Deterministic Planning in the Fifth International Plangin
Competition: PDDL3 and Experimental Evaluation of the
Planners

Alfonso E. Gerevini Patrik Haslumi Derek Long” Alessandro Saetti
Yannis Dimopoulo$
* Dipartimento di Elettronica per I’Automazione, Univegsidegli Studi di Brescia, Brescia, Italy
° NICTA & The Australian National University, Canberra, Atedia
Department of Computer and Information Sciences, UniteddiStrathclyde, Glasgow, UK
T Department of Computer Science, University of Cyprus, Qgpr
*{gerevini,saetti}@ing.unibs.it patrik. haslum@anu.edu.&tderek.long@cis.strath.ac.dkyannis@cs.ucy.ac.cy

Abstract

The international planning competition (IPC) is an impottdriver for planning research. The
general goals of the IPC include pushing the state of thengstanning technology by posing new
scientific challenges, encouraging direct comparisonarfiping systems and techniques, developing
and improving a common planning domain definition language, designing new planning domains
and problems for the research community. This paper focagdeie deterministic part of the fifth
international planning competition (IPC5), presenting llinguage and benchmark domains that we
developed for the competition, as well as a detailed expantal evaluation of the deterministic
planners that entered IPC5, which helps to understand alte st the art in the field.

We introduce an extension ebbpL, calledPDDL3, allowing the user to express strong and soft
constraints about the structure of the desired plans, asasedtrong and soft problem goals. We
discuss the expressive power of the new language focusirtgeorestricted version that was used
in IPC5, for which we give some basic results about its coatfylity into PDDL2. Moreover, we
study the relative performance of the IPC5 planners in tevhs®lved problems, CPU time, and plan
quality; we analyse their behaviour with respect to the wisrof the previous competition; and we
evaluate them in terms of their capability of dealing witlitgmals and constraints, and of finding
good quality plans in general. Overall, the results indicgsignificant progress in the field, but they
also reveal that some important issues remain open andedquiher research, such as dealing with
strong constraints and computing high quality plans in imé¢tme domains and domains involving
soft goals or constraints.

Keywords: Keywords: Automated Planning, Planning Systems, PDDanRihg Languages, Knowledge Repre-
sentation in Planning, Preferences in Planning, Plan @aingt, International Planning Competition, Benchmarks
for Planning, Experimental Evaluation of Planning Systems

1 Introduction

The international planning competition (IPC for short) isienportant driver for research in Al plan-
ning that is biennially held in conjunction with the Intetimmal Conference on Automated Planning
and Scheduling. The general goals of the IPC include pughimgtate of the art in planning technol-
ogy by posing new scientific challenges, encouraging andwcting direct comparison of planning
systems and techniques, developing and improving a comr@aming domain definition language,
PDDL [29, 36, 41], and designing new planning domains and problemthe research community that
are increasingly realistic. This paper focuses on the detestic part of the fifth international planning
competition (IPC5 for short), which is the classical partled competition addressing planning prob-
lems where the initial state is completely specified and éhevant effects of the available actions are

deterministic. We present the language and benchmark dendaiveloped for the competition, and a
detailed experimental evaluation of the deterministiopks that entered IPC5.

While IPC5 shares the same general goals of the previousipigieompetitions, it has some im-
portant novel features making this event significantlyetiit from the previous competitions [1, 41,
50, 51]. In particular, the deterministic track of IPC5 erapises the importance of plan quality, which
is crucial in many applications, but which previously didt meceive sufficient attention. Motivated
by a desire to capture plan quality, a significant new vergibrDDL, calledPDDL3, has been de-
signed.pbDL3 includes some new constructs that can better charactgaseguality by allowing the
user to express both strong and soft constraints on thetsteuof the desired plan®bbpL3 also in-
cludes soft problem goals through which we can express cwestrained planning problems (called
“over-subscription” problems in [15, 23, 62]).

Plan trajectory constraints are particular linear templwgic formulae expressing constraints on
possible actions in the plans and on intermediate statebeezy the plans (such constraints are also
known as “temporally extended goals” [2, 5]). Soft goals andstraints are preferences that we wish
to satisfy in order to generate a good plan, but that do no¢ lt@be achieved in order for the plan
to be correct. Strong plan constraints, in contrast, exppgsperties that the acceptable plans must
satisfy. Moreover, they allow the user to provide controbktedge to domain-independent planners
supporting the extendeebDL language. By adding them as goal conditions, we can prevelainaer
from exploring parts of the plan space, as, e.g., in [3, 48ksibly making its exploration faster or
guiding the planner towards better quality solutions. Tikisot the way plan constraints were used in
IPC5, but such possible use is another motivation for intoialy them intcPDDL.

Dealing with (strong or soft) plan trajectory constraintslaoft goals poses a new challenge to fully
automated planning. While soft constraints have been sitely studied in the CSP literature (e.g.,
[9, 24, 60]), only recently has the planning community gdto investigate them [14, 15, 21, 53, 62, 63].
When using soft constraints and goals, it can be useful te different importance to them. For this
purpose,pDDL3 allows the domain modeler to assign different penaltiegiotated constraints and
unachieved goals.

In order to make the language extensions more accessibtdorompetitors, IPC5 used a first
version ofPDDL3, calledpPbDL3.0, where we have imposed some simplifying restrictionshsas a
limited form of modal operator nesting in the specificatidtrajectory constraints. While there is more
than one way to specify the importance of a soft constraigoat, as a first attempt to tackle this issue,
in PDDL3.0 we have chosen a simple quantitative approach: each@wdtraint and goal is associated
with a numerical weight representing the cost of its viaatin a plan (and hence also its relative
importance with respect the other specified soft conssant goals). Weighted soft constraints and
goals are part of the plan metric expression, and the bedityyptans are those optimising such an
expression. Using this approach we can express that cettais are preferred to others.

In order to evaluate the performance of the competing plemniee organisers of IPC5 developed
several new planning domains and a large collection of nevelw@ark problems over these domains,
that can also serve as a reference for future research. Sbthe new domains are inspired by new
applications of planning technology, e.g., to problems ofauular biology, or to known problems that
have been investigated in other fields of computer scienge) as the travelling purchaser problem
studied in operations research.

A total of twelve planners entered IPC5. Even though theynditlall attempt all of the problems,
the size of the resulting data set is substantial. Given ithgeld amount of time available during
the competition for analysing these results and assigriegatvards, the organisers of IPC5 used an
informal evaluation method similar to the one used for thevimus competition [41], with the main
difference that the evaluation criteria focused on the nemnolbsolved problems and plan quality, rather
than CPU time and scalabililyThe winners of IPC5 were: kx PLAN and SATPLAN (version 2006)
for the propositional optimal planning subtrack, and S@R5 for satisficing (sub-optimal) planning

1A detailed description of the IPC5 evaluation criteria ugedssign the IPC5 awards is available on the competitiorsitesh
ipc5.ing.unibs.it.

subtrack [13F In this paper, we analyse the performance of the IPC5 planmere rigorously, and
much more in detail, in terms of their relative performanagyancement with respect to the state-of-
the-art in fully-automated deterministic planning syssemnd qualities of the solutions found for the
IPC5 benchmarks.

In summary, the main contributions of our work are:

e An extension of theeDDL language that supports soft goals and soft and strong séggetory
constraints representing temporally extended goals;

e Some basic results about the expressiveneso0i3.0 and its compilability into the previous
versions of the language;

e A detailed evaluation of the relative performance of thelw@dPC5 planners, for each domain
category involving different fragments ebDL3.0;

e An evaluation of the performance of the IPC5 winners witlpezs to the winners of the previous
IPC and of the quality of solutions they computed;

e A collection of new benchmarks for testing planning alduris and systems for problems speci-
fied with bothpPDDL3.0 andPDDL2.

The paper is organised as follows. Section 2 introdeaasL3 focusing especially oabbL3.0, and
it gives some basic results about the compilability of thes features ofPbDL3.0. In Section 3, we
present the test domains that we developed for IPC5. In@edtiafter a very brief description of the
IPC5 planners, we analyse in detail their performance.Ilyiria Section 5, we summarise the results
and give the conclusions.

