
hm(P) = h1(Pm): Alternative Characterisations
of the Generalisation From hmax To hm

Patrik Haslum
Australian National University
patrik.haslum@anu.edu.au

Abstract

The hm (m = 1, . . .) family of admissible heuristics for
STRIPS planning with additive costs generalise the hmax

heuristic, which results when m = 1. We show that the step
from h1 to hm can be made by changing the planning prob-
lem instead of the heuristic function. This furthers our under-
standing of the hm heuristic, and may inspire application of
the same generalisation to admissible heuristics stronger than
hmax. As an example, we show how it applies to the additive
variant of hm obtained via cost splitting.

Introduction
The hmax heuristic, introduced by Bonet & Geffner in 1999,
is the first of the “new generation” of admissible heuris-
tics for (propositional STRIPS) planning with additive ac-
tion costs, and it is certainly the most widely known and
understood. The relaxation underlying the hmax heuristic
is taking the cost of achieving a conjunction of atoms to
equal the cost of achieving the most costly single atom in
the conjunction. This assumption makes the heuristic sim-
ple, conceptually and computationally, often allowing more
advanced admissible heuristics to be related to hmax (e.g.
Helmert and Domshlak 2009). However, it also limits the
power of the heuristic. In particular, the hmax heuristic is in-
variant under delete relaxation and therefore bounded above
by h+, the optimal delete-relaxation heuristic. This implies,
for instance, that the hmax estimate can not include the cost
of any action more than once, even though an action may be
needed an exponential number of times in a plan.

The hm (m = 1, . . .) family of admissible heuristics is
based on the same relaxation as hmax, but parameterise it
by the maximum size m of conjunctions considered. Thus
hmax = h1. This makes the hm heuristics more powerful.
For instance, form > 1, hm is not bounded by h+, and even
equals the real optimal cost function h∗ for sufficiently large
m. However, the complexity of computing the hm heuristic
rises exponentially with m, and for practical purposes it is
typically limited to m = 2 or m = 3. Thus, a case can be
made for seeking ways to generalise admissible heuristics
more powerful than hmax in a maner analogous to the way
hm generalises hmax.

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper presents a new characterisation of the hm

heuristics, by showing that hm can be obtained as h1 (i.e.,
hmax) over a modified planning problem. That is, for a plan-
ning problem P we construct a new problem Pm and show
that hm(P) = h1(Pm). The size of Pm is polynomial in the
size of P (though exponential inm). However, Pm does not
preserve real plan costs, i.e., h∗(Pm) may be greater than
h∗(P). This has the undesirable implication that applying
an admissible heuristic to Pm does not necessarily yield an
estimate that is admissible for P . Alternative constructions
are also sketched.

The new characterisation does not directly lead to a prac-
tical way of generalising an arbitrary admissible heuristic
from 1 to m. Nor is it a more efficient way to compute hm:
computing h1(Pm) typically requires more time and mem-
ory than computing hm(P).

What it does offer is some new insight into the mechanics
of the hm heuristic, which, hopefully, suggests how the step
from 1 to m can be carried out. As an example, we apply
this insight to generalise Helmert’s & Domshlak’s (2009)
cost partitioning scheme for additive h1 to additive hm.

Background
We adopt the standard definition of a propositional STRIPS
planning problem, without negation in action preconditions
or the goal (see, e.g., Ghallab, Nau, and Traverso 2004,
chapter 2). By a (conjunctive) condition, c, we mean a con-
junction of atoms in the vocabulary of planning problem P ,
without repetition. We treat conditions as sets of atoms and
use standard set notations for them. The size of a condition,
|c|, is the number of atoms in it. A sequence of actions (or
plan) achieves condition c (from state s) iff the sequence
is executable in s and leads to a state where c holds. We
assume an additive cost objective, i.e., each action a has a
non-negative cost, cost(a), and the cost of a plan is the sum
of the cost of actions in it. The optimal cost function, h∗(c),
is defined as the minimum cost over all plans for c from the
initial state of P , with h∗(c) =∞ if no plan for c exists.

