
GPU Accelerated Multimodal Background Subtraction

Peter Carr

RSISE
Australian National University

Canberra, ACT, Australia
peter.carr@anu.edu.au

NICTA
Canberra, ACT, Australia

Abstract

Although trivial background subtraction algorithms
(such as temporal averaging) can execute quite quickly, they
do not give useful results in most situations. More com-
plex algorithms usually provide better results, but are typ-
ically too slow for widespread use. Here, we examine the
architecture of the GPU and describe how a multimodal
background subtraction algorithm can be implemented on
graphics hardware to provide useful results in real-time.

1. Introduction

Background subtraction provides a quick way to identify
foreground objects in an image. The difference between
any image and its corresponding background image must
be due to foreground objects. More generally, background
subtraction is binary classification. A background appear-
ance model is assembled by observing the temporal history
of each pixel. The information is then used to determine
whether pixels acquired at some future point in time can be
explained by the model or not—i.e., segmenting the image
into foreground and background pixels.

The major difficulty of background subtraction is, of
course, estimating the background. In most scenarios, the
background is not static, and dynamic models that allow ob-
jects to transition from foreground to background and vice-
versa are needed. Traffic surveillance, for instance, must be
able to handle stationary vehicles correctly. Vehicles parked
on the side of the road should be considered background,
and those temporarily stopped at traffic lights should con-
tinue to be classified as foreground objects, even though
they are not moving.

1.1. Graphics Processing Units

Graphics hardware (described in more detail in Sec-
tion 3) is specifically optimized for rendering images, and
is able to achieve high performance by executing indepen-
dent calculations across parallel hardware simultaneously
[7]. The environment is very different from the more com-
mon CPU architecture, and shares many similarities with
stream programming [6]. Algorithms which adhere to this
paradigm have a good chance of achieving dramatic perfor-
mance increases on the GPU relative to their CPU equiva-
lent. However, they must be able to work within the limita-
tions of the actual hardware (such as local memory). Details
of a GPU’s inner workings are proprietary, making it diffi-
cult to optimize an implementation. Instead, we employ a
restricted GPU programming framework, which automati-
cally applies established compiler optimization techniques
to the code, and minimizes reliance on temporary memory.
As a result, the challenge investigated here is to find a ro-
bust background subtraction algorithm which can be imple-
mented within this reduced GPU instruction set.

1.2. Background Subtraction Algorithms

Elementary background subtraction uses an a priori im-
age of the empty scene, and then computes the difference
between this and each new video frame. Although easy to
construct, this scheme is not useful in practice, as it does
not dynamically update. Moreover, it requires controlled
circumstances to capture an image of just the background.
Temporal averaging allows the a priori image to be updated
dynamically, but this method often produces ghost artefacts
around moving objects (see Figure 1). Stauffer and Grim-
son were the first to demonstrate how a Gaussian mixture
model could be employed for robust background sementa-
tion of a dynamic scene [8]. Furthermore, the memory and
computational requirements of this parametric method are
much lower than the eqivalent kernel density estimation ap-

proach [2].
In this work, we use Stauffer’s and Grimson’s Gaussian

mixture model [8] to approximate the temporal history of
a pixel and describe how a parallel implementation can be
realized on graphics hardware.

Frame to Segment

Temporal Average

Three Mode GMM

Figure 1. The background of the scene is estimated
using temporal averaging (middle row) and a three
mode Gaussian mixture model (bottom row). The seg-
mentation of the input image (top row) is shown in
the left column for each model. The corresponding
background estimate is shown in the right column.
Whereas temporal averaging produces a ghost arte-
fact of the person present during initialization, pixels
in the GMM have either re-initialized to the true back-
ground or are slowly converging over time.

1.3. Related Work

A GPU version of Stauffer’s and Grimson’s algorithm
was first implemented by Lee and Jeong in 2006 using
NVIDIA’s Cg library [5]. Few technical details were di-
vulged in the publication, so it is difficult to determine ex-
actly what was done. The work investigated the specific
case of three modes, and appears to have made slight devia-
tions from the original algorithm. For instance, Stauffer and
Grimson specify the modes to be stored in sequential order.

