it will satisfy all
of the conditions just identified and α-expansion will work.

IV. ITERATIVE MULTILABEL SWAP

Many large multilabel problems are actually discrete ap-
proximations to continuous domain optimization problems.
Image enhancement algorithms posed as MRF labelling prob-
lems, for instance, associate labels with pixel values — which
are quantized light intensities. For these types of problems, we
will associate the continuous domain interval [0.0, 1.0] with a
label set of ! + 1 labels, such that the labels span the entire
range in ! steps. As shown in Figure 3, the sets of labels
generated via ! = 2n have a straightforward mapping between
labels in immediately smaller and larger sets. Alternatively,
one can envision a function defined on a smaller label set as a
restriction of an equivalent function defined on a larger label
set. For instance, a function defined in L5 is the same as a
function defined in L9 but restricted to even labels only.

Fig. 3. In many applications, the label set L will correspond to the continuous
interval [0.0, 1.0]. The family of label sets {L3,L5,L9, . . . } generated by
! = 2n have a convenient mapping between labels in each set. The label 2
in L5 corresponds to the label 4 in L9.



Our iterative multilabel swap algorithm assumes the solution
to the problem with a smaller label set will be somewhat
similar to the solution using a larger label set. For instance,
a solution x̂"+1 to a problem involving ! + 1 labels has
an equivalent configuration x̃2"+1 obtained by doubling each
value of x̂"+1. If the solution x̂2"+1 at this new resolution is
within the proximity of x̃2"+1, then one only needs to consider
the sub-range of labels centred around x̃2"+1. For now, we will
define proximity as the immediate neighbouring configurations
at the lower scale. In this particular case, our iterative approach
assumes the solution at a higher scale lies within the hypercube
in Rn centred around the solution at the lower scale:

x̂2"+1 ∈ [x̃2"+1 − 2, x̃2"+1 + 2] (14)

As a result, at each iteration we only consider a subset of
five sequential labels for each variable (see Figure 4). For
example, if the solution to a function defined on the label set
L5 produced a label for pixel Xi of 2, at the next iteration (a
function defined on the label set L9) the subset of labels Li

for pixel Xi would be {2, 3, 4, 5, 6}.
Unlike the general multilabel swap algorithm, the size of

the graph remains fixed over all iterations, as every restricted
subset of labels for each variable at each iteration will only
contain five elements. However, although the graph remains
the same size, almost every edge weight will change between
iterations (since each edge represents a different label at each
iteration). Therefore, the optimization technique [16] to start
each iteration using the search trees of the previous calculation
and augmenting as necessary will give little improvement, as
the problem at the current iteration will bare little resemblance
to that of the previous iteration.

V. EXPERIMENTS

We evaluate iterative multilabel swap — the strategy which
samples the solution space in a coarse to fine manner — by
examing its performance in denoising and stereo applications.
Both situations are discrete approximations to continuous
optimization problems. In denoising, one is given a noisy input
image and must estimate the the true intensity of each pixel. In
stereo, one is provided two views of a scene and must estimate
the disparity between pixels in each view.

In all experiments, we compare the results of iterative
multilabel swap with α-β swap, our convex formulation of α-
expansion and, when feasible, multilabel graphs. Unless stated
otherwise, both α-expansion and α−β-swap are run for three
iterations. An initial configuration is determined by optimizing
the individual Ei(xi) functions independently.

A. Denoising
We assume the 8-bit noisy input image I is corrupted with

zero-mean additive Gaussian noise having standard deviation
σ = 30. The goal is to recover the true noiseless image I!.
The unary term arises from the negative log probability of the
Gaussian noise model [9]:

Ei(xi) =
1

2σ2

(xi

!
− I(i)

)2
(15)

(a) (b)
Fig. 4. In iterative multilabel swap, the permissible label set is defined by
the previous solution. Here, we illustrate the case when both Xi and Xj were
assigned the label 2 from L5. The permissible label set in L9 is {2, 3, 4, 5, 6}.
The restrictions are shown in (a), and the simplified graph is illustrated in (b).
Any edge originating from Z6

i or Z7
i will not be in the minimum cut, since

these two vertices are restricted to the set V1. Similarly, since Z0
j and Z1

j
are constrained to V0, edges terminating at these vertices will not be in the
minimum cut. The remaining four cases are illustrated above. Edges which
redirect to produce a direct connection between the source and sink, such as
Z1

i to Z6
j in (a), are omitted, as these represent constant terms in the energy

expression and do not affect the minimization process.

Typically, a pair of neighbouring pixels i and j in the
true image I! will have similar intensities, and one should
minimize the square difference between labels xi and xj .
However, edges are also quite prevalent, and any pairwise
function should also be discontinuity preserving [9], [10]. As
a result, we employ the Huber function H(x, T ) [17], which
is convex for small differences and linear for large differences
(which means it is discontinuity preserving):

H(x, T ) =

{
x2 if |x| < T,

2T |x|− T 2 otherwise.
(16)

The parameter T was arbitrarily set at 0.04, implying



differences less than 10 units at 8-bit depth are penalized
using the square difference, whereas larger differences are only
penalized linearly. The value of λ was manually tuned to 2,
and the parameter 1

2σ2 was omitted, as its effect is incorporated
into λ. As a result, the pairwise cost function was:

Eij(xi, xj) = 2H
(

xi − xj

!
, 0.04

)
(17)

We first denoised a small 128 × 128 image using 33 grey
levels, so that the solutions produced by each algorithm could
be evaluated relative to the optimal solution, which was re-
covered using a multilabel graph (see Table I). All algorithms
were able to obtain a good answer. Iterative multilabel swap
was able to recover an optimal labelling, while convex α-
expansion was clearly the fastest.