2 The PDDL3 Language

The planning domain description languagepL, was first proposed by Drew McDermott for the first
international planning competition in 1998 [36]. The lange was based on Lisp syntax, using a
structure based on the widely used variantssoRIPS notations. Establishing a common standard
language has had a similar impact on planning research agtbduction of standards in other areas of
research: it opens the route to stronger collaboratiorh@&xge of tools, techniques and problems and
provides a platform for comparative evaluation of appr@aciThe language has been, from the outset,
strongly linked to the competition series, with developisen the language being seen as drivers for
the direction of the competition challenges.

PDDL has been extended in several stages, in order to captureerpressive variants. The sig-
nificance and impact of these changes is described belowedtiod 2.1. There have been several
explorations of the expressive power of the different vaisaof PDDL, mainly concentrated on the no-
tion of compilability. Recent results include a demonsbrathat temporal features can be compiled
away in polynomial work, subject to certain constraints be torms of concurrency that can appear
in the problem [59], while others have examined the comgitstof conditional effects, timed initial
literals and domain axioms [28, 54, 65].

For the fifth planning competitiorrDDL was extended to include two important new features [31,
32]. Thefirstis the ability to express goals that apply ndy émthe final state of the trajectory of states
visited by a plan, but also to the intermediate states. Theaks take the form of trajectory constraints,
familiar from work on temporal logics. The second exteng®the ability to express soft constraints,
or preferences.

Both of these extensions to the language are motivated byesiee to see planning bridge the gap
between research and application. Many real problems metjug specification of goals that are more
complex than be easily expressed in earlier versiorsoafL. These include constraints on the states
that a plan visits as well as on the state in which it finishéscah also be important to specify the

2The term “satisficing”, introduced for planning in [41], Hasen largely adopted in the planning community for planiteas
do not offer any guarantee about the quality of the plans toaypute. While some satisficing planners aim to find plansofig
quality, many others ignore the quality aspect completgiying only to find a solution plan as quickly as possible.

relative benefits of different, perhaps conflicting, ddsieeconditions that a plan should satisfy, so that
a plan might be constructed to evaluate these benefits agfagnsosts of achieving them.

2.1 A Brief Review of PDDL

In order to provide the background that is required to plaeediscussions that follow in context, this
section contains a short overview pbDL. The key details of syntax and semanticsPafbL can be
found in [29, 41].

PDDL allows actions to be described in terms of pre- and post¢immdi The expressive levels of the
language are associated with tags that are used to labelidifea: the addition of a tag to a domain
file indicates that the domain may use the correspondinggylayer of the language. Preconditions
can be simple conjunctions of atoms (or literals, if negagivteconditions are allowed), or even arbitrary
formulae (if quantification and ADL are allowed). Postcdiatis can contain add and delete effects and
may use conditional effects, if allowed, and also quantifica

PDDL2.1 [29] extended the language to include number-valuedtu@vith a corresponding “re-
quirements” tag). A variant of these was included in theioagpDDL specification, but had not been
adopted. Two other important extensions were addetbinL2.1, both relying on the use of numbers:
plan metrics, which can be used to specify the way in whichgpbae to be evaluated in a specific prob-
lem instance, and durative actions. Durative actions atieracthat execute over an interval of time.
These can be of constant duration, of a duration determigpéklestate in which the action is executed
or, most complex of all, of variable duration, which may b&ested by the planner, possibly subject to
constraints.

The use of durative actions implies that plans are embeddeairoetric time line and, therefore,
a plan must specify the time at which an action is to be execuide structure of a durative action
is equivalent to two standard (instantaneous) actions,abribe start of the durative action and one
at the end, combined with an additional constraint — theoactinvariant. The start and end of the
durative action can therefore have pre- and postconditeah with the same semantics as the standard
instantaneous actions. The start is applied at the timdfgggbm a plan using the action and the end is
then applied at the appropriate interval following this.eTihvariant is a logical condition (constrained
by the same syntax limitations as preconditions) that meistain true throughout the interval over
which the durative action is executing.

The introduction of durative actions infoDL required that a decision be made about the structure
of plans that do not use durative actions. It was proposeditihall cases, plans would take the same
form: time-stamped actions. ThusTRIPSplans, in which time matters only for the ordering of actions
can be represented by simply labelling each of the actiotis i@ position index in the plan, starting
from 1. The consequence of this decision is tharalbL plans are considered to be embedded in a real
time line. This observation extends to plans for simpta&iPsproblems which allows plans to have
parallel actions. This semantics, which achieves the sdimet @s the semantics of @ @PHPLAN plans
[10], is not the one that had been traditional &RiPsplans before ®APHPLAN, where even partial
order plans were generally interpreted in terms of the sebgtible serialisations of the partial orders.

The semantics obDDL2.1 is discussed in detail in [29]. EssentiallypapL2.1 plan describes a
trajectory of states, where states are valuations on thgogittonal and metric variables of the problem.
The initial state is as specified for the planning problenanBitions are caused yappeningswhich
are the collections of instantaneous actions (either graptions in the domain or else the start or end
points of durative actions) that occur at the same time golihts worth emphasising that the semantics
is uniform in its treatment of the end points of durative aet and instantaneous actions, so that the two
kinds of actions can be mixed freely in a single plan, if itansidered appropriate to model a domain in
this way. Each happening causes a state change accordimg édfécts of the actions that occur at the
corresponding time point. Invariants are checked in theriratls between happenings, where durative
actions are executing.

In both cases (plans withiTRIPSactions and plans with durative actions), it is possiblehfappen-
ings to contain multiple instantaneous actions occurriggether. In order to ensure that the behaviour
is well-defined, it is required that these simultaneousoastbe non-interfering. A simple paradigm is
used to define the concept of interference, based on thewatieer that action effects can be seen as

analogous to data-base updates affecting the state: nudlex IThe idea is that, to access a particular
variable, an action requires a lock — a read-lock if it simpgeds to access the value of the variable
(to check the satisfaction of a condition) and a write-lock must update the value (for an effect).
Write-locks are mutually exclusive with any other kinds o€k by any other actions, while multiple
read-locks are possible without inconsistency. Two consgages of this are that an action requires a
write-lock even if the update it performs does not actualigrege the original value of the correspond-
ing variable and two actions are considering interferinthéy both update the same variable, even if
they agree about the new value it should take. The only ebaepa this rule is in the use of certain
commutative arithmetic effects:ncr ease anddecr ease effects, in particular, are not considered to
require independent write-locks to update a metric vaeiafilhe reason for this is discussed in detail
in [29] and is not important to the remainder of the discussmthis paper.

For the purposes of IPC®DDL2.1 was considered to be split into “levels”. These were ret d
fined as part of the syntax of the language and are, essgniikhtified with certain combinations of
requirements tags. The levels that were used corresponsinple sTRIPS (level 1), domains with
numeric fluents (level 2) and durative actions with discokteations (level 3). Finally, level 4 contains
the simple continuous process model that was proposed esfgaypL2.1, although never used.

PDDL2.2 [26] extended the language still further, adding axiowtsch allow derived propositions
to be inferred from the satisfaction of logical formulae istate, and timed initial literals, which specify
effects that are triggered at predetermined times duriegettecution of the plan. These allow simple
deterministic exogenous events to be modelled, such asewmd sunset at certain predefined times.

2.2 State Trajectory Constraints

State trajectory constraints assert conditions that meshbét by the entire sequence of states visited
during the execution of a plan. They are expressed throughdeal modal operators over first order
formulae involving state predicates. In this section wespre the syntax and semantics of the exten-
sions introduced ibDL3.0. As will become clear, certain constraints have beecegalan the ways

in which the syntax can be exploited, in particular, in thetimg of modalities. Ultimately, the devel-
opment of PDDL is a compromise between the goals of converigressive power, the needs of the
competition, and the limits of the planning technology &lzle at the time of the competition. One of
the consequences of this compromise is that it is sometipg®priate to add constraints that limit the
problems that a planner must contend with, even if there aeral ways to allow the expressive power
to be extended.