When a new mode is discovered, the last (least probably)
background mode is discarded. Conversely, Lee and Jeong
elect to store the modes unordered and resolve any neces-
sary sorting conditions (such as finding the least probable
mode) only when necessary. Although this can improve the
speed of the implementation, it also requires approximat-
ing other portions of the algorithm. When determining if a
matched mode is transient or not (see Section 2.2), Stauf-
fer and Grimson base their decision on cumulative tempo-
ral history, whereas Lee and Jeong only check the individ-
ual duration of each mode. Such an approximation may
break-down in scenes where repetitive background modes
are common.

2. Stauffer’s and Grimson’s Algorithm

The expressions used in Stauffer’s and Grimson’s algo-
rithm are identical for all pixels in the image and do not
contain any inter-pixel dependencies. For clarity, the fol-
lowing review will omit the row and column subscripts from
all per-pixel symbols. We also assume a greyscale image
and address the necessary modifications for colour images
in Section 4.

The Gaussian mixture model stores K normal distribu-
tions for each pixel (parameterized by µk and σk, where k
= 1, 2, ..., K) with K typically between 3 and 5 (depend-
ing on the complexity of the background). An additional
weighting parameter wk is associated with each mode, and
represents the frequency with which this mode has occurred
in the past. The modes are stored in descending order, with
the likelihood, Lk, determined by the mode’s proportion of
temporal history and estimated variation.

Lk =
wk

σk
(1)

2.1. Matching

At time t, a new image is acquired and each pixel is as-
signed to one of the K modes associated with the same im-
age location. The association, Mt ∈ [0, K], is performed
by traversing the list of modes until the Mahalanobis dis-
tance between the pixel Xt and the kth mode is less than a
pre-determined tolerance D:

Mt = arg min
k

|Xt − µk,t−1|
σk,t−1

≤ D (2)

In their implementation, Stauffer and Grimson use D =
2.5 and note that “this threshold can be perturbed with little
effect on performance” [8]. If no mode is sufficiently close
to Xt, then Mt = 0.

2.2. Segmenting

If the pixel Xt can not be explained by any of the exist-
ing background models (i.e., Mt = 0), it is classified as a
foreground pixel. However, even if it is matched to a mode,
further analysis needs to be conducted to ensure Xt has not
been matched to a transient mode.

In a dynamic scene, some foreground objects may be-
come stationary, and should be incorporated into the back-
ground model. During this transient period, the pixel Xt

(now representing the appearance of the stationary fore-
ground object) should continue to be classified as fore-
ground. However, once a suitable amount of time has
passed, it should be classified as background. Stauffer and
Grimson incorporate a user-defined threshold, T , which de-
termines how much temporal history is attributed to the
background. Therefore, the first Bt−1 modes are classified
as background, and the others transient.

Bt−1 = arg min
b

b∑

i=0

wi,t−1 > T (3)

As a result, the classification rule becomes:

St =

{
background if 0 < Mt ≤ Bt−1

foreground otherwise.
(4)

2.3. Updating

If the pixel is not matched to any of the modes, the last
mode in the list (which is the least probable) is re-initialized
to the observed value, along with a “high variance and low
prior weight” [8]. Re-initialization allows the algorithm to
adapt to rapid changes in the scene.

On the other hand, if the observed pixel is matched to a
mode, then the information is incorporated into the model.
This allows the algorithm to adjust to subtle changes in the
scene appearance, such as outdoor lighting conditions, as
well as refining the estimated variance.