The hm Heuristic
The hm heuristic (m ≥ 1) is defined as the greatest (w.r.t
point-wise comparison) fixed point solution to the recursive
equation

hm(P, c) ={0 if c holds in sI
mina hm(P,R(c, a)) + cost(a) if |c| 6 m
maxc′⊆c,|c′|6m hm(P, c′) if |c| > m

(1)

where sI is the initial state of P , R(c, a) is the regression
operator, defined as

R(c, a) = (c− add(a)) ∪ pre(a)

if del(a)∩c = ∅ and undefined otherwise, and the minimum
in the second case of equation (1) is over actions a such that
R(c, a) is defined; if there is no such action, the minimum is
taken to be∞. The reference to the problem, P , is omitted
when it is clear from context. Conversely, to refer to the
hm function as such, while distinguishing the problem over
which it is defined, we drop the second argument.

The hm heuristic is admissible, meaning that hm(c) ≤
h∗(c) for every c. Moreover, it is (non-strictly) increasing in
m, i.e., hm(c) ≤ hm+i(c) when i ≥ 0, and for every plan-
ning problem P there exists an m′, bounded by the number
of atoms in P , such that hm

′
(P) = h∗(P) (Haslum 2006).

A Procedural Characterisation of hm

In the presence of actions with zero cost, equation (1) does
not necessarily have a unique fix point solution. By defin-
ing the hm function as the point-wise greatest fix point of
equation (1), values that are not uniquely determined are ef-
fectively assigned ∞. For proving the equivalence that is
the main topic of this paper, the following, more procedural,
characterisation of the hm function is useful.

Definition 1 The series of functions {hmi }i=0,... is defined
by hm0 (c) ={

0 if c holds in sI
∞ otherwise (2)

and hmi+1(c) ={min(hmi (c),
mina hmi (R(c, a)) + cost(a)) if |c| 6 m

maxc′⊆c,|c′|6m hmi+1(c′) if |c| > m
(3)

where, as before, the minimum is over actions a such that
R(c, a) is defined, and ∞ if there is no such action. The
series converges at i iff hmi = hmi−1.

This definition captures the generalised Bellman-Ford
(GBF) procedure for computing hm. The GBF procedure is
a label correcting algorithm: it assigns a crude initial cost
estimate (0 or ∞) to every condition and then iteratively
applies local updates until costs converge (Haslum 2006).
Function hmi is the result after i iterations.

Theorem 2 The series {hmi }i=0,... converges to hm.
Proof (sketch): (i) The series converges.
If the series does not converge at i there must be some c, with
|c| ≤ m, such that hmi+1(c) 6= hmi (c). The value of hmi+1(c)
can only be less than hmi (c), due to minimisation with hmi .

The new value is a sum of action costs, and thus can not be
negative, nor less than hmi (c) by an arbitrarily small amount.
Hence, an infinite number of iterations is impossible.
(ii) If the series converges at i, hmi satisfies equation (1).
If c holds in sI , the initial state of P , hm0 (c) = 0,
and thus hmi (c) = 0 since values only decrease. Let c
be a condition with |c| ≤ m that does not hold in sI .
Since the series has converged at i, mina hmi (R(c, a)) +
cost(a) = mina hmi−1(R(c, a)) + cost(a) ≥ hmi (c).
hmi (c) < mina hmi (R(c, a)) + cost(a) implies hmi−1(c) <
mina hmi−1(R(c, a)) + cost(a), and thus, by induction,
hm0 (c) < mina hm0 (R(c, a)) + cost(a), which can be only
if hm0 (c) = 0, which it is only if c holds in sI , contrary to
assumption.
(iii) No function greater than hmi at any point can satisfy
equation (1).
hm0 (c) has the greatest value that may possibly satisfy equa-
tion (1): it is ∞ unless it must be 0. Whenever hmi+1(c) is
less than hmi (c) it is upperbounded by mina hmi (R(c, a)) +
cost(a), as required by equation (1).

Items (i)–(iii) combined imply that the function hmi at
convergence is the (point-wise) greatest fix point solution
to equation (1) and therefore equal to hm. 2

The Additive hm Heuristic
For computationally feasible values of m, the hm heuris-
tic is often too weak. For planning with additive costs,
a stronger additive heuristic can be obtained via the “cost
splitting” method. This is a simple and general method, ap-
plicable to any admissible heuristic for problems with ad-
ditive costs, that has been used by many researchers (e.g.,
Edelkamp 2001; Haslum, Bonet, and Geffner 2005; Katz
and Domshlak 2008,Yang et al. 2008). The formulation be-
low is essentially that of Katz & Domshlak (2008).