TABLE I
Comparison of energies, execution time and memory requirements for the four
algorithms when denoising a small 128 × 128 image (RMS = 19.90) using
33 grey levels. In this circumstance, iterative multilabel swap was able to
find an optimal labelling, while both α-β swap and α-expansion produced
good approximate solutions. Alpha-expansion was significantly faster than
the other algorithms. All of the iterative algorithms had manageable memory
requirements.

Method Energy RMS Time Memory
- [intensity] [s] [MB]

Multilabel Graph 186.56 13.12 9.0 500
α− β Swap 187.43 12.98 7.6 2
α-expansion 187.13 13.11 1.7 2
Iter. Multilabel Swap 186.56 13.12 5.9 20

We then evaluated the three iterative algorithms on a more
practical example: enhancing a 512×512 image using 129 grey
levels (see Figure 5). As Table II shows, all of the algorithms
are again able to reach similar energies. Once again, iterative
multilabel swap produces the best answer and α-expansion is
significantly faster than the others.

Noisy Input Enhanced Result

Fig. 5. Synthetic zero-mean additive Gaussian noise with standard deviation
σ = 30 intensity units was was added to an 8-bit image 512 × 512 input
image. All algorithms enhanced the image using 129 labels, and arrived at
similar energies. As Table II shows, iterative multilabel swap produced the
best labelling and α-expansion was significantly faster than the other methods.
The solution provided by iterative multilabel swap is shown on the right.

TABLE II
The noisy 512 × 512 image (RMS = 29.48) was enhanced using 129 grey
levels. All algorithms produced competitive answers. Iterative multilabel swap
produced the best enhancement, but convex α-expansion was significantly
faster. Since all of the iterative algorithms use memory efficiently, the specific
requirements of each algorithm were not measured.

Method Energy RMS Time
- [intensity] [s]

α− β Swap 3384.24 9.79 2108.1
α-expansion 3381.59 9.73 107.6
Iter. Multilabel Swap 3376.24 9.69 1203.9

B. Stereo
Given a pair of stereo images (L,R) the task is to produce

a disparity map D which indicates how each pixel i in L
maps to a pixel i−D(i) in R, where i−D(i) represents the
horizontal translation in a rectified stereo pair [18].

Usually, the unary term is just the difference in appearance
between a pair of pixels. However, for increased robustness,
we evaluate the difference in appearance between two uni-
formly weighted 3 × 3 windows around i in L and i −D(i)
in R:

Ei(xi) = ‖L(i)−R(i− xi)‖2 (18)

We model the scene as a collection of fronto-parallel
surfaces, which corresponds to a binary energy term:

Eij(xi, xj) = λ(xi − xj)2 (19)

As before, we first compare the three algorithms using
a small problem. Here, we use the ‘bull’ trial from the
Middlebury 2001 data set [19]. The image is reduced to
216 × 190 and we use 17 possible disparity values, which
means disparities are estimated to the nearest pixel. The setting
λ = 0.5 was tuned manually. The results are summarized in
Table III. Iterative multilabel swap obtains an optimal labelling
and in the shortest amount of time.

TABLE III
Results for the reduced stereo problem of a 216×190 image using 17 disparity
labels. None of the iterative algorithms is able to find an optimal solution.
Of the iterative algorithms, multilabel swap produces the best labelling in the
shortest amount of time.

Method Energy RMS Time Memory
- [pixels] [s] [MB]

Multilabel Graph 10.96 1.09 5.5 900
α-β Swap 15.73 1.05 36.8 6
α-expansion 10.97 1.09 13.1 6
Iter. Multilabel Swap 10.96 1.09 4.4 60

Finally, we use the three iterative algorithms to estimate the
disparity map for the full resolution 433×381 images using 33
possible disparity values (see Figure 6). As with the smaller
problem, disparities are estimated to the nearest pixel. Again
the parameter λ = 0.5 was tuned manually. Iterative multilabel
swap was able to find a good configuration in the smallest
amount of time (see Table IV). Alpha-expansion, however,
was able to find a slightly better solution.



Left Stereo Pair Ground Truth

α-β Swap α-expansion

Iter. Multilabel Swap
Fig. 6. The disparities of the 433 × 381 left image were estimated by
minimizing the costs defined in (18) and (19). Each algorithm used 33 possible
disparity values. As Table IV shows, iterative multilabel swap is able to obtain
a good solution in the shortest amount of time.

TABLE IV
Comparison of energies, execution time and RMS error for the full-resolution
433 × 381 stereo experiment using 33 disparity values. In this scenario,
iterative multilabel swap is able to find a good solution. Alpha-expansion
finds a marginally better answer but takes approximately three times longer
to do so. Alpha-beta swap is unable to find a good solution, and takes the
longest time.

Method Energy RMS Time
- [pixles] [s]

α− β Swap 61.93 2.25 512.9
α-expansion 39.67 1.52 100.6
Iter. Multilabel Swap 40.31 1.52 34.1

VI. CONCLUSIONS

Our multilabel swap algorithm is able to efficiently
solve multilabel graph problems without requiring significant
amounts of memory. Although there is no optimality guaran-
tee, in practice the algorithm is able to find a global minimum
given a sufficient number of iterations.

Multilabel swap is a generalization of both α-expansion and
α-β swap. A limited solution space is considered by restricting
the original energy function. As we have demonstrated, the
restriction of a submodular function remains submodular.
Furthermore, α-expansion can be used on convex problems by
employing the minimum and maximum of a pair of labels. The
alternative formulation, which considers the labels directly, can
handle concave functions.
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