
Propagation of PDDL3 Plan Constraints

P@trik Haslum
Australian National University & NICTA Optimisation Research Group

firstname.lastname@anu.edu.au

Abstract

We present a sound, though incomplete, and tractable propa-
gation procedure for PDDL3 trajectory constraints, with the
aim of providing an inexpensive unsatisfiability test for sets of
such constraints. The propagator is supported by (tractable)
methods that derive additional constraints from the problem
description. It is applied to compute lower bounds on penalty
for problems with soft trajectory constraints (preferences).

Introduction
PDDL version 3 (Gerevini et al. 2009) introduced trajectory
constraints, a subset of linear temporal logic that can express
constraints on the sequence of states visited by the execution
of a plan, in addition to the constraint on the end state of
the sequence that is imposed by the planning goal. Given
a planning problem P and a set of trajectory constraints C,
the question we must answer is, is there a plan for P whose
induced state sequence satisfies C? This question is clearly
as hard as deciding if there is any plan at all for P , i.e.,
PSPACE-complete.

However, suppose we know that P has a plan, and that we
need to check not one set of trajectory constraints but a large
number of different sets of constraints. This situation arises,
for example, if the trajectory constraints are “soft”, i.e., pref-
erences rather than hard constraints, and we are searching
for a most preferred subset that is satisfiable w.r.t. P . We
should, at least in some cases, be able to infer that a con-
straint set C is unsatisfiable w.r.t. P without exhaustively
searching through all plans for P .

This paper presents an approach to this problem, in the
form of a sound but incomplete, and tractable, propagation
procedure for PDDL3 trajectory constraints. That is, given
a constraint set C, and some information extracted from the
problem P , the propagator computes additional constraints
that are implied by those given; if it finds an implied contra-
diction, we know thatC is unsatisfiable w.r.t. P . Because the
propagator reasons (mostly) not about the problem but only
about constraints extracted from it, time complexity scales
additively in the size of P and the number of constraint sets
to be tested.

This work is motivated by a specific example of the
kind of problem described above: The Rovers Qualititative-
Preferences domain from the 2006 International Planning

Competition. In this domain, the objective is to satisfy a
maximum weight subset of preferences over trajectory con-
straints. For each problem there is a plan that achieves the
hard goals, but the complete set of constraints can not be
simultaneously satisfied. Identifying subsets of constraints
that are contradictory (w.r.t. P) allows computing bounds
on the minimum penalty, due to unsatisfied preferences, of
any plan (Haslum 2007). My previous approach to testing
satisfiability of plan constraint sets was to compile the con-
straints into the problem and test for unsolvability with the
admissible hm heuristic. The disadvantage of this test is
that the complexity of computing hm depends on the size of
the problem (albeit only polynomially, for fixed m). As we
will demonstrate, this causes the propagation-based test to
scale up much better as the size of the problem grows: for
the largest instances, it is three orders of magnitude faster at
performing a single test. However, because the compilation-
based test is able to exploit properties of the hm heuristic
to amortise computation over several tests, the difference in
total runtime is only a factor 2.89 (median). On the other
hand, the propagation- and compilation-based methods are
complementary, in the sense that both find unsatisfiable sets
that the other cannot detect. Thus, lower bounds based on
the combined results of both methods are generally best.

PDDL3
PDDL3 (Gerevini et al. 2009) extends PDDL with two new
features: Preferences are “soft goals”, which may be either
normal, final state goals or preferences over trajectory con-
straints. Trajectory constraints are expressed using a set of
five modal operators, which may not be nested. The sat-
isfaction of a constraint is determined by the sequence of
states visited by a plan’s execution. Each PDDL3 operator
corresponds to a particular formula in linear temporal logic
(Pnueli 1977), provided a suitable interpretation of LTL over
finite state sequences (Bauer and Haslum 2010).

For ease of presentation, we consider here a standard
propositional STRIPS model of planning problems, without
negation. That is, a planning problem P consists of a set
of propositional atoms (V), a set of actions (A), and an ini-
tial state s0. A state (including s0) is an assignment of truth
values to the atoms in V , i.e., a propositional logic model.
Each action a is described by its precondition (pre(a)), add
(add(a)) and delete (del(a)) effects, which are all sets of

Constraint name ϕ ~s = s0, s1, . . . , sn |= ϕ iff...
(at-end α) Fα sn |= α
(always α) Aα ∀i si |= α
(sometime α) Eα ∃i si |= α
(at-most-once α) AMOα ∀i if si |= α then ∃j ≥ i ∀i ≤ k ≤ j sk |= α and ∀k > j sk 6|= α
(sometime-before α β) β SBα ∀i if si |= α then ∃j < i sj |= β
(sometime-after α β) β SAα ∀i if si |= α then ∃j ≥ i sj |= β
Never α Nα ∀i si 6|= α
Never β after α β NAα ∀i if si |= α then ∀j ≥ i sj 6|= β

Table 1: PDDL3 and auxiliary plan constraints.

atoms, interpreted as conjunctions. The action is applica-
ble in a state s iff s |= pre(a), and applying it leads to
a state s′ where all atoms in add(a) are true, all atoms in
del(a) − add(a) are false, and all other atoms retain their
value from s. Note that this definition of a planning problem
does not include a goal. PDDL3 has a special trajectory con-
straint for facts that must hold at the end of a plan execution.
Thus, the standard notion of a planning goal is subsumed by
the more general condition of satisfying a set of trajectory
constraints, defined below.