Let P be a planning problem: A cost function for P is
a function that maps actions in P to the domain of action
costs.1 If C is a cost function for P , C(P) (C applied to P)
denotes a planning problem exactly like P except that the
cost of each action a in C(P) is C(a). A collection of cost
functions, C1, . . . , Ck, is an admissible cost partitioning for
P iff

(∑
i=1,...,k Ci(a)

)
≤ cost(a) for each action a.

Theorem 3 Let P be a planning problem, C1, . . . , Ck an
admissible cost partitioning for P , and h1, . . . , hk a collec-
tion of functions such that hi is an admissible heuristic for
Ci(P). Then hΣ =

∑
i=1,...,k hi is an admissible heuristic

for P .

The additive hm heuristic is obtained by instantiating each
of the hi’s in theorem 3 with hm(Ci(P)).

The Pm Construction
Given a planning problem P and m > 1, we construct a
problem Pm such that hm(P) = h1(Pm). The size of Pm
is polynomial in the size of P . However, h∗(Pm) can be

1The intrinsic action cost assignment, cost(a), may be viewed
as but another cost function for P .

greater than h∗(P). We show that the additive h1 heuristic
applied to Pm, under an additional constraint on the splitting
of action costs, remains admissible for P .

Atoms in Pm correspond to conjunctive conditions of size
at most m over the atoms of P . Likewise, actions in Pm
correspond to sets, containing one “regular” action from P
and a number of “no-op” actions. To reduce confusion, we
will refer to the atoms and actions in problem Pm as meta-
atoms and meta-actions, respectively. Note, however, that
Pm is a perfectly ordinary propositional STRIPS planning
problem: In particular, theorem 2 applies to it.

Definition 4 Let P be a propositional STRIPS problem
(without negation). The problem Pm contains a meta-atom
πc for each conjunctive condition c of size at most m over
the atoms of P .

For each action a in P , and for each set f of at mostm−1
atoms such that f is disjoint from add(a) and from del(a),
Pm contains a meta-action αa,f with:

pre(αa,f) = {πc | c ⊆ (pre(a) ∪ f), |c| ≤ m}
add(αa,f) =
{πc | c ⊆ (add(a) ∪ f), (c ∩ add(a)) 6= ∅, |c| ≤ m}

del(αa,f) = ∅

and cost(αa,f) = cost(a).
The initial state of Pm, σI , assigns true to every meta-

atom πc (|c| ≤ m) such that c holds in the initial state sI of
P , and false to every other meta-atom. The goal condition
of Pm is Γ = {πc | c ⊆ G, |c| ≤ m}, where G is the goal
condition of P .

There is a straightforward correspondence between (con-
junctive) conditions over atoms in P and conditions over
meta-atoms in Pm: if c = {pi1 , . . . , pik} is a condition
over the vocabulary of P , the corresponding condition in
Pm is γ(c) = {πc′ | c′ ⊆ c, |c′| ≤ m}; conversely, if
γ = {πc1 , . . . , πck

} is a conjunction over the vocabulary of
Pm, the corresponding condition in P is c(γ) =

⋃
πci
∈γ ci.

The goal of Pm corresponds to the goal of P .
As expected, c(γ(c)) = c. However, γ(c(γ)) ⊇ γ. This is

because γ(c) contains all meta-atoms corresponding to con-
ditions of size at most m over the set of atoms in c, which
need not be the case for an arbitrary condition over the vo-
cabulary of Pm. There is an analogous correspondence be-
tween states of P and certain states of Pm.

Each action αa,f in Pm corresponds to, in P , execut-
ing action a while simultaneously preserving the truth of
each atom in the set f . (Note that regressing condition c
through action a can be seen as planning to achieve atoms
in c ∩ add(a) by a, while preserving the remaining, already
achieved atoms in c− add(a).) This “composite” action re-
quires every atom in pre(a)∪f to hold before execution, and
hence every meta-atom corresponding to a condition that is
a subset (of size at most m) of this set is in pre(αa,f). The
positive effects of αa,f include each meta-atom correspond-
ing to a conjunction of one or more atoms made true by a,
with the remaining conjuncts atoms in f . All such con-
junctions will hold in the state resulting from executing a

while preserving f . Because our only interest in the prob-
lem Pm is applying to it the h1 heuristic, which is invariant
under delete relaxation, actions in Pm have empty delete
sets. Note that although each action a in problem P is rep-
resented by (potentially) several meta-actions in Pm, each
of those meta-actions carries the full cost of a.

