
Block-Structured Plan Deordering

Fazlul Hasan Siddiqui and Patrik Haslum

The Australian National University & NICTA Optimisation Research Group,
Canberra, Australia

Abstract. Partially ordered plans have several useful properties, such
as exhibiting the structure of the plan more clearly which facilitates
post-plan generation tasks like scheduling the plan, explaining it to a
user, or breaking it into subplans for distributed execution. The standard
interpretation of partial ordering implies that whenever two subplans
are unordered, every interleaving of steps from the two forms a valid
execution. This restricts deordering to cases where individual steps (i.e.,
actions) are independent. We propose a weaker notion of partial ordering
that divides the plan into blocks, such that the steps in a block may
not be interleaved with steps outside the block, but unordered blocks
can be executed in any sequence. We present an algorithm to find such
deorderable blocks, and show that it enables deordering plans in many
cases where no deordering is possible under the standard interpretation.

1 Introduction

In AI planning, the process of deordering converts a sequential plan into a par-
tially ordered plan, by removing ordering constraints between steps, such that
the steps of the plan can be successfully executed in any order consistent with
the partial order and still achieve the goal [1]. Partially ordered plans have
two advantages: first, they afford execution flexibility, thus allowing plans to
be scheduled for improved efficiency or robustness [2]; and second, they make
the plan structure more accessible, which facilitates further analysis of the plan.
However, current state space search planners, which produce totally ordered
sequential plans, are far more efficient than the older partial order planners.
Thus, deordering plays a useful role in that it enables more efficient generation
of partially ordered plans.

The standard interpretation of a partially ordered plan is that it is valid if
and only if every sequential plan that is a topological sort of the steps is valid
(according to the semantics of sequential plan execution). This implies that for
two subplans to be unordered, every interleaving of steps from the two must form
a valid execution. This restricts deordering to only the cases where individual
steps (i.e., actions) are independent and non-interfering. We examine a weaker
notion of partial ordering: We divide a plan into blocks, such that the steps
in a block may not be interleaved with steps outside the block, but unordered
blocks can be executed in any sequence. The difference is illustrated in Figure
1. The restriction to non-interleaved executions allows “transient” dependencies



Fig. 1. A normal partially ordered plan (left) represents the set of all sequential plans
that are topological sorts of the plan steps, such as abcd, acbd, cbda, etc. A block ordered
plan (right) allows unordered blocks (shown with dashed outlines) to be executed in
any order, but not steps from different blocks to be interleaved. Thus, abcd, bacd, cdab
and cdba are the only linearisations of this plan.

and effects to be encapsulated within a block, and thus not cause interference
with other blocks. This can enable deordering of blocks in some cases also when
their constituent actions cannot be deordered under step-wise interpretation of
partially ordered plans. (An example of this is shown in Figure 2.) We also
present an algorithm to find block deorderings of plans, and show empirically
that it deorders plans to a much greater degree than step-wise deordering.

Since unordered blocks cannot, in general, be executed concurrently, block
deordering improves mainly on the second advantage of partial ordering, viz.
making the structure of the plan explicit. We believe that the main benefit of
this will be to facilitate post-plan generation tasks such as explaining the plan
to a user, or breaking it into a set of subplans with minimal constraints between
them, which is useful for reducing the coordination overhead if the plan is to be
executed by a distributed team of agents [3], or for improving plan quality by
local modifications [4].

2 Plans, Validity and Deordering

AI planning is model-based: a planner takes as input a description of avail-
able actions, in some formal modelling language, and the initial state and goal.
Several modelling languages are in use (see, e.g., [5]). Because many details of
the modelling language are not relevant for the purpose of plan deordering, we
adopt Bäckström’s [1] producer-consumer-threat model, which is general enough
to encompas most common planning formalisms (e.g., STRIPS and SAS+).