Every sequence of actions, ~a = a1, . . . , an, from A that
is executable from the initial state induces a corresponding
sequence of states, ~s = s0, s1, . . . , sn, visited by the execu-
tion. We call this an execution of P . PDDL3 trajectory con-
straints are evaluated over state sequences. We write ~s |= ϕ,
where ϕ is a trajectory constraint, if ~s satisfies ϕ. We also
write P |= ϕ if every execution of P satisfies ϕ. Given a
planning problem P and a set C of trajectory constraints,
we say that C is satisfiable w.r.t. P iff there exists an execu-
tion of P that satisfies each constraint in C.

The PDDL3 trajectory constraints and their satisfaction
conditions are summarised in Table 1. It also introduces
an abbreviation for each constraint, and two auxiliary con-
straints which will be useful in describing the propagation
algorithm. Note that PDDL3 does not allow nesting of
modal operators: the formulas α and β are only allowed to
be state formulas, i.e., Boolean formulas over V . To ensure
that implication between state formulas can be decided in
polynomial time, we assume that these formulas are single
atoms or sets of atoms (i.e., conjunctions). This is, however,
not an essential restriction of the propagation algorithm. If
support for general formulas is desired, we may either give
up tractability and use a complete SAT solver to decide im-
plication, or use some sound but incomplete polynomial-
time implication test. The only requirement on the test is
that it is closed under transitivity; that is, if the test proves
α→ β and β → γ, it must also prove α→ γ.

Note the asymmetry between the sometime-before and
sometime-after constraints: αSBβ requires α to hold
strictly before β is first achieved, while αSAβ requires α to
hold at the same time as or after any time that β is true. The
propagation procedure currently does not consider SA con-
straints. Some of the challenges and possibilities of making
inferences from such constraints are discussed later.

In the following we will use one additional notation: Da,
where a is an action. It is read “disallowed a”, and means

that a must not appear in any action sequence. It is not a
modal operator like in other trajectory constraints, but is im-
plied by those in some situations. For example, if the state
sequence must satisfy Nα and pre(a) → α, then a can not
be part of the corresponding action sequence. We use Da as
a shorthand for stating that some condition that prevents the
inclusion of a holds.

Inferring Constraints from the Problem
The propagation procedure works on a set of trajectory con-
straints, C. However, since the aim is to infer if the con-
straint set is inconsistent w.r.t. a planning problem, P , we
extract certain information from P , which is provided as in-
put to the propagator. This information is (mostly) expressed
as additional trajectory constraints.

This is an important design decision. Since the motivation
is to perform quick (in-)consistency tests on many different
trajectory constraint sets, the complexity of the test should
not depend (too much) on the size of P . It is acceptable to
perform relatively expensive (though still tractable) compu-
tation on P to extract information that is used by the test, but
not to repeat this computation for every constraint set that is
tested.

Mutual Exclusion Mutual exclusion, or “mutex” for
short, holds between two state formulas, α and β, iff there
is no reachable state in which both of them are true, i.e.,
P |= N(α∧β). We use the shorthand notation mutex(α, β).

Deciding mutual exclusion in general is as hard as solv-
ing the planning problem, but there are numerous meth-
ods for computing a sound but incomplete set of mutex
relations, using admissible heuristics or invariant-finding
methods (e.g. Gerevini and Schubert 1998; Rintanen 2000;
Helmert 2006). In the implementation of the propagator we
use the pair-wise atom mutex set found by the h2 heuristic.

Landmarks The concept of landmarks in planning was
first introduced by Porteous, Sebastia and Hoffmann (2001),
and have been used in many ways since. Informally, a land-
mark is “something that must happen at some point in any
plan”. Different varieties of landmarks have been defined,
where the “something” is a fact, formula or set of actions.

We consider a landmark relation between state formulas:
α is a landmark of β iff α must be achieved (strictly) be-
fore β in every execution of P . This is precisely the same
as saying that P |= αSBβ. Fact landmarks, in the usual

sense, are landmarks of the planning goal. Deciding if the
landmark relation holds between arbitrary state formulas is
again PSPACE-hard, but a sound approximation for single-
atom state formulas can be computed in polynomial time by
testing relaxed reachability of β in a problem modified by
removing α from the add effects of all actions and the ini-
tial state. Note that if α is true in s0 or β is unreachable
in the original problem, αSBβ holds trivially. Such trivial
relations are ignored.

The Never-After Relation P |= β NAα iff β does not
hold in, and cannot be achieved from, any reachable state
where α holds. This is a kind of extended mutex relation:
a normal mutex says that α and β cannot be true simultane-
ously, while β NAα says that if α ever was true, β can never
become true.

A sound but incomplete set of never-after relations be-
tween single atoms can be computed by relaxed reachability
tests. Let p be an atom and sp a state in which every atom
except those that are mutex with p is true: if q is not re-
laxed reachable from sp, then P |= q NA p. This is similar
to Vidal & Geffner’s (2004) computation of inter-action dis-
tances, but distinguishing only the case of infinite distance
(unreachability).