2.2.1 Syntax and Intended Meaning

The basic modal operators used in IPC5 attetays, sonet i e, at - nost - once andat end. The last
of these is used to identify conditions that must hold in thelfstate when a plan has executed, making
them equivalent to traditional goal conditions. For coneane, therefore, unadorned goal conditions
are assumed to be “at end” conditions. This assumption s@ovpreserve the standard meaning for
existing goal specifications. The semantics of these mitelalis given below (Section 2.2.2) along
with examples of their use, but we will provide brief illugtions here to support intuitions about their
use. For exampld,al ways (clear A)) expresses a condition that an objedf,must remain clear
throughout a plan;soneti ne (cl ear A)) expresses thal must be clear at some point in the plan
(not necessarily at the end) aqdt - nost - once (cl ear A)) expresses that can only be clear in
at most one single unbroken period during execution of tha.pl

The operatowi t hi nisincludedto be used to express deadlines. Forexaiglehi n 10 (clear A))
specifies thatd must be clear by time 10. In addition, rather than allowingjtaary nesting of modal
operators (in the competition, at least), some specific déoations are encoded in explicit opera-
tors. These aresonet i ne- bef ore, soneti me-after, al ways-wi t hi n. Other modalities could
be added, but these are sufficiently powerful for an initéalel of the sublanguage modelling con-
straints. Examples of the use of these dreoneti me-before (clear A) (clear B)) specifies
that if A is ever clear during the execution of a plan, tHeémust also have been clear before that point;
(sonetine-after (clear A) (clear B)) issimilar, exceptthat it requirel to be cleaafterthe

point at whichA is clear. Finally(al ways-wi thin 5 (clear A) (clear B)) specifiesthatevery
time A is made clearB must be clear within 5 time units of that point in the execuitod the plan.

Modal expressions can be combined in propositional foreutait we limit their combination to
conjunctions and universally quantified expressions (tvitian be considered equivalent to conjunc-
tions since the models are all finité)pDL3.0 does not support any syntactic nesting of modal opeyator
Allowing arbitrary nesting, or even depth-bounded nestofgnodalities creates a very rich collection
of different constraints, most of which are unnecessarytferexpression of very interesting problems.
However, allowing them within the language would force tlesigner of @DbDL3.0 planner to consider
how to deal with them. In order to arrive at an appropriate pomise between modelling expres-
siveness and competition challenge, it was decided thdtection of additional modalities, equivalent
to specific nested structures of primitive modal operatsisuld be included asbbL3.0 expressions.
Thus, the limitation on nesting is a pragmatic decisionndtd to make the task for the competition
entrants more tightly defined. An example of an expressiahithis not possible to capture without
nesting of modalities i$soneti ne-after p (sonetine-before g r)), which asserts thaf p
is ever true in a statandq is true in a subsequent state, themust be true in some state before the
one in whichg becomes true. This constraint cannot be captured using«tkng modalities without
nesting, unless additional encoding tricks are exploited tirectly modify the actions of the domain.
The extent to which the restrictions on the use of modallire& what can be conveniently expressed
is difficult to assess, since there is very little practiogberience in the use of the language to express
plan constraints. All that we can say is that the design ofoitrechmark problems, and the examples
we considered, was not hindered in any way by the constrai@isnpose.

It should be noted that, by combining modalities wiitmed initial literals (defined inPDDL2.2
[41]), we can express further goal constraints. In paréiguyne can specify the interval of time when
a goal should hold, or the lower bound on the time when it sthénalld. Since these are interesting
and useful constraints, we introduce two modal operatotsyagactic sugar” over the basic language:
hol d- duri ng andhol d- after.

Trajectory constraints are specified in the planning pnolfike in a new field, calledconst rai nt s,
that will usually appear after the goal. Constraints mayp &ls specified in the action domain file. This
is convenient for the expression of constraints that applalt plans produced for a particular do-
main — perhaps legal or safety conditions on operating gos. The use of trajectory constraints
(in the domain file or in the goal specification) implies theeddor the: const rai nt s tag in the
:requi rement s list.

No temporal modal operator is allowed in preconditions dicaxs. That is, all action preconditions
are with respect to a state (or time interval, in the casevefr al | action conditions — the action
invariants described earlier). This decision ensures tiiatset of actions applicable at any state is
determined entirely by the state itself (which, of course) contain a record of relevant parts of history
in memory) and is not affected by the trajectory of states ghhacede or succeed this state. This
“Markovian” requirement is consistent with our own view ohat is an appropriate model of the way
that actions are constrained by causal relationships ictipea However, there is also a very significant
benefit which is to simplify the task, for a planner, of detarimg what choice of actions is opento itin
a state. Without this constraint, the general problem oéfeining whether an action is applicable in
a (fully specified) state is as hard as planning, since thditions for execution could require arbitrary
goals to be achieved in the past or the future of the currem¢ sindeed, without placing the state in
the context of a trajectory, it is not clear whether the gioesof applicability of actions with modal
preconditions even makes sense.

The following is a fragment of the grammar describing the nevdalities ofPbDL3.0 for expressing
constraints¢on- GD) (the full BNF grammar is given in [31, 33]):

<con-CGD> ::= (at end <GD>) | (always <GD>) |
(sometime <GD>>) | (wthin <nums <GD>) |
(at-nost-once <GD>>) |
(sonetime-after <GD> <GD>) |
(soneti me-before <GD> <GD>) |
(al ways-wi t hin <nune <G> <GD>>) |
(hol d-during <nunk <nunmp <GD> |

(hol d-after <num> <GD>

where<GD> is a goal description (a first order logic formulahun® is any numeric literal (irsTRIPS
domains it will be restricted to integer values). In the iptetation ofwi t hi n andal ways-wi t hi n
when consideringTRIPSplans (and similarly fohol d- dur i ng andhol d- af t er) the numeric bounds
are counted in terms of plamppeningsFor instance(wi t hi n 10 ¢) means that must hold within
ten happenings. These can be happenings of one action orltyplmactions, depending on whether
the plan is sequential or parallel.

Trajectory constraints allow specification of problems okay different character to those captured
by simple goal specifications in the same domain. For exarmpilee Blocks World, it is clear that there
is a path from any state to any other state in a number of shegisst linear in the size of the problem
specification. However, it is possible for a planner to bethwith trajectory constraints that prune the
legal paths in such a way as to force exponential length glaihe required for some pairs of states.
This can be seen as follows: suppose therenare3 blocks in a problem instance, namdd B andC'
andbl, ..., bn. By adding the constraints:

(and (always (on Atable)) (always (on B table)) (always (on C table))
(forall (?x - block)
(always (or (= ?x A) (= ?x B) (= ?x © (not (on ?x table)))))
(always (not (on bl b2))) (always (not (on bl b3)))
(al ways (not (on bl bn))) (always (not (on b2 b3)))
(always (not (on b3 b4))) ...)

to a Blocks World problem, we can force it to behave like thdisc Towers of Hanoi problem, with
blocks A, B and C' playing the roles of the pegs ard...bn the discs. This problem only admits
exponential solutions, but is captured in a collection ofstoaints that is quadratic in the size of the set
of blocks. The semantics of the modal operatiorays is given formally below, but its use is consistent
with intuition: the formula to which it is applied must hold évery state in order for the modal formula
to hold over the trajectory.