Given t − 1 unknown observations {X1, ..., Xt−1}, the
revised estimates of the mode parameters after observing
and matching Xt become:

µMt,t =
t− 1

t
µMt,t−1 +

1
t
Xt (5)

σ2
Mt,t =

t− 1
t

σ2
Mt,t−1 +

t− 1
t2

|Xt − µMt,t−1|2 (6)

The above expressions assume the underlying probabil-
ity conditions for generating Xt do not change. As a result,
the estimated values of µMt,t and σMt,t are asymptotic as
t → ∞. Since a background model needs to be able to

adapt to slow temporal changes, Stauffer and Grimson in-
stead use a fixed temporal history window (determined by
the learning rate, α). Each data point is assigned a weight,
ρ, which is a combination of the learning rate and a modifier
to reduce the influence of outliers. Stauffer and Grimson
employed probability, whereas we use the likelihood ratio
(relative to µMt,t−1):

ρ = α L (Xt|µMt,t−1, σMt,t−1)

= α exp

(
− |Xt − µMt,t−1|2

2σ2
Mt,t−1

)
(7)

The probability expression is not bounded in magnitude
and has an additional dependency on σMt,t−1. As a re-
sult, the rate at which new information is incorporated into
a mode is dependent on its variance. The likelihood ratio,
on the other hand, is bounded in [0,1] and only depends on
the Mahalabonis distance. As a result, the revised update
equations become:

µMt,t = (1− ρ)µMt,t−1 + ρXt (8)
σ2

Mt,t = (1− ρ)σ2
Mt,t−1 + ρ|Xt − µMt,t−1|2 (9)

Once the Gaussian parameters of a particular mode have
been updated, the weights of all modes must be recalcu-
lated. Stauffer and Grimson use a linear interpolation be-
tween the previous and current weight distributions, scaled
by the learning rate, α:

wk,t = (1− α)wk,t−1 + αδ(k −Mt) (10)

After interpolating, the weights are normalized so that
they sum to one.

2.4. Sorting

The values of uk,t, σk,t and wk,t have changed since time
t−1, so the corresponding likelihood of each mode (1) must
be re-calculated. There is a good chance that the list of
modes will have to be re-arranged to ensure that the modes
are ordered from most likely to least likely.

3. Graphics Processing Units

GPUs are built for the specific task of rendering a 2D
image from a collection of geometric, lighting and appear-
ance information. The process is performed in a pipeline
architecture, allowing the multiple stages to operate simul-
taneously (see Figure 2). Here, we present a generalized
overview of graphics hardware, and refer the reader to [3, 7]
for more complete descriptions.

Vertex

Processor

Rasterizer

Fragment

Processor

3D Triangles

2D Triangles

Fragments

Pixels

Figure 2. The graphics pipeline transforms geomet-
ric, lighting and appearance information into an im-
age. The vertex processor maps 3D scene geometry
into 2D screen co-ordinates. The rasterizer converts
these into discrete fragments, which are then trans-
ferred to the fragment processor, and eventually be-
come the pixels of the output image.

The GPU is a self-contained unit within the computer
and has its own dedicated video memory. Direct access
to the underlying graphics hardware, such as obtaining a
pointer to a location in memory, is not permitted—at least,
in in most APIs. Instead, one must interact with the GPU
using OpenGL, and explicitly transfer data between video
memory and regular system memory (see Figure 3). Mod-
ern GPUs have programmable vertex and fragment pro-
cessors, allowing the programmer to transfer “shader pro-
grams” to the GPU, in addition to the traditional informa-
tion such as geometric and image (“texture”) data.

System Memory

Application

OpenGL

CPU

Driver

Vertex

Processor

Fragment

Processor

Video Memory

GPU

Commands

Programs

Geometry

Textures

Figure 3. Access to the GPU is controlled by the
OpenGL API, as well as proprietary drivers. Image
and geometric data can be transferred between the
two memory units. Modern GPUs allow vertex and
fragment programs to be transferred as well.