Theorem 5 Let P be a planning problem and c a con-
junctive condition over the vocabulary of P : hm(P, c) =
h1(Pm, γ(c)).
Proof: We show by induction that hmi (P, c) =
h1
i (P

m, γ(c)), for i ≥ 0. By theorem 2 above, the series
converge to hm(P, c) and h1(Pm, γ(c)), respectively, which
are therefore equal.

It is easy to see that γ(c) = {πc′ | c′ ⊂ c, |c| ≤ m} holds
in the initial state σI of Pm iff c holds in the initial state sI of
P . Thus hm0 (P, c) = h1

0(Pm, γ(c)). Assuming the equality
holds for j < i, consider a condition c with |c| ≤ m. Then

hmi (P, c) =
min

(
hmi−1(P, c),mina hmi−1(P,R(c, a)) + cost(a)

)
.

(4)

Because |c| ≤ m, γ(c) = {πc}, i.e., there is a single meta-
atom corresponding to c. Thus,

h1
i (P

m, γ(c)) =
min(h1

i−1(Pm, γ(c)),
minα h1

i−1(Pm,R(γ(c), α)) + cost(α).
(5)

The first terms in the outer minimums in (4) and (5),
hmi−1(P, c) and h1

i−1(Pm, γ(c)), are equal by inductive as-
sumption.

Let a be an action that attains the (inner) minimum in
(4) and let f = c − add(a): the meta-action αa,f adds
πc (and does not delete it), and, moreover, R(c, a) =
(c − add(a)) ∪ pre(a), and R(γ(c), αa,f) = ({πc} −
add(αa,f)) ∪ pre(αa,f) = pre(αa,f). By construction of
αa,f , and the choice of f , γ(R(c, a)) = R(γ(c), αa,f).
Since h1

i−1(Pm,R(γ(c), αa,f)) = hmi−1(P,R(c, a)) by in-
ductive assumption, and cost(αa,f) = cost(a) by construc-
tion, h1

i (P
m, γ(c)) is no greater than hmi (P, c). Conversely,

let α be a meta-action that attains the (inner) minimum in
(5): α is composed of an action a in P and a set f of pre-
served atoms, such that del(a) ∩ c = ∅ (since R({πc}, α) is
defined), add(a)∩c 6= ∅, and c−add(a) ⊆ f . Furthermore,
c(R({πc}, α)) = pre(a) ∪ f ⊇ pre(a) ∪ (c − add(a)) =
R(c, a). Hence, by inductive assumption, and the property
that hmi (c′) ≥ hmi (c) whenever c′ ⊇ c, hmi (P, c) is no
greater than h1

i (P
m, γ(c)).

For any condition c with |c| > m, hmi (P, c) =
maxc′⊂c,|c|≤m hm(P, c′). Also, γ(c) = {πc′ | c′ ⊂
c, |c| ≤ m}, so |γ(c)| > 1; thus h1

i (P
m, γ(c)) =

maxπc′∈γ(c) h
1
i (P

m, {πc′}). As the two maximums range
over the same set of alternatives (conditions of size at most
m over P), and equality of the two functions for this case
has been shown above, they too are equal. 2

The reason why h∗(Pm) does not equal h∗(P) is that each
meta-action αa,f adds only meta-atoms corresponding to
conditions that combine atoms made true by the action a

and preserved atoms belonging to f , which is limited to at
most m − 1 atoms, while in real execution of an action any
number of atoms may remain true by inertia. The following
example illustrates.

Example 6 Consider a small Logistics problem, PEx6, with
two packages (P1 and P2) loaded in a truck (T) at location A.
Executing (drive T A B) leads to a state where condition
c = {(in P1 T), (in P2 T), (at T B)} holds.

The corresponding condition in problem PEx6
2, γ(c), con-

tains a meta-atom π{p,q} for every pair of atoms p, q ∈ c
and a meta-atom π{p} for every single atom p ∈ c. How-
ever, there is no meta-action in PEx6

2 corresponding to ex-
ecuting the (drive T A B) action while preserving the
truth of both atoms (in P1 T) and (in P2 T), because
meta-actions in PEx6

2 are constructed with f -sets of size 1.
For example, α(drive T A B),{(in P1 T)} adds π{(at T B)}
and π{(at T B),(in P1 T)}, but not π{(at T B),(in P2 T)}.
Thus, to achieve γ(c), both α(drive T A B),{(in P1 T)} and
α(drive T A B),{(in P2 T)} must be executed.