A brief comment is required about the important decisionta@tclude a modal operator for “next”,
which is used to significant effect in modal logics suppofigaexisting planners, TALPANNER [48]
and TLR.AN [2]. In those planners formulae are often expressed usingeat™ modality to trigger
conditions at the point of change in a proposition, €;g4 next-p) = next®. Two problems led us to
avoid adding the “next” modality to the language. Firsthe fact that we do not allow nested modalities
severely limits the context in which the “next” modality rhigoe useful (the example just described is
only really useful if it is nested inside an “always” modg)it The second problem with attempting to
capture “next” inPDDL3.0 is a consequence of the necessary separation of the diimiegh which the
formula is evaluated and the time point to which the “next’dality is a reference: concurrent strands
of activity can affect the state between these time poirfigs Means that the next state change following
the achievement of a particular condition could well be ealusy a happening that is entirely irrelevant
to the condition of interest. For example, we might consatermpting to express a constraint that when
a truck arrives with a package at the destination of the pgekiaen in the next state the package should
be unloaded. On the real time line, the next state changaxfimiy arrival of the truck at its destination
could be caused by a happening that affects an aircraft,rsay) entirely different part of the world
and, most importantly, this could be an entirely appropriaxt state, despite having no relevance to
the next actions involving the truck. This observation doesprevent “next” being given a consistent
semantics, but it does make its use in modelling less imuiti

2.2.2 Semantics

The semantics of goal descriptorsAippL2.2 determines that they should be evaluated only in the con-
text of a single state (the state of application for actiogcpnditions or conditional effects and the final
state for top level goals). In order to give meaning to teraparodalities, which assert properties of
trajectories rather than individual states, it is necgsgaextend the semantics to support interpretation
with respect to a finite trajectory (generated by a plan). §éraantics of the modal operators is consis-
tent with that used for modal operators in LTL and other trestits of modal temporal logic [52, 56].

Recall that ehappeningn a plan for apbbL domain is the collection of all the instantaneous (start
or end points of) actions that occur at the same time. This tgthen the time of the happening, and a
happening can be “applied” to a state by simultaneouslyyapgpkll effects in the happening (which is
well defined because no pair of such effects may interfereg. dssociation of a real-valued continuous
variable representing the time at which a state begins isnpoitant difference from some treatments
of temporal logics. The semantics is still based on the familonditions over sequences of states, but
several modalities also depend on the values of these times.

Definition 1 Given apbbDL domainD, a plan7 and an initial statel, = generates the trajectory

((S0,0), (S1,t1), ..., (S, tn))

iff So = I and for each happeninggenerated by, with & at timet, there is someésuch that; = ¢ and
S, is the result of applying the happenihgo S;_1, and for everyj € {1...n} there is a happeningin
T attj.

Note that there is intentionally no happening at time 0. Tiigail state holds at this time and must
persist for a non-zero period of time, so the first happersrag timet; > 0.

Definition 2 Given arPDDL domainD, a plan, an initial state/, and a goalG, = is valid iff the
trajectory it generates,(So, 0), (S1,t1), ..., (Sn, tn)), WhereS, = I, satisfies the goal:

((S0,0), (S1,1)s erns (Snstn)) = G.

This definition contrasts with the original semantics ofggadisfaction [29], where the requirement
is that.S,, = G. The contrast reflects precisely the requirement that ga@sow interpreted with
respect to an entire trajectory. Action preconditions matjimclude modal operators, and therefore their
interpretation continues to be relative to the single statghich the action is applied. The interpretation
of simple formulae¢ (containing no modalities), in a single stefés unchanged and continues to be
denotedS = ¢. In the following definition we rely on context to make cleaneve we are using the
interpretation of non-modal formulae in single states, whére we are interpreting modal formulae in
trajectories.

Definition 3 Let¢ and« be atomic formulae over the predicates of the planning mobplus equality
(between objects or numeric terms) and inequalities betweeneric terms, and lét v, andus be any
real constant values. The interpretation of the modal ofisais as specified in Figure 1.

Note that this interpretation exploits the fact that moda¢mtors are not nested. A more general
semantics for nested modalities is a straight-forwardresiten of this one. Note also that the last four
expressions in Figure 1 are expressible in different waygsé allows nesting of modalities and use of
the standard LTL modalityntil. Taking Wntil ¢) to mean that there is a state in whig¢his true and
in all states before this (if any) is true. The modalityveak-until is also occasionally used, where
(weak-until ¢ 1) is taken to mean thatis true in all states before some state in whicls true,if there
is one(otherwiseyp is always true). The following equivalences can be provetbfagst many others —
indeed until is sufficient to capture all other modalities that do not havmeric arguments [19]):

(weak-until ¢ ¥) = (until ¢ (¢ v (al ways ¢)))
(al ways-w t hi nt¢vy) = (al ways (¢ — (Wi t hi nt)))
(sonet i me- bef or e ¢ ¢) = (weak-until (=g A =) (¥ A =¢))
(at - npst - once ¢) = (al ways (¢ — (weak-until ¢ (al ways —¢))))
(sonetime-after ¢gv) = (al ways (¢ — (soneti ne v)).

The constrainat - nost - once is satisfied if either its argument is never true (so the iogilon in
the above equivalence is trivially satisfied because thecadent never holds) or else, once it becomes
true, it remains true until a state is reached in which th@psition becomeand remaingdalse. That is,
once the proposition first becomes false, after having been it must remain false thereafter, allowing
at most onentervalin the plan over which the argument proposition is true. Aaraple of the use of
this modality is in the following: “Each truck should visiaeh cityat mostonce”:

((S0,0), (S1,t1), .., (Sn,tn)) = (at end ¢)

iff S, ko
((S0,0), (S1,t1), ey (Snytn)) = &
iff S, ko

<(So,0), (Slvtl)v"" (Sn’tn» ': (al ways ¢)

iff Vi:0<i<n-SiEo
((S0,0), (S1,t1), ..., (Sn,tn)) E (someti me ¢)

iff 3i:0<i<n-SjE¢
<(So,0), (Sl,tl), ey (Sn,tn» ': (WI thint ¢)

iff F:0<i<n-SiEd¢andt; <t
((S0,0), (S1,t1), ..., (Sn,tn)) = (hol d-af ter ¢ ¢)

iff ift,>tthendi:0<1i<n-S;E ¢andt; >t,

if t, <tthenS, E ¢

<(So,0), (Sl,tl), ceey (Sn,tn)> ': (hOl d-duri ng ui uz d))

iff if ¢, > w1 then

Vi-0<i<n-ifu <t <usthenS; = ¢,
Vji-0<j<mn-ift; <u <tj41thens; |:gz$
if £, < wuithensS, = ¢

((S0,0), (S1,t1), ..., (Sn,tn)) = (at - nDSt - ONCeE @)

iff Vi:0<i<n-ifSij=déthendj:j>i-Vk:i<k<j Spl o

andvk : k> j- S, E —¢

((50,0), (S1,t1), ... (Sn,tn)) = (soneti me-after ¢)

iff Vi-0<i<n-ifSifE¢thendj:i<j<n-S;E
((S0,0), (S1,t1), ..., (Sn,tn)) E (somet i me- bef ore ¢ 1)

iff Vi-0<i<n-ifS;,=a¢thendj:0<j<i-S;
((S0,0), (S1,t1), ... (Sn,tn)) = (al ways-wi thint¢)

iff Vi-0<i<n-ifS;j=¢thendj:i<j<n-S;Evandt;—t;<t

Figure 1: Semantics of the basic modal operatortpL3.0. ¢ andy stand for arbitrary (syntactically
valid) goal formulae oPDDL3.0;¢, u; andu; are real values.

(:constraints
(and (forall (?t - truck ?c - city) (at-npbst-once (at ?t ?c))) ...))

To satisfy this constraint, each truck may visit each city atay there any length of time, but once it
leaves it cannot return during the execution of the plan.

Of the constraint&ol d- duri ng andhol d- af t er, (hol d-duri ng t; t» ¢) states thap must be
true in every state during the interv@l, t2), while (hol d-after ¢ ¢) states that must be true in
some state after time The first can be expressed by using timed initial literalsgecify that a dummy
timed literald is true during the time windo\¥, , ¢2) together with the godlal ways (i nplies d ¢)).

A variant of hol d- duri ng where¢ must holdexactlyduring the specified interval could be easily
obtained in a similar way. Thieol d- af t er modality can be expressed by using timed initial literals to
specify that is true (only) from timet, together with the godlsonetime (and d ¢)) .

The modal operatorgi t hi n andal ways-wi t hi n are of particular interest. An example of a
constraint usingal ways-wi t hi n is the following: “Whenever the energy of a rover is below b, i
should be at the recharging location within 10 time units”:

(:constraints
(and (forall (?r - rover)
(always-within 10 (< (energy ?r) 5) (at ?r recharging-point))) ...))