Since the stages of the graphics pipeline are chained to-
gether, and the vertices and fragments are processed indi-
vidually, the concept of a GPU is similar to that of a stream
processor [6]. In the stream programming paradigm, the
data is organized into sequences of individual elements (all
of the same type) known as streams. The functionality of
the program is achieved using a chain of kernels. Each ker-
nel produces one or more output data streams by consum-
ing one or more input streams. Kernels, however, are not
arbitrary stream functions. They must ensure that “compu-
tations on one stream element are never dependent on com-
putations on another element” [6]. This restriction allows
the program to be implemented on parallel hardware quite
easily, since each process is independent. The constraint
also means most kernels implement one of the following
generic operations:

map A single output stream is produced by applying a
function to each element of an input stream.

scatter An input stream is used to produce multiple output
streams.

gather Multiple input streams are reduced to a single out-
put stream.

filter A single input stream is used to produce a single out-
put stream with potentially fewer elements.

Although GPUs are similar to stream processors on a
conceptual level, the actual operation is quite different.
Fragment shader programs are only able to write to a sin-
gle memory location (determined by the rasterizer [7]). As
a result, scatter-type operations are not possible in frag-
ment shader programs. On graphics hardware, pixels are
an encapsulation of four values (three for colour, one for
transparency), and the fragment processors are ‘single in-
struction multiple data’ (SIMD) units—meaning the same
operation is applied to the four elements of a pixel simul-
taneously (discussed further in Section 3.2). Support for
branching and looping statements is limited [7]. Unless ev-
ery element of the vector evaluates to the same condition,
the system falls back on ‘predication’: both branches are
evaluated and only the results from one branch are kept de-
pending on how the branching condition was evaluated for
each element. Finally, the fragment units have a limited
number of registers to store temporary results during exe-
cution. However, a complex task can be split into multiple
passes by writing the partial results to global memory, and
then reading these back at the next iteration.

3.1. Core Image

Apple’s Core Image framework [1] is designed to sim-
plify the task of accelerating image processing operations

using the GPU. Similar to NVIDIA’s Cg or Microsoft’s
HLSL, Apple’s framework abstracts the GPU environment
so that fragment shader programs can be written in a more
familiar C-style syntax.

However, Core Image also provides a high-level inter-
face to combine multiple fragment shaders into a single pro-
gram (much like AMD’s Ashli [7]). The framework applies
established compiler optimization techniques to the result-
ing code, and minimizes the memory requirements of both
shader programs and temporary storage between iterations
[1]. Finally, Core Image transparently handles data transfer
between the CPU and the GPU, and automatically manages
its use of available memory on the graphics card.

Unlike the other APIs, Core Image stays very close to
the stream programming paradigm. Shader programs are
referred to as kernels, and a program is implemented by
chaining multiple kernels together. Since Core Image only
provides access to the programmable fragment processor,
its kernels are limited to producing a single output stream.

3.2. Core Image Kernel Language

The Core Image Kernel Language (CIKL) is a subset
of the OpenGL shading language [4], and does not sup-
port complex functions and data types (such as matrices
and arrays). Dynamic operations are also quite limited.
For instance, elements within a vector can only be accessed
by constant expressions. Similarly, conditional expressions
which can not be evaluated at compile time are also not
allowed—essentially making if, for and while state-
ments unavailable. However, the inline if ternary operator
(? :) is permitted and is able to evaluate run-time
expressions.

SIMD commands perform the same operation on one or
more sets of data (depending on the number of input param-
eters). In CIKL, a set of data is a float vector of one to four
elements. For example, the following code will compute the
element-wise maximum between two four-vectors x and y:

vec4 x = vec4(1.0,2.0,3.0,4.0);
vec4 y = vec4(7.0,5.0,3.0,1.0);
vec4 z = max(x,y);

// z = {7.0,5.0,3.0,4.0}

The maximum element in a four-vector can be realized
by cascading multiple one-vector SIMD operations.

float z = max(max(x[0],x[1]),
max(x[2],x[3]));

// z = 4.0

The forthcoming section describing how multimodal
background subtraction can be implemeted within Core Im-
age will make extensive use of the max() and min() op-
erations. The following functions will also be employed:

equal(x,y) Produces a boolean vector containing the
result of the element-wise equality operator. We will
also employ its variants, such as lessThan(x,y).

dot(x,y) The dot product of x and y.