Conditional Constraints Relations between formulas,
like landmarks and never-after, are a consequence of lack
of choice. Generally, the more alternative ways there are of
achieving β, the fewer α’s will be landmarks of it. How-
ever, if actions are disallowed (because their preconditions
or effects contradict some constraint), choices narrow, and
new relations that previously did not hold may become valid.
For example, suppose there are two alternative plans for get-
ting from A to B: (go A C), (go C B) and (go A D),
(go D B). If, however, (go A C) is disallowed, there is
only one way and (at D) becomes a landmark of (at B).
If both (go A C) and (go A D) are disallowed, (at B)
becomes unreachable. This idea extends also to other types
of trajectory constraints.

Definition 1 〈ϕ,A〉, where ϕ is a trajectory constraint and
A a set of actions, is a conditional constraint of P iff ϕ holds
in every execution of P that does not include any action in
A.

That is, if all actions in A become disallowed, then the
constraint ϕ is satisfied by all remaining executions of P .
Equivalently,

P |=

∧
a∈A

Da

→ ϕ.

We also say that ϕ holds in P conditional on A.
We consider two types of conditional constraints: land-

marks, i.e., constraints αSBβ, and unreachability, i.e., con-
straints of the form Nα. The next proposition provides a
method to compute a sound, but not necessarily complete,
set of such conditional constraints, with single-atom state
formulas, without enumerating subsets of actions. It may

be that, for example, conditional never-after constraints also
exist in a problem, but we currently do not have an effective
method of finding them.

Proposition 2 Let p be an atom that is false in the initial
state, and Adds(p) = {a | p ∈ add(a)} the set of actions
that add p: 〈Np,Adds(p)〉 is a conditional (unreachability)
constraint of P .

Furthermore, for each q ∈
⋃

a∈Adds(p) pre(a), such that
q is not already a landmark of p, let Reqs(q) = {a | q ∈
pre(a)} be the set of actions whose preconditions include
q: 〈q SB p,Adds(p)−Reqs(q)〉 is a conditional (landmark)
constraint of P .
Proof: Since p is not initially true, some action in Adds(p)
must take place to make it true; hence, if these actions are
disallowed, Np must hold. Furthermore, if all actions in
Adds(p) − Reqs(q) are disallowed, all remaining actions
that add p have q in their precondition. Thus q must be
achieved before p. 2

Enumerating pairs of propositions p and q gives directly
a polynomial-time algorithm for computing conditional
landmarks and unreachability, since the sets Adds(p) and
Reqs(q) are immediate from action definitions.

In the example above, this algorithm will find that
(at D) is a landmark of (at B) conditional on
{(go C B)}, but it will not find that the same relation is
also conditional on {(go A C)}.

The Propagation Algorithm
Algorithm 1 presents the main propagation algorithm. Its
arguments are a set of trajectory constraints, C, and a set of
conditional (landmark and unreachability) constraints,X . C
is assumed to contain any non-conditional constraints (land-
mark and never-after relations) inferred from the problem.

The algorithm first infers state formulas that can never
hold in any execution that satisfies C (lines 4–23), repeating
a cycle of inferences until a fixpoint is reached, then infers
state formulas that must hold, at some point, in any execu-
tion (lines 24–25). All inferences are restricted to state for-
mulas that appear in the input. If there is a formula that must
hold but cannot, a contradiction has been found. Finally,
a separate check for inconsistencies with at-most-once
constraints is done. This is detailed in Algorithm 2.

The algorithm maintains two data structures: a set D of
disallowed actions and a directed graph G over the set of
state formulas that combines sometime-before relations
and implications. That is, there is an edge from α to β in
G iff either β SBα ∈ C or α → β. Note the direction of
the edge in the first case: it is from the “triggering side” of
the constraint, i.e., α. Both of these relations are transitive,
and the first step in the fixpoint loop (lines 9–11) is to add
any missing transitively implied SB relation (this assumes
that implications are already transitively closed). Whenever
a new constraint Eα or Nα is derived, it is propagated along
SB relations and implications. Likewise, when a new SB
constraint is derived, existing N constraints are propagated
through it.

Algorithm 1 Trajectory Constraint Propagation
1: procedure PROPAGATE(C,X)
2: Let F = {state formulas in C and X}.
3: Set D = {a | Aα ∈ C and

(∧
p∈del(a) ¬p

)
→ ¬α}.

4: for each Aα ∈ C do
5: for each β ∈ F such that mutex(α, β) do
6: ASSERTNEVER(β)
7: Set G = 〈F, {(α, β) | β SBα ∈ C or α→ β}〉.
8: repeat
9: for each (α, β), (β, γ) ∈ G do

10: if (α, γ) 6∈ G then
11: ASSERTSB(γ, α).
12: for each α, β ∈ F do
13: if αSBβ ∈ C and β SBα ∈ C then
14: ASSERTNEVER(α).
15: if αSBβ ∈ C and β NAα ∈ C then
16: ASSERTNEVER(β).
17: for each 〈αSBβ,A〉 ∈ X do
18: if A ⊆ D then
19: ASSERTSB(α, β).
20: for each 〈Nα,A〉 ∈ X do
21: if A ⊆ D then
22: ASSERTNEVER(α).
23: until no change.
24: for each Eα ∈ C and Fα ∈ C do
25: ASSERTSOMETIME(α).
26: if ∃α such that Eα ∈ C and Nα ∈ C then
27: return contradiction.
28: if ∃α, β s.t. αNAβ, β NAα,Eα,Eβ ∈ C then
29: return contradiction.
30: if not CHECKAMO(C, D) then
31: return contradiction.
32: return C.