A planning problem is defined over a set of atomic propositions. An action
that makes a proposition p true is called a producer of p; an action that requires p
to hold is called a consumer of p, and p is called a precondition of the action; and
an action that makes p false is called a threat to p. (In the common propositional
STRIPS formalism, producers are actions that add p and threats are actions that
delete p.) A partially ordered plan is a set, S, of steps, where each step s ∈ S
is labelled by an action, act(s), and a strict (i.e., irreflexive) partial order ≺
over S. There is one final step, sG in S, which represents the goal. If necessary,



we can also include in S an initial step, which acts as the producer of initially
true propositions. We use the terms producer, consumer and threat also for plan
steps, referring to their associated actions. We use ≺+ to denote the transitive
closure of a partial order ≺. An element (si, sj) ∈≺ (also si ≺ sj) is a basic
ordering constraint iff it is not implied by other constraints and transitivity,
that is, iff (≺ −{si ≺ sj})+ ⊂≺+. A linearisation of ≺ is a strict total order
that contains ≺ (i.e., a topological sort). A partially ordered plan (S,≺) is valid
iff for every step s ∈ S and for every precondition p of act(s), there is a producer
sp of p that precedes s (i.e., sp ≺+ s) and for every step st that threatens p, st is
either ordered before sp or after s (i.e., st ≺+ sp or s ≺+ st). This is essentially
Chapman’s [6] modal truth criterion (without “white knights”), and equivalent
to the standard notion that a partial order plan is valid iff every linearisation of
it is valid under the usual sequential execution semantics [5].

There are three possible reasons for an ordering constraint si ≺ sj : (1) Step si
produces a proposition p that sj consumes. This relation is usually called a causal
link from si to sj [7]. (2) si threatens a proposition that sj produces, and that is
consumed by some later step. Note that it is not necessary to order a producer
and threat if no step that may occur after the producer in the plan depends on
the produced proposition. (3) sj threatens a proposition that si consumes. It is
easy to see that if every precondition is supported by a causal link, and no causal
link is threatened by a possibly intervening step, the plan is valid in the sense
defined above. We will use the labels PC(p) (producer–consumer of p), TP(p)
(threat–producer) and CT(p) (consumer–threat) to denote the three reasons.
Note that an ordering constraint can have several associated reasons (including
several reasons of the same type but referring to different propositions). We
denote the set of reasons for an ordering constraint si ≺ sj by Re(si ≺ sj).

Let (S,≺) be a valid partially ordered plan. A (step-wise) deordering of
the plan is a valid plan (S,≺′) such that (≺′)+ ⊂≺+. That is, a deordering
is the result of removing some basic ordering constraints without invalidating
the plan. Deordering a sequential plan is simply a special case, since a total
order is a special case of a partial order. Several algorithms for plan deordering
have been proposed [8–13]. The complexity of optimal deordering depends on
the planning formalism and the measure of optimality. To compute a deordering
with a smallest (w.r.t. cardinality) ordering relation is NP-hard for almost every
planning formalism [1]. We use a combination of two simple methods: Chrpa
& Bartak’s algorithm [14] for computing causal links (what they call “depen-
dency”), with the difference that our version selects the earliest unthreatened
producer whereas theirs selects the latest, and the PRF algorithm [1] for com-
puting threat–producer and consumer–threat orderings. This procedure is es-
sentially the same as the algorithm by Kambhampati & Kedar [11]. Although it
does not guarantee optimality, a recent study found that it did produce optimal
deorderings of all plans on which it was tested [13].



3 Block Decomposition and Deordering

3.1 Blocks and their Semantics

A block is a part of the plan, i.e., a subset of steps, that must be executed
without being interleaved with any step not in the block. Thus, there cannot be
a step not in the block that is ordered in between two steps of the block.1 The
no-interleaving restriction affords us a simplified,“black box”, view of blocks, in
which only the preconditions and effects of executing the block as a whole are
important. Thus, for the purpose of deordering we can ignore some dependencies
and effects that matter only internally within the block.

A decomposition of a plan into blocks can be recursive, i.e., a block can be a
strict subset of another block. However, blocks cannot be partially overlapping.