4. Implementation

Stauffer and Grimson extended their framework to
colour images by assuming that the variances of red, green
and blue values within a colour image are the same. As a
result, a colour mode is represented as four floating point
measurements: µred, µgreen, µblue, σ. Since GPU pixels
consist of four elements, the alpha channel (which stores
transparency) can be used for σ, as background pixels are
always opaque. Unfortunately, there is no remaining space
in the pixel buffer to store wk (the weight assigned to that
mode). Instead, additional pixel buffers must be allocated to
store the mode weights (up to four can be stored in a single
pixel buffer).

Our prototype system models the temporal history of
the scene using three modes per pixel. As a result, four
buffers are used to store the statistical characteristics of the
three modes. Although a four mode implementation would
be more memory efficient (in terms of allocated bytes per
mode), the added algorithmic complexity severely hinders
performance, and doesn’t necessarily increase the useful-
ness of the results for our applications.

For computational efficiency, the variance of the mode
(and not its standard deviation) is stored in the alpha chan-
nel. Furthermore, any distance based calculations, such as
(2), are implemented using the square of the expression, as
this avoids calculating square roots (a relatively slow oper-
ation).

Since Core Image automatically optimizes the cumula-
tive result from a chain of kernels, this discussion will only
cover how each stage of the algorithm is implemented as
one or more kernels.

4.1. Matching

The matching stage is responsible for producing Mt, the
index of the mode which best explains Xt (if any). Since
Core Image does not support dynamic indexing, we en-
coded Mt as an indicator vector, so that the equivalent of
dynamic indexing can be achieved using the dot() prod-
uct of Mt and an arbitrary vector.

Unfortunately, the matching task does not simply reduce
to implementing a parallel version of (2), as the recently ac-
quired pixel Xt can only be matched to at most one mode.
However, since the modes are stored in sorted order, the
better of any two matches will occur towards the begin-
ning of the vector [8]. One possible approach is to chain

Figure 4. Stauffer’s and Grimson’s algorithm expressed in the stream programming paradigm. Each mode is stored
in a pixel buffer (identified using rounded corners), with the weights of the three modes stored in an additional pixel
buffer. The algorithm is implemented using multiple kernels (identified using square corners), with inputs listed on the
left, and outputs on the right (details of the multi-kernel “update” and “sort” routines are shown in Figures 5 and 6).
Core Image automatically generates the five GPU fragment shader programs to produce the output segmentation mask
St, as well as the updated mode parameters (which are copied back into the pixel buffers for the next iteration). The
program is executed in parallel for all pixels in the image.

ternary operators together and test the suitability of each
mode sequentially. Instead, we can calculate the distance
to all modes simultaneously, and then apply data-dependent
masking operations to ensure that the first true value is
the only occurrence within the indicator vector version of
Mt (and avoid the overhead of branching):

vec3 M = lessThanEqual(dist,D);
M[1] *= (1.0-M[0]);
M[2] *= (1.0-M[0]-M[1]);

4.2. Segmenting

Once a match has been found, the mode’s status (either
background or transient) must be known for proper segmen-
tation. To avoid the dynamic operations required by (3), we
compute a vector, Y , indicating whether the kth mode is
non-transient. The dot() product of Y and Mt will deter-
mine the segmentation (4).

In the specific case of three modes, there are three possi-
ble configurations of Y , determined by (3).

Condition Y
0 ≤ T < w1 [1 0 0]
w1 ≤ T < w1 + w2 [1 1 0]
w1 + w2 ≤ T < 1 [1 1 1]

Only two expressions need to be evaluated, since the first
element of Y is always true.

vec2 cond;
cond[0] = weight[0];
cond[1] = weight[0] + weight[1];
vec3 Y = vec3(1.0,lessThan(cond,T));
float seg = 1.0-dot(M,Y);

4.3. Updating

The matched mode is updated using (7) through (9). If a
suitable match was found, the weights of all modes are re-
vised using (10). Here, there are no additional restrictions to
enforce beyond the mathematical expressions, so the equa-
tions can be executed simultaneously.