33: procedure ASSERTSB(α, β)
34: Add αSBβ to C and (β, α) to G.
35: if Nα ∈ C and Nβ 6∈ C then
36: ASSERTNEVER(β).

37: procedure ASSERTNEVER(α)
38: Add Nα to C.
39: for each action a do
40: if pre(a)→ α or add(a)→ α then Add a to D.
41: for each αSBβ ∈ C do
42: if Nβ 6∈ C then ASSERTNEVER(β).
43: for each β ∈ F such that β → α do
44: if Nβ 6∈ C then ASSERTNEVER(β).

45: procedure ASSERTSOMETIME(α)
46: Add Eα to C.
47: for each β SBα ∈ C do
48: if Eβ 6∈ C then ASSERTSOMETIME(β).
49: for each β ∈ F such that α→ β do
50: if Eβ 6∈ C then ASSERTSOMETIME(β).

A cyclic SB relation becomes unsatisfiable if any formula
in the cycle is ever true. Similarly, a cycle between SB and
NA relations implies that the trigger formula can never hold.
When a state formula is proven unachievable (i.e., Nα is de-
rived), the set of disallowed actions is updated with actions
whose preconditions or add effects imply the formula (sub-
routine ASSERTNEVER, lines 39–40). The last step in the
fixpoint loop (lines 17–22) is to check if the set of disallowed
actions triggers any conditional constraint, which may result
in further SB or N constraints becoming active.

Proposition 3 If implications derived between state formu-
las are closed under transitivity, PROPAGATE is correct.
Proof: The correctness of the CHECKAMO procedure is
shown separately in Proposition 4 below. Hence, we con-
sider only other inferences made by PROPAGATE:

Line 3: Aα and
(∧

p∈del(a) ¬p
)
→ ¬α entail Da.

If a appears in the action sequence, then the negation of
every atom in del(a) holds in the state immediately after.
If this implies ¬α, clearly α does not hold in every state,
contradicting Aα.
Lines 4–6: Aα and mutex(α, β) entail Nβ. Obvious.
Lines 9–11: Since implications are already transitively
closed, both edges (α, β) and (β, γ) cannot be implications;
thus at least one of β SBα and γ SBβ is in C. If both are,
then for any state sequence ~s satisfying C, if si |= α there
exists a j < i such that sj |= β (otherwise ~s 6|= β SBα), and
therefore there exists a k < j such that sk |= γ (otherwise
~s 6|= γ SBβ). Thus, if any state satisfies α there must be an
earlier state satisfying γ. Hence ~s |= γ SBα.

Suppose β SBα is in C and β → γ. If si |= α, there is
a j < i such that sj |= β; by the implication sj |= γ as
well. If instead γ SBβ is in C and α → β, then if si |= α,
then si |= β by implication; thus there is a j < i such that
sj |= γ.
Lines 13–14: αSBβ and β SBα entail Nα. By the transi-
tivity of SB shown above, the cyclic SB relation implies
αSBα. This implies that if α is ever true, it would also have
to be true in an earlier state; thus, there can be no first state
in which α holds. Hence, α holds in no state. (The cycle
also entails Nβ, but this is added by ASSERTNEVER.)
Lines 15–16: αSBβ and β NAα entail Nβ. Suppose ~s |=
{αSBβ, β NAα}, and that si |= β for some state si in ~s.
There is a j < i such that sj |= α (otherwise ~s 6|= αSBβ).
But since ~s |= β NAα, this implies sk 6|= β for all k ≥ j.
Hence si 6|= β.

Lines 17–22: If ϕ holds conditional on A, then(∧
a∈A Da

)
→ ϕ by definition.

Line 24–25: Goals that must hold in the final state (Fα) must
also hold at some point in the execution.
Lines 26–27: Eα and Nα are contradictory. This is immedi-
ate from their definitions in Table 1.
Lines 28–29: αNAβ and β NAα entail ¬Eα∨¬Eβ. αNAβ
and β NAα means that α and β are mutex, i.e., that there is
no reachable state in which both are true. Thus, they cannot
be achieved at the same time. If α becomes true at any point,

Algorithm 2 Checking at-most-once Constraints
1: procedure CHECKAMO(C,D)
2: Set AMO Acts = ∅. // AMO Acts is a set of sets
3: for each AMOα ∈ C do
4: if s0 |= α then
5: Add ActChF(α) to AMO Acts.
6: Set D = D ∪ActChT(α).
7: else
8: Add ActChF(α) and ActChT(α) to AMO Acts.
9: Let Cands = {p | s0 6|= p,∃Eα ∈ C : α→ p}.