Definition 1. Let (S,≺) be a partially ordered plan. A block w.r.t. ≺ is a subset
b ⊂ S of steps such for any two steps s, s′ ∈ b, there exists no step s′′ ∈ (S − b)
such that s ≺+ s′′ ≺+ s′ or s′ ≺+ s′′ ≺+ s. A set B of subsets of S is a block
decomposition of (S,≺) iff (1) each b ∈ B is a block w.r.t. ≺ and (2) for every
bi, bj ∈ B, either bi ⊂ bj, bj ⊂ bi, or bi and bj are disjoint.

We omit the reference to the ordering relation when it is clear from context. A
set consisting of a single step is always a block, but we do not consider such
“trivial blocks” explicitly in the decomposition.

Formally, the semantics of a partially ordered block decomposed plan are
defined by restricting its linearisations to those that respect the block decompo-
sition, i.e., that do not interleave steps from disjoint blocks. The plan is defined
to be valid iff every linearisation of it is valid, in the sense defined earlier.

Definition 2. Let (S,B,≺) be a partially ordered and block decomposed plan.
A linarisation of (S,B,≺) is a total order ≺lin on S such that (1) ≺⊆≺lin and
(2) every b ∈ B is a block w.r.t. ≺lin.

The set of linearisations of a partially ordered and block decomposed plan is
a subset of the linearisations under the same partial ordering without block
decomposition, as illustrated by the example in Figure 1.

As mentioned above, the restriction on exections of a block decomposed plan
allows us to ignore some dependencies and effects that matter only within the
block. The following definition captures those preconditions and effects that
are visible from outside the block, i.e., those that give rise to dependencies or
interference with other parts of the plan. These are what we need to consider
when deciding if two blocks can be unordered.

Definition 3. Let (S,B,≺) be a partially ordered and block decomposed plan,
and b ∈ B a block:

1 Chrpa & Bartak [14] define the same concept, but call it a “subplan”. We use the
term “block” to emphasize the contiguous, “black box”, nature of them, and to leave
the term “subplan” free to refer to any part of a plan.



• b consumes p iff there is a step s ∈ b that consumes p such that there is no step
s′ ∈ b with s′ ≺+ s that produces p and for which either s′′ ≺+ s′ or s ≺+ s′′

holds for any s′′ ∈ b that threatens p, (In other words, there is a consumer s
of p in the block, and there is no producer of p within the block from which we
could draw a causal link to s that is not threatened by any step in the block.)

• b produces p iff there is a step s ∈ b that produces p such that for any step
s′ ∈ b that threatens p, s′ ≺+ s, and b does not consume p.

• b threatens p iff there is a step s ∈ b that threatens p such that there is no
step s′ ∈ b with s ≺+ s′ that produces p.

Whenever a block consumes, produces or threatens a proposition, there is at least
one step within the block that does the same. We refer to this as the responsible
step, and it plays an important role in the block deordering algorithm.

Note that if a block consumes a proposition, it cannot also produce the
same proposition. The reason for this is that taking the “black box” view of
block execution, the proposition simply persists: it is true before execution of
the block begins and remains true after it has finished. If the steps within a
block are totally ordered, the preconditions and effects of a block according to
Definition 3 are nearly the same as the “cumulative preconditions and effects” of
an action sequence, defined by Haslum & Jonsson [15], the only difference being
that a consumer block cannot also be a producer of the same proposition.

3.2 Block Deordering

The process of block deordering is more complicated than standard deordering,
which only involves removing constraints from the ordering relation. A block
deordering involves adding new blocks to a plan decomposition, removing order-
ing constraints, and possibly also adding some explicit ordering constraints that
were transitively implied by the removed constraints.