This modality is interesting because it highlights the wagttthe semantics relies on the time asso-
ciated with the achievement of individual states. Anothemeple is the following:

(:constraints
(and (forall (?t - truck ?p - package ?l - location)
(always-within 10 (and (at ?t ?l) (in ?p ?t) (destination ?p ?1))

(at ?2p 21))) ...))

This condition requires that any time a truck carrying a @k arrives at the location which is the
destination of the package, then the package must be dedivathin ten time units. The time limit can
be manipulated to ensure that the only behaviour possiliteilmmediately unload the truck following
its arrival at a particular location.

2.3 Soft Constraints and Preferences

A soft constraint is a condition on the trajectory generdiga plan that the user would prefer to see
satisfied, but is prepared to accept might not be satisfiedusecof the cost involved, or because of
conflicts with other constraints or goals. While soft coastts have been extensively studied in the
constraint-satisfaction literature [9, 24, 60]), the plang community has started to consider them only
relatively recently (see, for example, [8, 14, 15, 21, 53,63).

There is still contention about the best way to capture amdilespreferences, with some advocat-
ing a reward-based approach (e.g., [12]) and others adwgcatqualitative approach (e.g., [37]). In
particular, where a user has multiple soft constraintggetiea need to determine which of the various
constraints should take priority if there is a conflict beéwehem, or if it should prove costly to satisfy
them. This can be expressed using a qualitative approacexémple by describing a partial order on
the conditions that are preferred. The advantage of thiscagh is that it is intuitive and consistent
with the demands of many potential applications. Unfortalyait is also highly inconsistent with the
demands of straightforward comparative evaluation of péarperformance, since the use of a partial
order introduces the complication of there being many ingarable plans, each maximally preferable.
To avoid this problem (which is particularly acute in a cortifien context),,DDL3.0 uses quantitative
preferences.

An example of the expressions we wish to capture is the fatigw“We prefer that every fragile
package is insured while it is loaded in a vehicle”.

(:constraints
(and (forall (?p - package)
(preference P1 (always (inplies (and (fragile ?p) (loaded ?p))
(insured ?p))))) ...))

This example illustrates the power of combining prefereraned trajectory constraints.

2.3.1 Syntax and Intended Meaning

The syntax for soft constraints falls into two parts. Firsthere is the identification of the soft con-
straints, and secondly there is the description of how tlisfaation, or violation, of these constraints
affects the quality of a plan.

Goal conditions, including action preconditions, can deelked as preferences, meaning that they
do not have to be true in order to achieve the correspondiaga@agorecondition. Thus, the semantics
of these conditions is simple, as far as the correctnessarfspis concerned: they are all trivially
satisfied in any state. The role of these preferences is appahen we consider the relative quality of
different plans. In general, we consider plans better whew satisfy soft constraints and worse when
they do not. Complications arise, however, when compasrggplans that satisfy different subsets of
constraints (where neither set strictly contains the Qtharthis case, we rely on a specification of the
violation costs associated with the preferences.

The syntax for labelling preferences over goal descrigsxsgnple:(pr ef erence [nanme] <GD>)
(similarly for preferences over trajectory constraint$he definition of a goal description can be ex-
tended to include preference expressions. However, esipresin which preferences appear nested
inside any connectives, or modalities, other than conjon@&nd universal quantifiers, are prohibited in
PDDL3.0. Preferences appearing in the condition of a conditieffiect are also invalid. Where a named
preference appears inside a universal quantifier, it isidensd to be equivalent to a conjunction (over
all legal instantiations of the quantified variable) of mrefnces all with the same name.

The use of preferencesin a domain or problem implies the fogdlde requirements tagor ef er ences.
Preferences over state trajectory constraints are exgaiéasthe(: constraints ...) field, while

10

preferences over goals are expressed in(thgoal ...) field. If a preference involves both a con-
straint and a goal, it is expressed in thmonst r ai nt s field. Goal preferences expressed in tlyeal
field are implicitly interpreted under tree end modality.

Preference names can be used to refer to the preference ootistruction of penalties for the
violated constraint. Preferences with the same name shaigme penalty.

Penalties for violation of preferences are calculatedgisie expressioti s- vi ol at ed <nane>),
where<nane> is a name associated with one or more preferences. Thisssipretakes a value equal
to the number of distinct preferences with the given nameatanot satisfied in the plan. FDDL3.0
there are no degrees of satisfaction of a soft constraint -enateaint is satisfied or not. The violation
countincludes every separate instance of a constrainttiitisame name. This means that:

(preference VisitParis (forall (?x - tourist) (sonetime (at ?x Paris))))

yields a violation count of for (i s-vi ol ated Vi si t Pari s), if at least one tourist fails to visit Paris
during a plan, while

(forall (?x - tourist) (preference VisitParis (sonetine (at ?x Paris))))

yields a violation count equal to the number of people whteéato visit Paris during the plan. The
intention behind this is that each preference is considerdzk a distinct preference, satisfied or not
independently of other preferences. The naming of pretaeis a convenience to allow different
penalties to be associated with violation of different doaiats.

Plans are awarded a value through the plan metric, intratlicepbL2.1. The constraints can be
used in weighted expressions in a metric. For example:

(:metric mnimze (+ (x 10 (fuel-used)) (is-violated VisitParis)))

would weight fuel use as ten times more significant than Vi of theVi si t Pari s constraint.

The violation of a preference in the preconditions of anarcis counted as often as the action
occurs in the plan. For instance, suppose that the name of a preference in the precondition of an
actiona, and that occurs three times in plan, with the preference unsatisfied in each case. If the plan
metric evaluatingr contains the terng* k (i s-viol ated p)), then this term will contribut8 to
the plan metric, since each instance of the action is coraid® introduced a distinct instance of the
preference.

Anonymous constraints (constraints for which no name igipiex!) are automatically considered to
be weightedl, and are included as an implicit additional additive ternthia metric, positively if the
metric is to be minimised and negatively if is to be maximis&tiis ensures that a plan that satisfies
more constraints will be better than one that satisfies fealeelse being equal. The default treat-
ment of anonymous constraints can be avoided simply by ratheconstraints — a hamed constraint
contributes to the plan quality value only if it appears &ifly as a term in the metric.

2.3.2 Semantics
The expression:

((S0,0), (S1,t1), .., (Sn,tn)) = (preference @)

is always true, so this allows preference statements to bebireed in formulae expressing goals
without changing the states in which the goals are true. Aepe@ce is a soft constraint, so fail-
ure to satisfy it is not considered to falsify the goal forauln the context of action preconditions,
S; = (pref erence @) is always true, too, for the same reason.

A preference(pr ef erence @) is satisfiediff ((So,0), (S1,t1), ..., (Sn,tn)) = © andviolated
otherwise. To illustrate the interpretation of preferentake, as an example, the goal:

(and (at packagel | ondon) (preference (clean truckl)))

11

which leads to the following interpretation (the lack of axplicit modality for the proposition in the
preference means that it is to be interpreted as a requineditoon of the final state):

((S0,0),(S1,t1), .., (Sn,tn)) E(and (at packagel | ondon)
(preference (clean truckl)))

iff ((So,0),(S1,t1),-..,(Sn,tn)) = (at packagel | ondon) and
((S0,0),(S1,t1), ..., (Sn, tn)) = (preference (clean truckl))

iff S, = (at packagel | ondon)

iff (at packagel | ondon) € S, since the preference is always interpreted as true. Irtiaddi
the preference would beatisfied

iff ((So,0),(S1,t1),-..,(Sn,tn)) E(at end (clean truckl))
iff (cl ean truckl) € S,.

Now suppose that we have the following preferences and pktrien

(preference pl (always (clean truckl)))
(preference p2 (and (at end (at package2 paris)) (sonetine (clean truckl))))
(preference p3 (at nost once (in packeage2 truckl)))

(:metric mnimze (+ (* 10 (is-violated pl)) (* 5 (is-violated p2))
(is-violated p3))).