10: Set sets = ∅. // sets is a set of sets of sets
11: for each p ∈ Cands do
12: Let sets(p) be the smallest {A1, . . . , Am} ⊆

AMO Acts s.t. (Adds(p)−D) ⊆
⋃

i=1,...,mAi.
13: Add sets(p) to sets.
14: for each S = {A1, . . . , Am} ∈ sets do
15: Let R = {p | sets(p) = S}.
16: Let G = 〈R, {(p, q) | ∃a 6∈ D : p, q ∈ add(a)}〉.
17: Let R′ = APXINDEPENDENTSET(G).
18: if |R′| > |S| then
19: return false.
20: return true.

β cannot be achieved later, and vice versa. Hence, at most
one of Eα and Eβ can be satisfied.
Lines 35–36, 41–42: αSBβ and Nα entail Nβ. If si |= β
for any i, there must be a j < i such that si |= α. This
contradicts Nα.
Lines 39–40: Nα and pre(a) → α entail Da; Nα and
add(a) → α entail Da. If a appears in the action sequence,
pre(a) holds in the state where it is applied and add(a) in
the state immediately after. If either implies α, this contra-
dicts Nα.
Lines 43–44: Nα and β → α entail Nβ. Obvious.
Lines 47–48: Eα and β SBα entail Eβ. If ~s |= Eα then
si |= α for some state si in ~s. Since ~s |= β SBα, this
implies that sj |= β for some j < i. Hence ~s |= Eβ.
Lines 49–50: Eα and α→ β entail Eβ. Obvious. 2

The AMOα constraint states that α may be true in at
most one contiguous subsequence of states. That is, if α
is true at some point and later becomes false, it may not
become true again. The procedure for checking unsatis-
fiability of this constraint type, shown in Algorithm 2, is
based on counting. Each state formula α that appears in
an AMO constraint is associated with two sets of actions:
ActChF(α) = {a | pre(a) → α,

(∧
p∈del(a) ¬p

)
→ ¬α}

and ActChT(α) = {a | mutex(pre(a), α), add(a) → α}.
Actions in ActChF(α), when applied, necessarily change
the value of α from true to false, and actions in ActChT(α)
change it from false to true. The AMOα constraint implies
that at most one action in each of these sets can appear in any
plan. (In fact, if α is initially true, no action in ActChT(α)
can appear in the plan.) Next, we find a set of atoms that are
not initially true but implied by existing E constraints, i.e.,

atoms that must be achieved at some point, and such that the
set of still allowed actions that add each of them is covered
by the union of at-most-once action sets, ActChF(α) and
ActChT(α), where AMOα ∈ C. These atoms are grouped
into sets whose achievers are covered by the same at-most-
once action sets, and from each a subset such that no ac-
tion adds two atoms in the subset is found. This amounts
to solving a independent set problem over the (undirected)
graph that has the atoms in the set as nodes and an edge be-
tween two atoms iff there is a, still allowed, action that adds
both. Since finding a maximal independent set is NP-hard,
it is solved with an approximation algorithm (Boppana and
Halldórsson 1992). If the size of such a set is greater than the
number of at-most-once action sets that covers its achievers,
we have a contradiction.

Proposition 4 If CHECKAMO(C,D) returns false, no se-
quence of actions satisfies C ∪ {Da | a ∈ D}.
Proof: We first establish that any sequence of actions
a1, . . . , an satisfying AMOα:
(1) contains at most one action from ActChF(α);
(2) contains at most one action from ActChT(α); and
(3) if s0 |= α, contains no action from ActChT(α).
Suppose ai and al (i < l) both belong to ActChF(α). By
construction of ActChF(α), this means si−1 |= α, si 6|= α,
sl−1 |= α, and sl 6|= α. Note that l − 1 > i, since si and
sl−1 cannot be the same state. However, since si−1 |= α,
the AMOα constraint requires that there is a j ≥ i − 1 such
that sk |= α for all i− 1 ≤ k ≤ j and sk 6|= α for all k > j.
Any choice of j > i − 1 violates the first condition, since
si 6|= α. But chosing j = i−1 violates the second condition,
since sl−1 |= α and l − 1 > i− 1. This shows (1).
For (2), suppose ai and al (i < l) both belong to
ActChT(α). Similar to the previous case, this means
si−1 6|= α, si |= α, sl−1 6|= α, and sl |= α. By the same
argument as above, this contradicts AMOα.
For (3), suppose s0 |= α and that ai belongs to ActChT(α).
This means si−1 6|= α and si |= α. Note that i > 1, since
s0 and si−1 cannot be the same state. Since s0 |= α and
si−1 6|= α sk 6|= α must hold for all k > i− 1 for AMOα to
be satisfied. But this is contradicted by si |= α.
Suppose the condition of the if statement on line 18, |R′| >
|S|, is true. From (1) and (2) above, no more than |S| ac-
tions from the set

⋃
Ai∈S Ai can appear in any action se-

quence satisfying C. Also to satisfy C, each atom in R′

must be achieved. Since no action adds more than one atom
in R′, this means at least |R′| actions that add some atom in
R′ must take place. But all actions that add some atom in
R′ and that are not disallowed are contained in

⋃
Ai∈S Ai.