Let (S,B,≺) be a valid partially ordered and block decomposed plan. Con-
sider a basic ordering constraint si ≺ sj , and the set Re(si ≺ sj) of reasons for
this constraint. (We consider only basic ordering constraints, since removing a
transitively implied constraint does not lead to any de facto deordering of the
plan.) To remove si ≺ sj , we create two corresponding blocks, bi and bj , where si
is the unique last step in bi (that is, every step in bi is transitively ordered before
si) and sj is the unique first step in bj (that is, every step in bj is transitively
ordered after sj). Note that one of the two blocks can be trivial, i.e., consist
of a single action. Both blocks must be consistent with the existing decomposi-
tion, i.e., B ∪ {bi, bj} must still be a valid block decomposition, in the sense of
Definition 1. We seek blocks that allow us to remove reasons from Re(si ≺ sj).
Therefore, conditions on the blocks depend on what those reasons are:

• If PC(p) ∈ Re(si ≺ sj), bi must not produce p. Since si produces p and is the
last step in bi, and thus cannot be possibly followed by a threat to p within
the block, this means bi must consume p. Since the plan is valid, there must
be some (unthreatened) producer, s′, that necessarily precedes the step in bi



that consumes p. If s′ can precede every step in bi, then adding the causal link
PC(p) to Re(s′ ≺ sj) (adding (s′, sj) to ≺ if not already present) allows PC(p)
to be removed from Re(si ≺ sj). (Note that the added ordering constraint,
even if not already explicitly in ≺, is transitively implied by si ≺ sj and the
conditions on bi.)

• If TP(p) ∈ Re(si ≺ sj), then bj must include every step s′ such that PC(p) ∈
Re(sj ≺ s′). Then TP(p) can be removed from Re(si ≺ sj).

• If CT(p) ∈ Re(si ≺ sj), then either bi must not consume p or bj must not
threaten p. Then CT(p) can be removed from Re(si ≺ sj).

The ordering si ≺ sj can exist for several reasons (including several reasons of
the same type, referring to different propositions). Only if blocks bi and bj can
be found that meet the conditions above to remove every reason in Re(si ≺ sj)
can the ordering be removed. Yet, even this does not guarantee the blocks will
be unordered. If bi contains some step other than si that is ordered before a step
in bj (sj or another), the two blocks will still be ordered. Note that we must also
check for new threats between steps in or before bi and steps in or after bj that
become unordered as a result of removing si ≺ sj .

Theorem 1. Deordering according to the rules above preserves plan validity.

Proof. Let (S,B,≺) be a valid partially ordered and block decomposed plan,
si ≺ sj a basic ordering constraint, and bi, bj blocks that meet the conditions for
removing si ≺ sj , and that are not ordered for any other reason. Let (S,B′,≺′)
be the plan that results from deordering. Any linearisation of (S,B′,≺′) in which
bi precedes bj is also a linearisation of (S,B,≺), and thus valid by assumption.
Consider a linearisation in which bj precedes bi:

s1, . . . , sm, bj = [sj , . . . , skj
], skj+1, . . . , bi = [ski

, . . . , si], . . . , sn.

We examine each of the possible reasons for si ≺ sj : If PC(p) ∈ Re(si ≺ sj),
then the precondition p of step sj is now supplied by the step s′ (which is one
among s1, . . . , sm). bj cannot threaten the causal link for p from s′ to the step s′′

in bi that consumes p, since for it to do so, there must be some step s ∈ bj that
threatens p, which would imply CT(p) ∈ Re(s′′ ≺ s), making this linearisation
inconsistent. Neither can any of the steps between bj and bi threaten p, since
they can appear between s′ and s′′ also in a linearisation of the original plan.

If TP(p) ∈ Re(si ≺ sj), then bj includes every step s′ such that PC(p) ∈
Re(sj ≺ s′). Thus, si does not threaten any causal link originating in sj .

