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Minimizing Energy Functions on
4-Connected Lattices Using Elimination

• It is faster (or on par) with all but FastPD.

Conclusions
•LazyElimination achieves excellent results on arbitrary 
pseduo-boolean functions defined on a 4-connect lattice.

• It is able to obtain quality solutions to multilabel problems 

using    -expansion.α

Input Max-Flow Roof-Dual Elimination
- 4.02× 104 4.02× 104 8.54× 108

- 76.26s 85.02s 0.80s

LazyElim. Fast PD TRW-S MaxProd BP
4.02× 104 2.30× 107 5.62× 108 7.42× 108

40.45s 4.00s 1.17s 1.35s

Corridor Labelling

• Identify the floor and ceiling 
as well as the left, right and 
far walls.

• Incorporate spatial constr-
aints into              to avoid 
impossible solutions.

•The high cost assigned to an 
invalid labelling distorts the 
approximation step of the 
Elimination algorithm.

Eij(xi, xj)

Experiments
•Generate submodular pseduo-boolean function, and comple-

ment random subset of variables.
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Algorithm Energy (×105) Time (s) RMS Error
Max-Flow 8.0006 10.70 2.37
Roof-Dual 8.0002 17.81 2.37
Elimination 8.0103 10.05 2.39
LazyElimination 8.0836 14.43 2.40
Fast PD 8.4940 8.23 2.64
TRW-S 7.9761 176.13 2.36
MaxProd BP 8.5962 152.18 2.62

Roof-Dual Max-Flow Elimination LazyElim.

Denoising

•Extended to real multilabel problems using    -expansionα

•Function is not submodular, 
but an optimal labelling can 
be found with roof-dual.

•Add synthetic Gaussian noise to greyscale image.  Truncated 
quadratic cost function for both data and smoothness terms.
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f(xi, xu, . . . , x!) = −xi + 4xixu + 2xixr − xixd − 3xix!

Example Elimination

xu xr xd x! ∇i(·) x"
i x"

i∇i(·) ≈ x"
i∇i(·)

0 0 0 0 −1 1 −1 −1.375
0 0 0 1 −4 1 −4 −3.875
0 0 1 0 −2 1 −2 −1.875
0 0 1 1 −5 1 −5 −4.875
0 1 0 0 1 0 0 0.125
0 1 0 1 −2 1 −2 −2.375
0 1 1 0 0 1 0 0.125
0 1 1 1 −3 1 −3 −2.875
1 0 0 0 3 0 0 0.125
1 0 0 1 0 1 0 0.125
1 0 1 0 2 0 0 −0.375
1 0 1 1 −1 1 −1 −0.875
1 1 0 0 5 0 0 0.125
1 1 0 1 2 0 0 0.125
1 1 1 0 4 0 0 0.125
1 1 1 1 1 0 0 −0.375

x!
i∇i(·) = −1 + xu + xr − xd − 3x" − xuxr + xrxd + 3xux" + xrx"

+ xuxd − xuxdxr − xuxdx" − xuxrx" − xrxdx" + 2xuxrxdx"

≈ −1.375 + 1.5xu + 1.5xr − 0.5xd − 2.5x" − 1.5xuxr

+ 0.5xrxd − 0.5xdx" + 2.5x"xu

x!
i =

{
0 if ∇i(·) > 0,

1 otherwise.
•  

• Enumerate sixteen combinations of 

xu, xr, xd   and   xl.xu, xr, xd x!

∇i(·) = −1 + 4xu + 2xr

− xd − 3x!

•  

• True x*Dasd has only non-positive 
terms, and is not representable as a 
4-connected lattice.

x!
i∇i(·)

• Approximate x*Dasd by fitting a 
particular polynomial using least 
squares.

x!
i∇i(·)

•Energy function submodular  if every             .bij ≤ 0
LazyElimination

•Only eliminate variables with positive incident edge weights.  

•Recursive checkerboard defines hierarchy (see Figure).  
Predecessors must be eliminated first, since they determine 
edge weights of successors.

Intial First Pass Second Pass Hierarchy

Recursive Checkerboard

Variables eliminated in a checkerboard fashion.  Each pass rotates lattice by 45°.  After 
second pass, lattice returns to original orientation with ! variables.  Interactions ignored 
from approximation are shown in grey.  Hierarchy (red"blue"white) illustrates how 
vertex and edge weights are passed down from eliminated variables.  For example, in 
LazyElimination, a blue vertex must first eliminate its red predecessors.

... on a 4-connected lattice

f(x0, x1, . . . , xn) =
∑

i

aixi +
∑

i,j

bijxixj

•Preserve lattice by approximating              (see Example) and 

eliminating variables in checkerboard fashion (see Figure).

x!
i∇i(·)

• If          does not preserve 4-connected lattice, successive 

eliminations involve more than four variables; problem be-

comes intractable.

x!
i∇i(·)

•      determined by sign of derivative           (see Example).x!
i ∇i(·)

•Energy function of the form:

Elimination

min
x0,...,xn

f(x0, . . . , xn) = min
x1,...,xn

min
x0

f(x0, . . . , xn)

= min
x1,...,xn

f(x!
0, . . . , xn)

= min
x1,...,xn

f1(x1, . . . , xn)

•Goal: Find minimum of                          .f : Bn+1 → R

•Eliminate     by specifying its optimal value     as function of 

remaining variables                   .

x0 x!
0

x1, . . . , xn

•Continue until only fn..(xn) remains.  Compute x.n and substi-

tute into expression for xn-1*.  Repeat for other variables.

fn(xn)
x!

n−1

x!
n

Original Elimination Approximation

Background
•Many Markov Random Field (MRF) vision problems defined 
as 4-connected lattices. Few algorithms exploit this structure.

•Max-flow finds optimal labelling of submodular functions.

•Key Idea: Eliminate variables until function is submodular; 
solve using max-flow.

•Successive elimination possible using approximation.