Clearly, no action sequence can contain both at least |R′|
and at most |S| actions from this set. 2

Proposition 4 refers only to sequences of actions. Since
PDDL3 constraints are evaluated over the sequence of states
visited by a plan, they can, in some situations, be satisfied
by a parallel plan even when not satisfiable by any sequen-
tial plan, because the parallel plan does not visit the states
that occur where parallel actions are interleaved (Gerevini

et al. 2009, Section 2.4.2). However, no two actions in
ActChF(α) can occur in parallel, since they all destroy
each other’s preconditions. Likewise, no two actions in
ActChT(α) can take place in parallel: Since α holds after
applying any action in ActChT(α), the action must destroy
the precondition of every action in ActChT(α), as other-
wise the mutex relation between α and those preconditions
would not hold. Hence, contradictions found by CHECK-
AMO are valid also if we consider parallel plans.

Evaluation
The trajectory constraint propagator was designed with the
problem of computing lower bounds for problems in the
Rovers QualitativePreferences domain in mind, so it is nat-
ural to test it in this setting. Some limitations of the current
implementation (e.g., that all state formulas are atoms, and
not considering sometime-after constraints) are also due
to this particular problem set.

The method previously used to test unsatisfiability of a
constraint set (Haslum 2007) was to compile the constraints
into the problem, i.e., to create a modified problem P ′ such
that any plan for P ′ satisfies the constraints, and check un-
solvability of the resulting problem with the hm admissible
heuristic (Haslum and Geffner 2000), with m = 1 or 2. The
compilation is also somewhat specialised for the constraints
that appear in the Rovers QualitativePreferences problem
set, and for use with the hm test for unsolvability.

With both tests, unsatisfiable constraint sets are found by
simply enumerating and testing subsets of constraints in the
problem in order of increasing size, skipping sets that con-
tain a subset already proven unsatisfiable. End-state goals
(at-end constraints) are included in every test. With the
compilation-based test, sometime constraints are treated in
a special way for efficiency reasons. As a result, the two
methods do not test the exact same subsets of constraints.

Compilation of Trajectory Constraints
PDDL3 trajectory constraints can be compiled away, with a
polynomial increase in problem size (Gerevini et al. 2009).
The compilation used in the proof of this is based on con-
verting the constraint to an automaton, accepting exactly
the state sequences that satisfy the constraint, encoding the
automaton into the problem, and posing its acceptance as
a goal. Variations of this compilation have been used in
some planners supporting PDDL3 (e.g. Edelkamp 2006;
Baier and McIlraith 2006).

The compilation we have used is simplified, mainly by
restricting it to trajectory constraints in which state formu-
las are single atoms. It is also somewhat tailored to support
inference by the hm heuristic, which is used to detect un-
solvability of the compiled problem. We assume that the
constraints to be tested are not trivially satisfied or contra-
dicted, e.g., for Ap that p is not initially false and for Ep and
pSB q that p is not initially true. The compiled problem, P ′
is an ordinary planning problem, with an end-state goal. For
each constraint, P ′ is modified as follows:
Fp: p becomes a goal.
Ap: Remove from P ′ any action with p ∈ del(a).

0
.0

1
.0

2
.0

Problem (increasing size)

S
e
c
o
n
d
s
 /
 t
e
s
t Compilation + h^2

Propagation

Figure 1: Time per unsatisfiability test, using compilation
and the h2 heuristic and using propagation.

Ep: Add a new atom had-p, and add had-p to the add effects
of any action with p ∈ add(a). had-p becomes a goal.
pSB q: Add a new atom had-p, and add had-p to the add
effects of any action with p ∈ add(a). Add had-p to the
precondition of any action with q ∈ add(a).
AMOp: First, for each action that adds or deletes p, ensure
the action is “toggling” w.r.t. p. That is, if the action deletes
p, its precondition must include p and if it adds p its precon-
dition must be mutex with p. This property can be enforced
by splitting non-toggling actions into two cases (Hickmott
et al. 2007). Next, add a new, initially true, atom first-p, and
add first-p to the delete effects of any action with p ∈ del(a),
and to the precondition of any action with p ∈ add(a).
Testing a constraint set C with the compilation-based
method proceeds in three steps: First, the constraints are
compiled to produce problem P ′. Second, the hm heuristic
is computed from the initial state of this problem. Third, the
problem goals are evaluated with the heuristic. If hm(G′) =
∞, whereG′ is the goal set of P ′, C is unsatisfiable w.r.t. P .

The first two steps are relatively time-consuming, while
the last is very quick. The hm heuristic approximates the
cost of achieving a set (i.e., conjunction) of atoms of size
greater than m by the cost of the most expensive subset of
size m. Thus, if |G′| > m, hm will only detect unsolv-
ability if there is a m-subset of G′ that is also unsolvable.
This is the reason for the special treatment of sometime
constraints: Since these are translated into end-state goals, it
is not necessary to perform a separate compilation for each
subset of them. Instead, all sometime constraints (together
with some subset of other constraints) are compiled, and
each subset of at most m of them (together with at-end
goals) tested in the heuristic evaluation step.