If CT(p) ∈ Re(si ≺ sj), there are two possibilities: either bi does not consume
p or bj does not threaten p. In the first case, this means that bi constains a step s′

that produces p, such that s′ precedes si and the causal link is not threatened by
any step in bi; this means that the causal link is also unthreatened in the above
linearisation, since no steps not in bi appear between s′ and si. In the second
case, since bj includes sj , which does threaten p, bj must also include a step s′

that produces p and that is ordered after any step in bj that threatens p. Since
the original plan is valid, there is a step s′′ that supplies an unthreatened causal



link for p to si. Again, there are two cases: If s′′ is one of the steps s1, . . . , sm,
then none of the steps between bj and bi can threaten p, since these steps can
appear between s′′ and si also in the original plan. Thus, we can now form an
unthreatened causal link from the step s′ in bj to si. Otherwise, s′′ is one of
the steps between bj and bi, in which case the causal link from the original plan
remains unthreatened. �

3.3 The Block Deordering Algorithm

The previous subsection described the conditions under which block deordering
is correct, in the sense that it preserves plan validity. Next, we describe the
algorithm that we use to efficiently find block deordering possibilities in a plan.

We extend ordering to blocks: two blocks are ordered bi ≺ bj if there exist
steps si ∈ bi and sj ∈ bj such that si ≺ sj and neither block is contained in the
other (i.e., bi 6⊂ bj and bj 6⊂ bi). In this case, all steps in bi must precede all steps
in bj in any linerarisation of the block decomposed plan. We also extend the
reasons for ordering (PC, TP and CT) to ordering constraints between blocks,
with the set of propositions produced, consumed and threatened by a block given
by Definition 3. Recall that a responsible step is a step in a block that causes
it to produce, consume or threaten a proposition. For example, if b produces p,
there must be a step s ∈ b that produces p, such that no step in the block not
ordered before s threatens p; we say step s is “responsible” for b producing p.

The core of the algorithm is the Resolve procedure (Algorithm 1). It takes
as input two blocks, bi and bj , that are ordered (one or both blocks may consist of
a single step), and tries to break the ordering by extending them to larger blocks,
b′i and b′j . The procedure examines each reason for the ordering constraint and
extends one of the blocks to remove that reason, following the rules given in the
previous subsection. After this, the sets of propositions produced, consumed and
threatened by the new blocks (b′i and b′j) are recomputed (following Definition
3) and any new reasons for the ordering constraint that have arisen because
of steps that have been included are added to Re(b′i ≺ b′j). This is repeated
until either no reason for the ordering remains, in which case the new blocks
returned by the procedure can safely be unordered, or some reason cannot be
removed, in which case deordering is not possible (signalled by returning null).
The function Intermediate(bi, bj) returns the set of steps ordered between bi
and bj , i.e., {s | bi ≺+ s ≺+ bj}. Where Algorithm 1 refers to a “nearest” step s′

preceding or following another step s, it means a step with a smallest number
of basic ordering constraints between s′ and s.

Applying the Resolve procedure to each basic ordering constraint we obtain
a collection of blocks with which we can break some orderings. But this collection
is not necessarily a valid decomposition, since some of the blocks may have partial
overlap. To find a valid decomposition, we use a greedy procedure with some
heuristic enhancements. We repeatedly examine each basic ordering constraint
bi ≺ bj and call Resolve to find two extended blocks b′i ⊇ bi and b′j ⊇ bj that
allow the ordering to be removed. In each iteration, constraints are checked in
order from the beginning of the plan. If such blocks are found, and they are



Algorithm 1 Resolve ordering constraints between a pair of blocks.

1: procedure Resolve(bi, bj)
2: Initialise b′i = bi, b

′
j = bj .