As a consequence of this fact, applying an arbitrary admissi-
ble heuristic h to Pm does not necessarily yield an estimate
that is admissible for P .

Application To Additive hm

Although the admissibility condition for cost partitionings is
the same no matter which admissible heuristic it is applied
to, what makes a good cost partitioning depends very much
on the heuristic.

Let P be a planning problem and C1, . . . , Ck a collection
of cost functions for Pm satisfying∑
i=1,...,k

(
max
αa,f

Ci(αa,f)
)
≤ cost(a) (6)

for each action a in P (note that the maximum is over meta-
actions representing a). Define the cost function Cmax

i for
P as Cmax

i (a) = maxαa,f
Ci(αa,f). The constraint on the

Ci’s (eq. 6) ensures that the collection Cmax
1 , . . . , Cmax

k is
an admissible cost partitioning for P . Thus, by theorem 3,
hmΣ =

∑
i=1,...,k h

m(Cmax
i (P)) is admissible for P .

Helmert & Domshlak (2009) describe a procedure that au-
tomatically creates a good admissible cost partitioning for
the additive h1 heuristic. The resulting additive heuristic is
guaranteed to be at least as good as h1, though this only for
the goal condition.

By enforcing the extra constraint (6), the same proce-
dure applied to Pm can be used to obtain cost partition-
ings for hm. The required modification is straightforward,
though the guarantee given by the original procedure is lost.
However, accuracy of the resulting heuristic hmΣ can still be
lowerbounded:

Theorem 7 h1
Σ =

∑
i=1,...,k h

1(Ci(Pm)) ≤ hmΣ .
Proof: Extend each Cmax

i to a cost function for Pm by
Cmax
i (αa,f) = Cmax

i (a). Clearly, h1(Cmax
i (Pm)) ≥

h1(Ci(Pm)), so
∑
i=1,...,k h

1(Cmax
i (Pm)) ≥ h1

Σ. By con-
struction, Cmax

i (Pm) = Cmax
i (P)m (recall that each rep-

resentative αa,f of action a in P has the same cost in
Pm as a does in P). By theorem 5, h1(Cmax

i (P)m) =
hm(Cmax

i (P)), so
∑
i=1,...,k h

1(Cmax
i (Pm)) = hmΣ . 2

A corollary to the above is that h1
Σ is also admissible for P .

Other Constructions
From the preceding discussion (example 6 in particular) it
should be clear that a problem Pm∗ satisfying both hm(P) =
h1(Pm∗) and h∗(P) = h∗(Pm∗) can be obtained simply by
not limiting the size of f -sets in the construction of meta-
actions (and defining their delete sets appropriately). Unfor-
tunately, the size of Pm∗ is exponential in the size of P as
well as in m. The same problem can be written compactly if
use of conditional effects is permitted: each meta-action αa
then combines the effects of action a with a conditional ef-
fect emulating a no-op for each atom p 6∈ (del(a)∪add(a)).
Pm∗ may be seen as the result of compiling away those con-
ditional effects, using the exponential-size but plan length-
preserving compilation scheme (Nebel 2000). Alternatively,
using the polynomial-size compilation scheme with linear
increase in plan length results in a construction that pre-
serves real plan costs but not exact hm values. However, it
does preserve information about unreachability (infinite hm
values).

References
Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: New results. In Proc. 5th European Conference on
Planning (ECP’99), 360–372.
Edelkamp, S. 2001. Planning with pattern databases.
In Proc. 6th European Conference on Planning (ECP’01),
13–24.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann Pub-
lishers. ISBN: 1-55860-856-7.
Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Proc.
20th National Conference on AI (AAAI’05), 1163–1168.
Haslum, P. 2006. Admissible Heuristics for Automated
Planning. Ph.D. Dissertation, Linköpings Universitet.
Helmert, M., and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: What’s the difference anyway? In
Proc. 19th International Conference on Automated Plan-
ning and Scheduling (ICAPS’09).
Katz, M., and Domshlak, C. 2008. Optimal additive
composition of abstraction-based admissible heuristics. In
Proc. of the 18th International Conference on Automated
Planning and Scheduling (ICAPS’08).
Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. Journal of AI Re-
search 12:271–315.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner,
A. 2008. A general theory of additive state space abstrac-
tions. Journal of AI Research 32:631–662.