Suppose we have two plans;, 7, andm; does not satisfy preferences pl and p3 (but it satisfies
preference p2) and, does not satisfy preferences p2 and p3 (but it satisfies n@reée pl), then the
metric form; would yield a value (11) that is higher than that for (6), and we would say that; is
better thanr;.

The task of determining whether a preference is violatednipkfied by a restriction in the lan-
guage that allows preferences to appear only in conjuretiruniversally quantified formulae. To
see why this constraint is necessary, consider the exaropteufae: (or @ (pref erence¥)) and
(preference(or ®¥)). Under one natural interpretation, these formulae arevedgnt both in
terms of the satisfaction of the formulae and also in termaluéther the preference is satisfied. This
happens if we consider the first formula to mean thashould be true but, failing that, it igrefer-
able that ¥ be true (rather than not true). With this interpretation, ttie state in which® holds
but ¥ does not there is no violation, since the preference isevegit onced is satisfied. This in-
terpretation has the property that it makes distinct the mimeggs of (or & (preference?¥)) and
(and ® (preference¥)). This apparently natural interpretation would lead to aatibn in which
the violation count for the preferenc&, would be incremented only i were false. Unfortunately,
it opens up a significant complication: to be consistent, ékpression(or (pref erence pl @)
(preference p2 ¥)) should mean that only one of the two preference violatiomt®should be
incremented. The problem is to decide which. One possihilituld be to assign the violation to the
least costly preference, measured according to the plananett it seems a decidedly less natural in-
terpretation to require to take into account the plan métrmrder to decide which preference has been
violated. Since disjunctions involving preferences, aodrulae that are equivalent to disjunctions
including preferences, do not behave intuitively, theyenbgen excluded from the language.

The same interpretation of preferences is applied to agiienonditions that include them. For-
mally, a preference precondition is satisfied if the state in whitd ¢orresponding action is applied
satisfies the preferenc&he restriction on where preferences may appear in prégondormulae and
goals, together with the fact that they are excluded frond@@nal effects, means that this definition
is sufficient: the context of their appearance will never makambiguous whether it is hecessary to
determine the status of a preference. Similarly, a goakpeefce is satisfied if the proposition it contains
is satisfied in the final state. Finally, an invariaotér al |) condition of a durative action is satisfied
if the corresponding proposition is true throughout theation of the action — once the invariant is
violated, the preference is unsatisfied, regardless of et is then resatisfied or violated again in
multiple disconnected intervals.

12

In some cases it can be hard to combine preferences with an@pie weighting to achieve the
intended balance between soft constraints and other fatttat contribute to the value of a plan (such
as plan makespan, resource consumption and so on). For Examgnsure that a constraint takes
priority over a plan cost associated with resource consianggsuch as makespan or fuel consumption)
is particularly tricky: a constraint must be weighted witlvaue that is higher than any possible con-
sumption cost and this might not be possible to determingh WWon-linear functions it is possible to
achieve a bounded behaviour for costs associated with ressuFor example, if a constrairdt, is to
be considered always to have greater importance than thespak for the plan then a metric could be
defined as follows:

(:metric mninmze (+ (is-violated C) (- 1 (/ 1 (+ 1 (total-tinme)))))).

This metric will always prefer a plan that satisfi@s but will use makespan to break ties.

2.4 On the Expressiveness of PDDL3.0

The question of whether an extension of a planning languageases the expressive power of the
original language can be addressed by studying the conilfiijfatil the extended language into the
original one. As argued by Nebel and others [4, 54, 65], a d¢latipn scheme should preserve solution
existence, and it is theoretically important if it does nutrease the size of the problem description
more than polynomially or the size of the smallest solutigmiore than a constant: if a compilation
scheme satisfying these conditions exists, then, fromatieal point of view, we can say that the new
language constructs do not add expressive power, and hemceegely “syntactic sugar”. Of course,
they might nevertheless hesefu| by, for example, making it easier to model or solve certan& of
problems.

The question of whether the new constructs introduceinL3.0 increase the (theoretical) expres-
siveness of the language is not trivial. Several methodsdompiling different forms of state trajectory
constraints and preferences have appeared in the literf@u20, 25, 45, 58]. Indeed, some planners par-
ticipating in the competition took this approach to hangline extended language. However, while such
compilations preserve the existence of plans in the ti@udtti sense, i.e., finite sequences of actions, we
will show they do not, in factan not preserve existence of other forms of plans. Additionalbtails
of the complexity of the different compilation schemes weed (size of the input planning problem
description and of the output solution plans) have not beatyaed.

This section contains some basic results about the coniliifadf PDDL3.0 state trajectory con-
straints and preferences. For non-temporal domains, wheractions are instantaneous and time cor-
responds to the happenings determined by the occurrencetiohs in the plan, we show that this
fragment ofPDDL3.0 can be compiled intebDL2 with a polynomial increase in problem size and con-
stant increase in plan length. Thus, as argued earlier, weataam that, for non-temporal domains,
these constructs do not add expressive power tetiwe. language. However, we also show that this,
and other, compilation schemes preserve only the existehfieite, sequential plans, i.e., there exist
planning problems, with state trajectory constraintst treve, for example, plans with parallel actions
but no sequential plan. Hence, in this particular case, weatso say thapDDL3.0 adds expressive
power toPDDL2. Regarding state trajectory constraints for temporal @ios) we outline a possible
compilation scheme, which, however, increases the planlgizarly. In this case a compilation into
PDDL2 preserving plan size exactly seems impossible. Moreaxe=show how preferences (soft goals
and soft state trajectory constraints) can be restatedjusimeric state variables (fluents) or in a more
restricted form using action costs. Finally, in the lasttparthis section, we discuss some practical
aspects of the usefulness of compilimgbL3.0 constraints versus not compiling them.

2.4.1 Compiling State Trajectory Constraints for non-Temporal Domains

State trajectory constraints for a non-temporal domainkmrestated as formulae in Linear Temporal
Logic (LTL), which can be compiled into equivalent Bichi antata [18, 35]. SinceppL3.0 con-

straints are normally evaluated over finite trajectoribs, Blichi acceptance condition, that “an accept-
ing state is visited infinitely often”, reduces to the stawidecceptance condition that the automatonis in

13

(not ¢)

G W
T e A

(@) (al ways ¢) (b) (sonetine ¢)

(and ¢(not ¢))

a | |

o (not ¢)
G e e

¢

(c)(at - npst - once ¢) (d)(soneti me-before ¢)

t states

(or (not) ¥)

(and ¢(not)))

(e sonetinme-after ¢) M (withint ¢)

t states

W (not t + 1 states
S

(g)(always-within t ¢) (h)(hol d-after t ¢)

t1 states t2 —t1 — 1 states

() (hol d-during t1 t2 ¢)

Figure 2: Automata corresponding to the basitpL3.0 state trajectory constraints.and+ are arbi-
trary PDDL formula.t, t; andt. are real values.

an accepting state at the end of the trajectory. A straightod approach to compiling awapbDL3.0
state trajectory constraints is thus to compile them intiefiautomata, and ensure that any valid plan
correctly simulates the automata. The compilation schemsesd by participants in IPC5 [5, 25] are
variants of this idea.

The scheme we use is inspired by, and very similar to, the Ipl@ners MIPS-XXL [25] and
HPLAN-P [5]. However, since our purpose is to study the expressiseofDDL3.0, we use a different
encoding of automata, which enables us to derive expliaitlg on the growth in size of the compiled
problem and its solutions.

14

In general, the compilation of LTL formulae may produce exguatially larger automata. How-
ever, becausebpDL3.0 does not allow arbitrary nesting of modal operators,ah®mata correspond-
ing to each of the basic plan constraints have fixed formschvtepend only on the modal operator:
Figure 2 shows the automata fepbL3.0 modal operators for non-temporal domains. Whehi n,
al ways-wi t hi n, hol d- af t er andhol d- duri ng operators are special, in that the number of states
and transitions of the corresponding automata grow withriteger parameter(resp.t1 andt2). These
automata can be reformulated as finite automata augmentedimite-range binary counters [39], of
size proportional tdog(t) (resp. log(t1) + log(t2 — t1 — 1)) and with a constant number of distinct
transitions. Below, we describe the compilation schemg torl automata without counters, since the
encoding of finite integer counters by propositions mak&aatonditions and effects more complex.