3: while Re(b′i ≺ b′j) 6= ∅ do
4: for each r ∈ Re(b′i ≺ b′j) do
5: if r = PC(p) then
6: Find a responsible step s ∈ b′i and a nearest s′ 6∈ b′i that consumes

p such that s′ ≺+ s.
7: if such s′ exists then
8: Set b′i = b′i ∪ {s′} ∪ Intermediate(s′, b′i).
9: else

10: return null
11: else if r = TP(p) then
12: Find a responsible step s ∈ b′j and a nearest s′ 6∈ b′j that threatens p

such that s ≺+ s′.
13: if such s′ exists then
14: Set b′j = b′j ∪ {s′} ∪ Intermediate(b′j , s

′).
15: else
16: return null
17: else if r = CT(p) then
18: Find a responsible step s ∈ b′j and a nearest s′ 6∈ b′j that produces p,

such that s ≺+ s′.
19: if such s′ exists then
20: Set b′j = b′j ∪ {s′} ∪ Intermediate(b′j , s

′).
21: else
22: Find a responsible step s ∈ b′i and a nearest s′ 6∈ b′i that produces

p, such that s′ ≺+ s.
23: if such s′ exists then
24: Set b′i = b′i ∪ {s′} ∪ Intermediate(s′, b′i).
25: else
26: return null.
27: Recompute Re(b′i ≺ b′j).

28: return (b′i, b
′
j).

consistent with the current decomposition, bi and bj are replaced. If b′i or b′j
cannot be added to the decomposition (because one or both of them partially
overlaps with an existing block), we consider all blocks ordered immediately after
bi, and check if all these orderings can be broken simultaneously, using the union
of the blocks returned by Resolve for each ordering constraint. (Symmetrically,
we also check the set of blocks immediately before bj , though this is only very
rarely useful.) As an additional heuristic, we discard the two blocks if there is a
basic ordering constraint between a step that is internal to one of the blocks (i.e.,
that has both preceding and following steps within the block) and a step outside
the block. If either possibility leads to a valid new decomposition, the ordering
is removed. The inner loop then exits and the ordering relation is updated with
any new constraints between b′i and blocks ordered after bj and between b′j and



blocks ordered before bi. This is done by checking for the three reasons (PC, TP
and CT) based on the sets of propositions produced, consumed and threatened
by b′i and b′j . The inner loop is then restarted, with ordering constraints that
previously could not be broken checked again. This is done because removing
ordering constraints can make possible the resolution of other constraints, since
removal of orderings can change the set of steps intermediate between two steps.

The main loop repeats until no further deordering consistent with the current
decomposition is found. It is easy to verify that each iteration runs in polynomial
time, but we currently do not have an upper bound on the number of iterations.
Note, however, that the procedure is “any time”, in the sense that if interrupted
before running to completion, the result at the end of the last completed iteration
is still a block deordering of the plan. Since the choice of deordering to apply is
greedy, the result is not guaranteed to be optimal.

4 Results

We tested block deordering on a large set of plans generated by planners par-
ticipating in past editions of the International Planning Competition (IPC). To
measure the effect of deordering, we compare the flexibility 2, or “flex”, of plans,
after standard, step-wise, deordering (as described in Section 2) and after block
deordering. The flex of a partially ordered plan is defined as the fraction of pairs
of steps that are not (transitively) ordered. Thus, a higher flex value indicates
a less strictly ordered plan, with a fully sequential plan having a flex of zero.
We apply the same definition to block deordered plans. Recall that in a block
deordered plan, all steps belonging to two ordered blocks are ordered by the
requirement that blocks not be interleaved, even when there is no ordering be-
tween an individual pair of steps. This is taken into account when calculating
the flex of a block deordered plan. Because of this, it is in fact possible for block
deordering of a partially ordered plan to decrease its flex value. For example,
assume the plan on the left in Figure 1 also had the ordering constraints a ≺ d
and b ≺ d, and that the block decomposition on the right removed only the first
of these: it would then only have the linearisations abcd and bacd, and have lower
flex than the original plan (which has c unordered w.r.t. both a and b). However,
we did not observe this happening in any of the plans analysed.

Results are summarised by domain in Table 1. For each domain, we report
the number of plans analysed, the number of plans for which block deordering
led to an increase in flex, and the average (over all analysed plans) flex values
after step-based deordering and after block deordering. We imposed a 600 second
time limit on the block deordering procedure; where the limit was reached (∼
8% of all plans), we take the flex of the plan after the last completed iteration.