The three kernels used for updating the µ and σ2 param-
eters of each mode (see Figure 5) are quite similar. If the
kth element of the matching vector Mt is equal to one, the
values of µk,t and σ2

k,t are updated. However, if the pixel
was not matched to this mode, the values are returned un-
changed. The kernel for the third mode contains one addi-
tional complication: before returning the unaltered param-
eters µ3,t and σ3,t, the matching vector Mt is examined to
see if all elements are zero. If that is the case, µ3,t is initial-
ized to the pixel value Xt, and σ2

3,t assigned a user-defined
initial variance σ2

0 .
The kernel to update the mode weights must also test

for all elements of Mt being zero. If this is the case, the
values of w1,t and w2,t are unchanged, and w3,t is assigned

Figure 5. A streamed version of the “Update” stage.
Subject to a branch condition involving Mk,t, the
“nth mode” kernels implement (8) & (9), and the
“weights” kernel implements (10).

a user-defined initial weight w0. Otherwise, the weights are
updated using (10). In either case, the values of wk,t are
then scaled to sum to one.

4.4. Sorting

Determining the largest and smallest elements in a vec-
tor is relatively straightforward, and can be implemented by
cascading multiple max() and min() statements across
the individual elements (see Section 3.2). In the specific
case of a three vector, the sorting task is complete after this
stage—the remaining element (which is neither the largest
nor smallest) must occupy the middle position when sorted.

As there is no guarantee for unique elements, the
equal() function may not produce a boolean vector with
only one true element. However, a boolean vector in-
dicating the location of the element after a stable sort can
be achieved by applying data-dependent masks to the result
of equal(). The mask for the middle element is com-
puted directly from the masks for the largest and smallest
elements.

Our sorting stage (see Figure 6) is implemented using
three “nthelement” kernels. Each calculates L, the vector
of mode likelihoods (1), and determines the location indi-
cator vector, I , for the hard-coded value of n = {1, 2, 3}.
The appropriate input is returned using a chain of ternary
operators.

vec3 I = equal(L,max(L[0],max(L[1],L[2])));
I[1] *= (1.0-I[0]);

Figure 6. The unarranged results from the “update”
kernel are sorted using multiple nth element kernels.
The likelihood (1) is calculated in each kernel, as it
determines the sorting order.

I[2] *= (1.0-I[0]-I[1]);
return I[0] ? mode0 :

I[1] ? mode1 : mode2;

4.5. Initialization

Stauffer’s and Grimson’s publication reveals few details
on how the modes were initialized. In this implementa-
tion we use the first three video frames to initialize the
three modes. Each mode is assigned the user-defined ini-
tial variance and a weight of one-third. Alternatively, each
mode could be initialized using a random point in the colour
space. The drawback of the latter method is that if the ran-
dom point happens to be close to an actual mode, the model
parameters will take a significantly long time to converge,
since the influence of each data point is weighted by both
its likelihood and the global learning rate parameter α.

The approximate expressions (8) and (9) are only valid
once α ≈ 1

t . Therefore, our implementation tracks the to-
tal number of frames processed, t, and employs (5) and (6)
until t > 1

α , at which point (8) and (9) are used.

5. Performance Gains

The performance of the Core Image implementation was
evaluated on a 2.2 GHz Core 2 Duo MacBook Pro running
OSX 10.4.11 with an NVIDIA 8600M GT graphics card.
An equivalent CPU version of the algorithm was imple-
mented using the VXL libraries. Since the CPU version

was not multi-threaded, the second core was disabled for
all tests to make the comparison fair (as multiple processors
could share the tasks of decoding video and communicating
with the GPU). The two implementations were tested using
a variety of video frame sizes and compression formats, and
a summary of typical results is presented in Table 1.

frame size CPU GPU Speed-Up
704× 576 3.2 fps 16.7 fps 5.2×
352× 288 11.6 fps 58.1 fps 5.0×

Table 1. Performance gain from GPU background
segmentation implementation.