Results
There are 20 problems in the test set. The number of soft
trajectory constraints varies from 14 to 274, and tends to
increase with problem size. The compilation-based test is
applied to every subset of at most 2 constraints of types other
than sometime, and every combination of one of these sets
with at most m sometime constraints. The propagation-
based test is applied to every subset of at most 3 constraints.
For the largest problem that is potentially over 20 million
tests. However, because sets that contain a subset already
proven to be unsatisfiable are skipped, only 3.4 million tests

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Propagator

Compilation + h^2

Compilation + h^1

l.
b
.

a
s
 %

 o
f

h
ig

h
e

s
t

l.
b
.

0
2

0
4

0
6

0
8

0
1

0
0

Figure 2: Lower bounds computed from unsatisfiable con-
straint sets found by the propagation-based and compilation-
based tests, as a percentage of the highest lower bound for
each problem. The highest lower bound was obtained by
combining the results of both tests.

are actually needed for this problem.
The propagation-based test is faster than the compilation-

based test with the h2 heuristic, and although it does grow
with problem size, it does so much more slowly. The dif-
ference ranges from about 10 times faster to over 1000
times faster on the largest problems. This is shown in
Figure 1. However, because of the separate treatment of
sometime constraints, the compilation-based method per-
forms far fewer tests. As a result, the reduction in total run-
time is only a factor that ranges from 1.85 to 4.77 (median
2.89). On two problems, the compilation-based method is
faster (by a factor less than 2).

The compilation-based test with h2 is generally more
powerful than the propagation-based method: it finds more
unsatisfiable constraint sets for 15 problems, and a higher
lower bound for 17 problems. The lower bounds computed
from the unsatisfiable sets found by the propagation-based
method are, however, not far below: with the exception of
two problems, they are above 75% of higher bound. There
is, however, also a strong complementarity between the two
methods: For 16 of the 20 problems, both methods find some
unsatisfiable set that is not found by the other, and for 14
problems, the lower bound computed from the union of un-
satisfiable sets found by both methods dominates the bounds
produced by either method alone. Figure 2 displays this in
detail. The majority of unsatisfiable constraint sets found by
propagation but not with compilation and h2 include at least
one at-most-once constraint. This is because the CHECK-
AMO procedure can find contradictions implied by a more
than two subgoals, as shown by the following example.

Example 1 Rovers QualitativePreferences problem #6 has,
i.a., the following goals1:

(1) (sent-image obj0 col)
(2) (sent-image obj0 LR)
(3) (sent-image obj1 LR)

To achieve a sent-image goal, some rover must take the

1The names of some predicates have been changed to shorten
them, and to make the example easier to grasp.

image (achieving (have-image ?rover ?obj ?mode)),
and then send it. The take-image action, requires, among
other preconditions, (calibrated ?camera), which is
also deleted by the action (i.e., a camera must be recalibrated
before each photo), and (supports ?camera ?mode).

In problem #6, there are two rovers, rover0 and rover1.
rover0 has two cameras, cam0 and cam1, which support
both image modes; rover1 has one camera, supporting only
mode col. Thus, landmark analysis infers the constraints

(4) (sometime-before (sent-image obj0 LR)
(have-image rover0 obj0 LR))

(5) (sometime-before (sent-image obj1 LR)
(have-image rover0 obj1 LR).

Now, consider the constraints
(6) (at-most-once (calibrated cam0))
(7) (at-most-once (calibrated cam1))
(8) (sometime (have-image rover0 obj0 col).

From (2) and (4), and (3) and (5), the propagator derives
(9) (sometime (have-image rover0 obj0 LR))

(10) (sometime (have-image rover0 obj1 LR)).
Hence, the set Cands in CHECKAMO contains, i.a.,
p1: (have-image rover0 obj0 LR)
p2: (have-image rover0 obj1 LR)
p3: (have-image rover0 obj0 col)

A1 = ActChF((calibrated cam0)), the set of ac-
tions that change (calibrated cam0) from true to false,
consists of all take-image actions using cam0; likewise,
A2 = ActChF((calibrated cam1)) consists of all
take-image actions using cam1. Since these are the only
two cameras on rover0, these two sets together contain
all actions that add each of the three candidate atoms; thus
sets(pi) = {A1, A2} for i = 1, 2, 3. Thus, we have
S = {A1, A2}, and R = {p1, p2, p3}. Since no action adds
more than one of the candidate atoms, the independent set
problem is trivial (the graph has no edges), soR′ = R. Since
|R′| = 3 > 2 = |S|, CHECKAMO finds a contradiction.

The propagation-based test also finds a few contradictions
involving more than two sometime-before constraints.
The compilation-based test with the h1 heuristic is fast, but
also much weaker.

Discussion
The design goal for the PDDL3 propagator was to have a
sound, though incomplete, test for unsatisfiability of a tra-
jectory constraint set w.r.t. a planning problem, whose time
complexity is not strongly related to the size of the prob-
lem. This led to a two-stage approach, where relevant in-
formation is extracted from the problem in a preprocess-
ing step, and passed to the propagator in the form addi-
tional constraints. Results on problems from the IPC 2006
Rovers QualitativePreferences domain confirm that this goal
has been largely met.