Note that several domains are purely sequential, and do not permit any
deordering of individual steps. (These have an average flex of zero after step de-

2 The term “flexibility” is used with different meanings by different authors. Nguyen
& Kambhampati’s [16] definition is equivalent to ours. Muise et al. [13] use it for the
number of linearisations of a partially ordered plan.



Domain #plans #inc. Average flex after deordering
step block

Airport (IPC4) 563 262 0.1492 0.1562
Blocks (IPC2) 381 284 0.0 0.0479
Cybersec (IPC6) 109 109 0.0142 0.2476
Depots (IPC3) 234 183 0.1589 0.1951
Elevators (IPC6) 276 216 0.1543 0.1965
FreeCell (IPC2) 358 214 0.0516 0.0596
Logistics (IPC2) 534 437 0.2435 0.2629
Openstacks (ADL, IPC5) 109 109 0.0 0.0733
Openstacks (STRIPS, IPC5) 15 15 0.0 0.0353
Openstacks (ADL, IPC6) 312 312 0.0453 0.1298
Openstacks (STRIPS, IPC6) 488 487 0.0469 0.1347
ParcPrinter (IPC6) 252 218 0.0820 0.2747
Pathways (STRIPS) 113 85 0.2455 0.2683
PegSol (IPC6) 301 261 0.0 0.1018
Rovers (IPC3) 187 187 0.2003 0.3541
Scanalyzer (IPC6) 343 202 0.1201 0.2418
Sokoban (IPC6) 205 174 0.0 0.0144
Storage (IPC5) 185 117 0.0423 0.1119
Transport (IPC6) 243 156 0.2071 0.2340
Woodworking (IPC6) 277 5 0.4551 0.4551

Table 1. Comparison of step and block deordering. For each domain, the first column
shows the number of plans analysed, and the second the number of plans in which
block deordering increased the flex value above that achieved by step deordering. The
average flex values after step and block deordering are over all plans in each domain.

ordering.) Yet, even in these domains, it is often possible to block deorder plans.
As an example, Figure 2 visualises the execution of part of a plan from the
Sokoban domain (the reference plan for problem #11 from the IPC6 satisficing
track). Sokoban is a puzzle game, involving a man who must push boxes around
on a grid, one at a time, to reach a goal configuration. The domain is sequential
because actions in the planning encoding of the game move the man from one
square to another; thus, every step has a causal link from the step immediately
before, and no deordering of individual steps is possible. Block deordering, how-
ever, is: In the example plan, the blocks consisting of steps 3–4 and steps 5–28
are independent and can be unordered. As can be seen clearly from the visualisa-
tion, moving steps 3–4, as a block, to after step 28 does not invalidate the plan.
There are also two blocks, consisting of steps 10–21 and 22–23, within the larger
block 5–28, that can be deordered. Our algorithm found all these possibilities.

5 Conclusions

Deordering makes the structure of a plan explicit, showing us which parts are
necessarily sequential (because of dependency or interference) and which are in-



0–2 3 4 5–9 10–14

15 16–21 22 23 24–28

29 30

· · ·

Fig. 2. Visualisation of the execution of (part of) an example plan in the Sokoban
domain. Arrows show the movements of the man; dashed outlines show the movement
of boxes that he pushes. The blocks consisting of steps 3–4 and 5–28 can be safely
unordered, as can the blocks 10–21 and 22–23.

dependent and non-interfering. Block deordering improves on this by creating an
on-the-fly hierarchical decomposition of the plan, encapsulating some depende-
cies and interferences within each block. Considering blocks, instead of primitive
actions, as the units of partial ordering thus enables deordering plans more, in-
cluding in cases where no deordering is possibly using the standard, step-wise,
partial order plan notion. We showed that using a simple greedy algorithm to
find block decompositions we could substantially increase the flex of deordered
plans across many planning domains.

