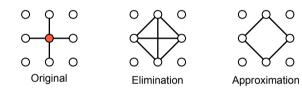
Minimizing Energy Functions on 4-Connected Lattices Using Elimination

Peter Carr and Richard Hartley

Background

- Many Markov Random Field (MRF) vision problems defined as 4-connected lattices. Few algorithms exploit this structure.
- Max-flow finds optimal labelling of submodular functions.
- •Key Idea: Eliminate variables until function is submodular; solve using max-flow.
- Successive elimination possible using approximation.



Elimination

• **Goal**: Find minimum of $f : \mathcal{B}^{n+1} \to \mathbb{R}$.

• Eliminate x_0 by specifying its optimal value x_0^{\star} as function of remaining variables x_1, \ldots, x_n .

$$\min_{x_0,...,x_n} f(x_0,...,x_n) = \min_{x_1,...,x_n} \min_{x_0} f(x_0,...,x_n)$$
$$= \min_{x_1,...,x_n} f(x_0^{\star},...,x_n)$$
$$= \min_{x_1,...,x_n} f_1(x_1,...,x_n)$$

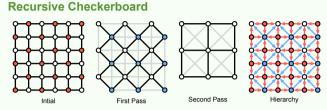
•Continue until only $f_n(x_n)$ remains. Compute x_n^{\star} and substitute into expression for x_{n-1}^{\star} . Repeat for other variables.

... on a 4-connected lattice

Energy function of the form:

$$f(x_0, x_1, \dots, x_n) = \sum_{i} a_i x_i + \sum_{i,j} b_{ij} x_i x_j$$

- x_i^{\star} determined by sign of derivative $\nabla_i(\cdot)$ (see Example).
- If $x_i^* \nabla_i(\cdot)$ does not preserve 4-connected lattice, successive eliminations involve more than four variables; problem becomes intractable.
- Preserve lattice by approximating $x_i^* \nabla_i(\cdot)$ (see Example) and eliminating variables in checkerboard fashion (see Figure).



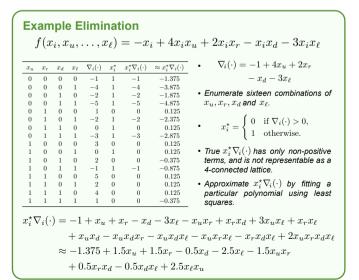
Variables eliminated in a checkerboard fashion. Each pass rotates lattice by 45°. After second pass, lattice returns to original orientation with 1/4 variables. Interactions ignored from approximation are shown in grey. Hierarchy (red-blue-white) illustrates how vertex and edge weights are passed down from eliminated variables. For example, in LazyElimination, a blue vertex must first eliminate its red predecessors.

LazyElimination

• Energy function submodular if every $b_{ii} < 0$.

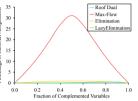
• Only eliminate variables with positive incident edge weights.

·Recursive checkerboard defines hierarchy (see Figure). Predecessors must be eliminated first, since they determine edge weights of successors.



Experiments

- · Generate submodular pseduo-boolean function, and complement random subset of variables.
- Function is not submodular, but an optimal labelling can be found with roof-dual.



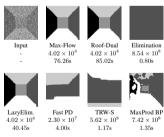
• Extended to real multilabel problems using α -expansion

Denoisina

 Add synthetic Gaussian noise to greyscale image. Truncated quadratic cost function for both data and smoothness terms.

Algorithm	Energy ($\times 10^5$)	Time (s)	RMS E
Max-Flow	8.0006	10.70	2.37
Roof-Dual	8.0002	17.81	2.37
Elimination	8.0103	10.05	2.39
LazyElimination	8.0836	14.43	2.40
Fast PD	8.4940	8.23	2.64
TRW-S	7.9761	176.13	2.36
MaxProd BP	8.5962	152.18	2.62

Corridor Labelling



 Identify the floor and ceiling as well as the left, right and far walls.

- Incorporate spatial constraints into $E_{ii}(x_i, x_i)$ to avoid impossible solutions.
- The high cost assigned to an invalid labelling distorts the approximation step of the Elimination algorithm.

Conclusions

- LazyElimination achieves excellent results on arbitrary pseduo-boolean functions defined on a 4-connect lattice.
- It is able to obtain quality solutions to multilabel problems using α -expansion.
- It is faster (or on par) with all but FastPD.