A limitation of the current propagator is that it makes
no use of sometime-after constraints. This constraint
stands out in that it is the only one that is not finitely sat-
isfiable. For any constraint set C that does not include a
sometime-after constraint, if C is satisfied by any execu-
tion of a problem P , it is also satisfied by a finite execution:

Because the number of possible states is finite, in any in-
finite execution there is an index i such that all states that
appear in the sequence appear in the finite sequence up to
i, and this finite sequence satisfies all constraints in C. The
sometime-after constraint does not have this property: If
α and β are mutually exclusive state formulas, the constraint
set {αSAβ, β SAα} is satisfied by a state sequence that al-
ternates infinitely between states where α and β hold, but it
is not satisfied by any finite sequence.

Like SB , the SB constraint is transitive: β SAα and
γ SAβ entail γ SAα. It is also propagated by implication,
from the right-hand side to the left. Because it is not strict,
however, a cycle of SA constraints do not entail that the
state formulas in the cycle can never hold. From αSAβ and
β SAα we can only infer that in any finite execution, α ∧ β
must hold at some point. Applying this inference rule would
mean that the set of state formulas handled by the propaga-
tion algorithm is no longer restricted to those that appear in
its input; in fact, it may grow exponentially. Of course, we
could limit inference to checking whether any pair of state
formulas that appear in a SA -cycle are mutex.

To the best of my knowledge, this is the first approach
aimed specifically at proving the unsatisfiability of PDDL3
trajectory constraints. Most planners have dealt with such
constraints by compiling them away. An exception is the
work of Bienvenu, Fritz and McIlraith (2006), which deals
with preferences over trajectory constraints (more general
than those expressible in PDDL3) using progression. Their
optimistic evaluation provides a lower bound, but a rather
weak one, since it assumes that any constraint that has not
been irrecoverably violated by the state sequence so far will
be satisfied. Baier, Bacchus and McIlraith (2009) describe
an admissible heuristic, based on delete-relaxed plans, for
planning with preferences. In combination with compilation
it can provide lower bounds for problems with soft trajec-
tory constraints, probably comparable to those obtained us-
ing the compilation described above with the h1 heuristic.
Resolution-based proof procedures for the full linear tempo-
ral logic have been developed in the area of formal methods
(Fisher, Dixon, and Peim 2001). These methods are com-
plete, and hence necessarily of high complexity.

Although the propagator is designed to prove unsatisfi-
ability of trajectory constraints w.r.t. a planning problem,
it could potentially also detect unsolvability of a problem
without trajectory constraints, by applying it to just the con-
straints extracted from the problem and the problem’s goal.

Acknowledgements NICTA is funded by the Australian
Government represented by the Department of Broadband,
Communications and the Digital Economy and the Aus-
tralian Research Council through the ICT Centre of Excel-
lence program.

References
Baier, J., and McIlraith, S. 2006. Planning with first-order
temporally extended goals using heuristic search. In Proc.
21st National Conference on AI (AAAI’06).
Baier, J.; Bacchus, F.; and McIlratih, S. 2009. A heuristic

search approach to planning with temporally extended pref-
erences. Artificial Intelligence 173(5–6):593–618.
Bauer, A., and Haslum, P. 2010. LTL goal specifications
revisited. In Proc. 19th European Conference on Artificial
Intelligence (ECAI’10).
Bienvenu, M.; Fritz, C.; and McIlraith, S. 2006. Planning
with qualitative temporal preferences. In Proc. 10th Inter-
national Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’06), 134–144.
Boppana, R., and Halldórsson, M. 1992. Approximating
maximum independent sets by excluding subgraphs. BIT
32(2).
Edelkamp, S. 2006. On the compilation of plan constraints
and preferences. In Proc. of the 16th International Confer-
ence on Automated Planning and Scheduling (ICAPS’06),
374–377.
Fisher, M.; Dixon, C.; and Peim, M. 2001. Clausal tempo-
ral resolution. ACM Transactions on Computational Logic
2(1):12–56.
Gerevini, A., and Schubert, L. 1998. Inferring state con-
straints for domain-independent planning. In Proc. 15th Na-
tional Conference on Artificial Intelligence (AAAI’98), 905–
912.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth in-
ternational planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In Proc. 5th International Conference on
Artificial Intelligence Planning and Scheduling (AIPS’00),
140–149. AAAI Press.
Haslum, P. 2007. Quality of solutions to IPC5 benchmark
problems: Preliminary results. In ICAPS’07 Workshop on
the IPC.
Helmert, M. 2006. The Fast Downward planning system.
Journal of AI Research 26:191–246.
Hickmott, S.; Rintanen, J.; Thiébaux, S.; and White, L.
2007. Planning via Petri net unfolding. In Proc. 20th In-
ternational Conference on Artificial Intelligence (IJCAI’07),
1904–1911.
Pnueli, A. 1977. The temporal logic of programs. In Proc.
of the 18th Symposium on Foundations of Computer Science
(FOCS’77), 46–57.
Porteous, J.; Sebastia, L.; and Hoffmann, J. 2001. On the
extraction, ordering and usage of landmarks in planning. In
Proc. 6th European Conference on Planning (ECP’01).
Rintanen, J. 2000. An iterative algorithm for synthesizing
invariants. In Proc. 17th National Conference on Artificial
Intelligence (AAAI’00), 806–811.
Vidal, V., and Geffner, H. 2004. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. In Proc. 19th National Conference on Artificial
Intelligence (AAAI’04), 570–577.