Without loss of generality, we assume that the problem gasmn contains two distinguished ac-
tions,st art andfi ni sh, that must appear first and last, respectively, in any vk p The effects
of thest art action assert the initial facts of the problem, while thecpredition of thef i ni sh action
includes the problem goal. To enforce a trajectory consty#tie planning problem is modified in such
a way that any valid plan simulates the execution of the spwading automaton on the state sequence,
and ensures that it ends in an accepting state. A be an automaton: the state dfis represented
by a predicatd st at e- A ?s), whose argument is drawn from a collection of additionalstants.
Thestart action assert§st at e- A s0), and the goal required to be in an accepting state. Since
an automaton can have more than one accepting state, to@siaigl disjunction in the goal, we also
add a predicatéaccept i ng- A) , which is made true whenever is in an accepting state and is false
otherwise. To ensure that the automaton is correctly upddm@ughout the plan, each action in the
(original) planning problem and the spedialni sh action is equipped with a set of conditional effects,
one for each (non-looping) transition i,

(when (and (state-A si) ‘*TRANS-LABEL'’') (and (not state-A si) (state-A sj)))

whereTRANS- LABEL is the formula labelling the transition from staigto states; of the automaton.
For transitions to an accepting (resp. non-acceptingg stet also add the extra effdcccept i ng- A)
(resp.(not (accepting-A))). Because the formula labels of transitions out of eacte ste¢ mutu-
ally exclusive and exhaustive, exactly one of the condéi@ffects will take place whenever the action
is performed. As an example, consider the state trajectomgttaint somet i me (at Pl ane NY)) in
the well-knownzenot r avel domain [50, 55]. To simulate the corresponding automatarir{stance
of the one in Figure 2(b)), all actions in the domain are auggedwith three conditional effects:

(when (and (state-A SO) (not (at Plane NY)))

(and (not (state-A SO)) (state-A Sl) (not (accepting-A))))
(when (and (state-A S1) (at Plane NY))

(and (not (state-A S1)) (state-A S2) (accepting-A)))
(when (and (state-A SO) (at Plane NY))

(and (not (state-A SO)) (state-A S2) (accepting-A))).

In the compiled problem, the state of the automaton will bdated to reflect the planning world
state before the action takes place, i.e., the automatdreilone step behind”. This is because the
automaton transitions simulated by the execution of a ptédnmare triggered by the world state where
the action is executed, not by the world state modified by ffeets of the actiorf. To ensure that the
complete state sequence is indeed accepted by the autqitietaipdating conditional effects are added
also to the specidli ni sh action, and the condition that the automaton is in an acogstiate placed
in the problem goal rather than the precondition of thisacti

Note that the conditional effects updating the states oatliemata also make each action mutually
exclusive with every other action (according?ppL2 definition of mutex actions [29]), and hence force
the plan to be sequential.

3This can be ensured by the addition of three dummy propasitid ni t), (goal) and(acti ve), such thaiinit), and
nothing else, holds in the initial state, and is required deléted byst art . (goal) is added by i ni sh and required to hold in
any goal state(act i ve) is added byt art, deleted by i ni sh, and is a precondition of every action exceptrt .

4In the context of ouZenot r avel example, assume thaat Pl ane Bost on) holds in the problem initial state; {ff I y
Pl ane Boston NY) is the first plan action, this action updates the state of tienaaton tos1 and not to the accepting stege.

15

Because modalities are not nested, the number of statesamgitions in the automaton corre-
sponding to a single basic constraint is bounded by a congasuming automata corresponding to
constraints involving explicit time steps are reformuthteith binary counters). Thus, the only place
where the constraint formula enters the automaton is inréngsition labels, and therefore tir®DL
encoding of the automata outlined above grows only lineaith the size of the formula. However,
the PDDL encoding of automata with counters also grows linearly whh number of bits required to
represent the counters (i.e., logarithmically with theger parameters resp.t; andts).

To extend the construction to universally quantified caists, while keeping growth polynomial,
it is sufficient to make two observations: First, given a ensally quantified basic constraint, the con-
struction can be “lifted”, i.e., the predicates represggthe automaton state are parameterised by the
qguantified variables and the updating conditional effectsumiversally quantified over the same set
of variables (this was noted also by Baier & Mcllraith [5])e&nd, given a conjunction of several
(possibly quantified) basic constraints, the updating @ardhl effects relating to different (possibly
parameterised) automata are non-interfering, and thexefan all be carried out in parallel, by adding
all the effects to each action (including the spetiati sh action). In this way, all ground instances of
the automaton are simulated in parallel. (This lifting alsquires a universally quantified initialisation
of the automata states, which can be encoded by a univerpadiytified effect of the speciat ar t
action, and universally quantified goals for the compileahpem imposing that every automaton is in
an accepting state.)

Consider again owenot r avel example, and the quantified constrgifibr al |

(?x - aircraft)

(sonetine (at ?x NY))).Then, actiorf | y is augmented by three quantified conditional effects

(forall (?x
(when (and
(and (not
(forall (?x
(when (and
(and (not
(forall (?x
(when (and
(and (not

- aircraft)
(state-A ?x
(state-A ?x
- aircraft)
(state-A ?x
(state-A ?x
- aircraft)
(state-A ?x
(state-A ?x

S0) (not (at ?x NY)))
S0)) (state-A ?x S1) (not (accepting-A ?x)))))

S1) (at ?x NY))
S1)) (state-A ?x S2) (accepting-A ?x))))

S0) (at ?x NY))
S0)) (state-A ?x S2) (accepting-A ?x))))

In summary, the increase in the size of the compiled probssaiinost proportional t6'-logs (t)- M -
N -0, where(C'is a constant (the number of transitions in the largest aatomcorresponding to a basic
constraint) the maximum integer parameter appearingw ghi n, al ways- wi t hi n, hol d- duri ng
or hol d- af t er constraint,M the size of the (largest) formula appearing inside a basisttaint, N
the number of basic constraints (conjuncts) in the problech@ is the number of operators in the
domain. A shortest plan for the compiled problem is exacticlons longer than the length (number
of actions) of a shortest plan for the original problem. Tihizrease in length is due to the introduction
of the speciaét art andfi ni sh actions.

2.4.2 Two Non-Compilability Results

It is not difficult to see that the compilation scheme outline the preceding section preserves the
existence of plans, in the sense that if there exists a fixiéeldable action sequence satisfying the
constraints (and goals) of the original planning problenent there exists also such a valid plan for
the compiled problem. However, if we consider a slightly gridiotion of plan, we find that there are
temporally extended goals expressibleribbL3.0 that can not be stated in tsgriPFADL fragment
of PDDL: one, perhaps not so interesting, example is goals that eaatisfied only by infinite plans,
but another, perhaps more relevant, example is goals thadrg be satisfied by plans in which some
actions happen in parallel.
The first example, a goal requiring an infinite plan, is a walbln example in LTLOOp A OO—p,
which can be expressed #pDL3.0 as

(and (sonetinme-after (p) (not (p))) (sonetinme-after (not

(P) (P))).

16

This constraint is satisfied by a state sequence where drstatech p is true is always (eventually)
followed by a state wherg is false, and vice versa. Singecan not be both true and false in the
same state, only an infinite sequence of states alternagitvgelenp and—p can satisfy it. That a goal
requiring infinite plans can not be expressedRIPIADL is obvious, since the goal can only refer to
the final state reached by the plan.