Maximising flex is not an end in itself; we use it only as a way to measure the
“amount of deordering” done. The ultimate significance of block deordering will
be determined by how much we can exploit the additional structural information
it provides to improve on various post-plan generation tasks, such as explaining
the plan to a user, or minimising execution coordination. We are particularly
motivated by the use of plan structure information to improve the quality of
plans by identifying subplans that can be locally improved [4]. As a simple
example, in Figure 2 it can be observed that if the block 3–4 is relocated to after
the block 5–28, steps 4 and 29 become redundant and can be removed. We are
currently developing plan optimisation methods based on block deordering.

Acknowledgements This work was supported by the Australian Research
Council discovery project DP0985532 “Exploiting Structure in AI Planning”.
NICTA is funded by the Australian Government as represented by the Depart-



ment of Broadband, Communications and the Digital Economy and the Aus-
tralian Research Council through the ICT Centre of Excellence program.

References

1. Bäckström, C.: Computational aspects of reordering plans. Journal of AI Research
9 (1998) 99–137

2. Policella, N., Smith, S., Cesta, A., Oddi, A.: Generating robust schedules through
temporal flexibility. In: Proc. 14th International Conference on Automated Plan-
ning & Scheduling (ICAPS’04). (2004) 209–218

3. Cox, J., Durfee, E., Bartold, T.: A distributed framework for solving the multia-
gent plan coordination problem. In: Proc. 4th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’05). (2005) 821–827

4. Chrpa, L., McCluskey, T., Osborne, H.: Optimizing plans through analysis of
action dependencies and independencies. In: Proc. 22nd International Conference
on Automated Planning and Scheduling (ICAPS’12). (2012)

5. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice.
Morgan Kaufmann Publishers (2004) ISBN: 1-55860-856-7.

6. Chapman, D.: Planning for conjunctive goals. Artificial Intelligence 32 (1987)
333–377

7. McAllester, D., Rosenblitt, D.: Systematic nonlinear planning. In: Proc. 9th Na-
tional Conference on Artificial Intelligence. (1991)

8. Pednault, E.: Formulating multiagent, dynamic-world problems in the classical
planning framework. In: Reasoning about Actions and Plans. (1986)

9. Regnier, P., Fade, B.: Complete determination of parallel actions and temporal
optimization in linear plans of action. In: Proc. European Workshop on Planning.
Volume 522 of Lecture Notes in AI., Springer (1991) 100–111

10. Veloso, M.M., Pérez, M.A., Carbonell, J.G.: Nonlinear planning with parallel re-
source allocation. In: Workshop on Innovative Approaches to Planning, Scheduling
and Control, Morgan Kaufmann (1990) 207–212

11. Kambhampati, S., Kedar, S.: A unified framework for explanation-based general-
ization of partially ordered and partially instantiated plans. Artificial Intelligence
67(1) (1994) 29–70

12. Winner, E., Veloso, M.: Analyzing plans with conditional effects. In: Proc.
6th International Conference on Artificial Intelligence Planning and Scheduling
(AIPS’02). (2002) 23–33

13. Muise, C., McIlratih, S., Beck, J.: Optimally relaxing partial-order plans with
MaxSAT. In: Proc. 22nd International Conference on Automated Planning and
Scheduling (ICAPS’12). (2012)

14. Chrpa, L., Barták, R.: Towards getting domain knowledge: Plans analysis through
investigation of actions dependencies. In: Proc. 21st International Florida AI Re-
search Society Conference (FLAIRS’08), AAAI Press (2008) 531–536 ISBN 978-1-
57735-365-2.

15. Haslum, P., Jonsson, P.: Planning with reduced operator sets. In: Proc. 5:th Inter-
national Conference on Artificial Intelligence Planning and Scheduling (AIPS’00).
(2000) 150–158

16. Nguyen, X., Kambhampati, S.: Reviving partial order planning. In: Proc. 17th
International Conference on Artificial Intelligence (IJCAI’01). (2001)