Although portions of the Gaussian mixture model frame-
work are simple and well isolated, many stages have
branching conditions and/or dependencies on previous re-
sults. Such aspects will hinder the performance of parallel
execution. In this work, we made every effort to minimize
the complexity of branching conditions, so that the over-
head of predication is minimal.

A raw speed comparison does not illustrate the full per-
formance gain. The load on the CPU is drastically reduced
when the background segmentation tasks is offloaded to the
GPU. As a result, the main processor becomes available for
additional processing, which would not be the case if the
background segmentation algorithm was performed in main
memory.

Since Core Image was designed for processing individ-
ual images, some of its optimization choices are not ideal
for handling sequences of images. For instance, temporary
buffers for “render to texture” feedback operations are al-
located and de-allocated as needed. When processing mul-
tiple images in succession, the amount of time spent man-
aging video memory can become quite significant. To al-
leviate this issue, our implementation explicitly allocated
buffers to store the matching results and updated (but not
sorted) mode parameters.

6. Spatial Cohesion

If the background model is used to generate a foreground
segmentation mask, additional spatial filtering is usually
conducted. In their work, Stauffer and Grimson use a con-
nected components algorithm to find regions of the image to
track. However, the stage is also used as a noise filter. The
authors note that “some percentage of the data points ‘gen-
erated’ by a Gaussian will not match (because of a finite D).
The resulting random noise is easily ignored by neglecting
connected components containing only 1 or 2 pixels” [8].

A similar result can be achieved with morphological op-
erations (which are much easier to implement in a GPU

framework). In our application, we use a 3×3 cross-shaped
kernel for both erosion and dilation. Although Core Image
does not have built-in morphological operators, they can be
realized quite easily.

7. Conclusions

Since it is a pre-processing stage, background modelling
and segmentation needs to be performed quickly. If the al-
gorithm deals with each pixel in isolation, there is a good
chance that a parallel GPU implementation will be faster
than a CPU equivalent.

In this work, we have described how the temporal his-
tory of a pixel can be modelled efficiently as a combina-
tion of normal distributions. In the specific case of three
modes, we have shown how the algorithm can be imple-
mented on a GPU while achieving a higher processing rate.
Moreover, we have implemented a complete version of the
algorithm. Previous work [5] appears to have omitted the
rather complex sorting stage, and resulted in additional ap-
proximations to the algorithm.

References

[1] Core Image Programming Guide. Apple Inc., June 2008.
[2] A. Elgammal, D. Harwood, and L. Davis. Non-parametric

model for background subtraction. In Proc. European Conf.
on Computer Vision, pages 751–767, 2000.

[3] R. Fernando, M. Harris, M. Wioka, and C. Zeller. Program-
ming graphics hardware. In Eurographics, 2004.

[4] J. Kessenich. OpenGL Shading Language. 3Dlabs Inc.,
September 2006.

[5] S.-J. Lee and C.-S. Jeong. Real-time object segmentation
based on GPU. In Proc. Int. Conf. on Computational Intel-
ligence and Security, pages 739–742, November 2006.

[6] J. Owens. Streaming architectures and technology trends. In
M. Phar, editor, GPU Gems 2, pages 457–470, 2005.

[7] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris,
J. Krüger, A. E. Lefohn, and T. J. Purcell. A survey of
general-purpose computation on graphics hardware. In Com-
puter Graphics Forum, volume 26, pages 80–113. Blackwell
Publishing Ltd., 2007.

[8] C. Stauffer and W. E. L. Grimson. Adaptive background mix-
ture models for real-time tracking. In Proc. Conf. on Com-
puter Vision and Pattern Recognition, volume 2, pages 246–
252, 1999.