Non-temporal PDDL domains have the property that any lisedion of a valid parallel plan is
also a valid plan. This implies that if a problem has a solufian, it also has a plan that is strictly
sequential. However, the same is not true for propositienalL3.0: using state trajectory constraints,
it is possible to specify problems having a plan that invelgarallel actions, but no sequential plan.
Intuitively, this is because constraints are evaluated theessequence of “intermediate states” generated
by a plan, and a linearisation of a parallel plan can pasaitir@ome states that the parallel plan does
not. For a simple example, consider a planning problem viighfollowing two actions:

(:action al :precondition (pl) :effect (and (not (pl)) (qgl)))
(:action a2 :precondition (p2) :effect (and (not (p2)) (92)))

where(pl) and(p2) are initially true and the goalisand (q1) (q2)). Clearly, the two sequences
(a1, a2) and(a2, a1) are both valid plans, as is the plan that execatesnda2 in parallel. Now
consider the plan constraint

(always (or (and (pl) (p2)) (and (ql) (q2)))).

This constraint is violated by both the sequential plangtierabove problem, but is satisfied by the
parallel plan.

2.4.3 Compiling State Trajectory Constraints for Temporal Domains

In a temporal planning domain (a domain with durative ac)pstate trajectory constraints not involv-
ing explicit time points (i.e., those of typ@net i me, al ways, sonet i me- af t er,sonet i me- before
andat - nost - once) can be compiled away using the scheme shown in the prevéztios with only a
minor modification: the collection of conditional effectsist be added to both the start and end effects
of each action. As noted above, this prevents any pair of sffelots from occurring at the exact same
time, which means that in the compiled problem, no pair obastmay start or end concurrently. Note
however, that it is only the endpoints of actions that nedaktgeparated (and only by the infinitesimal
amounte required bypbbL2.1 semantics); actions themselves may still overlap. Timgscompilation
does not change minimal plan makespan by more @ai).

Constraints of typenu t hi n, hol d- af t er andhol d- duri ng can be easily encoded FDDL2.2
by usingtimed initial literals(TILS), representing predictable (deterministic) exogenevents [25, 31,
41], which in turn can be encodedmmDL2.1 by the compilation scheme described in [41]. Intuityyel
wi t hi n, hol d- af t er andhol d- duri ng can be compiled into TILs because the exact absolute times
when the formula appearing inside these constraints mustukees defined by their semantics inde-
pendently from the plan where they should hold. Howeves tlues not hold for constraints of type
al ways- wi t hi n, which require a more intricate encoding. Intuitively, theurces of this difficulty
are that in the encoding we have to verify conditions ovettiooious time, aneDDL does not admit
temporal constraints in action conditions.

In the following we outline a possible compilation schemedbways- wi t hi n constraints in the
context of temporal domains.

Eachal ways-wi t hi n constraint is represented by a timed automaton (see Figurs3for non-
temporal domains, the automata execution is simulateddgxbcution of the plan, but in this case we
synchronise the execution with the happenings of the ptestead of with the plan actions. Hence, in
the compilation of arl ways- wi t hi n constraint, instead of augmenting the domain actions vati ¢
ditional effects representing the transitions of the tirmatbmaton, we add a new dummy action having
these conditional effects, and we force such an action tpéragpnmediately after each happening of
the plan (this can be done by using the technique based orclipé &ctions introduced by Fox and
colleagues [28]). Moreover, for eaeh ways- wi t hi n constraint with metric time, we add another

17

(not ¥,z <t

Figure 3: Timed automaton for represent{raj ways-wi t hi n ¢ ¢¢) constraints in temporal domains.

special action with duratiohincreasing a numerical fluept(initialised to zero) by one at the beginning

of the action and decreasing it by one at its end, and we fbreadtion to occur in the plan at each time
when an automaton transition resets the clock to zero. Ea#ignthis special action is used to deal
with the temporal constraints labelling the automatonditéons, which inPDDL cannot be explicitly
represented as action preconditions: in any state, thedly is the number of clock resets that have
occurred in the lasttime units. Thus, ify > 0, the time elapsed since the last clock reset is less than or
equal tot (i.e. conditionz < t labelling transitions of Figure 3 holds), whilegf= 0, it is greater than

t (i.e. conditionz > t in Figure 3 holds).

It can be shown that the outlined compilation scheme ine®tte size of the problem description
polynomially. However, it does not preserve the number ahmctions exactly. Intuitively, a plan of
the compiled problem can reset the automaton clo¢kl) times (up to once every two consecutive
happenings), wherél is the number of the plan happenings. Since in a plan Witactions we have
O(K) happenings, the number of additional actions in a soluti@m pf the compiled problem is
proportional toC - K, whereC' is the number of state trajectory constraints in the origprablem.
This increase could make constructing the plan computalfipmore expensive. On the other hand,
since actions may overlap in the compiled problems as wediy makespan in unaffected (except for
anO(e) quantity, as noted above).

2.4.4 Compilation of Soft Goals and Constraints

PDDL3.0 preferences allow a plan metric to be expressed in teftiesatisfaction of soft goals, state
trajectory constraints and action preconditions. As dbsedrabove, the impact of the violation of a
preference on the plan metric is specified by means of theesgmn(i s- vi ol at ed p), which eval-
uates to the number of violations of preferences with nanihus, a plan metric involving preferences
can be restated in terms of set of corresponding numerict8uby making sure these perform the same
function, i.e., counting the number of preference violasio

For each preference nameg,we introduce a fluertti s- vi ol at ed- p) , assigned zero in the initial
state. (We can assume without loss of generality that afepgaces are named, since if some are
not, we can introduce a new name and assign it to all such amouny preferences.) A preference
(preference p ¢) appearing in an action precondition translates into thelitmmal effect

(when (not ¢) (increase (is-violated-p) 1)),

which is added to the effects of the action. To evaluate peefees in the problem goal, we introduce
again a special actioin ni sh, constrained to appear last in any valid plan, and add thesponding
conditional effects to this action. Note that if the probleontains preferences over state trajectory
constraints, we need two distindtni sh actions, where the first performs the final update of automata
corresponding to trajectory constraints as described elaon the second evaluates the preferences,
which in the compiled problem refer to the acceptance pegdgof these automata. For preferences
appearing inside a universal quantifier, the correspondarglitional effects are also quantified. For
instance, let

18

(forall (?x - aircraft) (preference Pl (sonetine (at ?x NY))))

be a quantified preference for oBenot ravel example; then, the special start action has the extra
numerical effect assi gn (i s-vi ol at ed-P1) 0) and the second finishing action has the quantified
conditional effect

(forall (?x - aircraft)
(when (not (accepting-A ?x)) (increase (is-violated-Pl) 1))

Finally, we note that if the impact of preference violation the plan metric is restricted to be
linear (i.e., the metric is a sum of weighted preference esgions, plus possibly some other term),
preferences can be reducedaaditive action costsoy compiling the conditional effects into multiple
action instances (this was also noted by Benton & Kambharpfjat Although PDDL does not have
any special construct for expressing action costs, relgingumeric variables to specify such a metric,
there is a growing number of planners that focus on optirgisitditive action costs (see e.g., [13, 30]),
which makes this an interesting special case.

2.4.5 Discussion: Some Practical Considerations

Even though the hard and soft constraints permitteébyL3.0 can be compiled away, i.e., expressed
in a reduced language suchrsDL2, there are potential advantages to introducing them apyiram
a knowledge engineering point of view, the new languagetcocis may make it possible to formulate
some aspects of a domain or problem in a more natural, easilgrstandable, or modular way. From a
computational perspective, having trajectory constsammtsoft goals explicitly identified may simplify
implementing more efficient strategies for dealing withrthe

The compilation methods that have so far been describectititénature ([6, 25], as well as in this
paper) are all based on simulating automata that track étessbf trajectory constraints. These methods
have obvious weaknesses, such as, for example, not deaihgith large numbers of constraints. As
an example, the following constraint, taken from don@iror age (described in Section 3), states that
any two crates stored in adjacent areas must be of a compathire:

(forall (?cl ?c2 - crate ?sl ?s2 - storearea)
(always (inply (and (on ?cl ?sl) (on ?c2 ?s2)
(not (= ?cl1 ?c2)) (connected ?sl ?s2))
(conpatible ?cl ?c2))))

Using the compilation scheme outlined above, this condtraduld be converted into a quantified
conditional effect attached to each action. For a probleth Wicrates and 10 areas (a medium-sized
benchmark problem in this domain), the corresponding giqaroblem would have actions with several
hundred conditional effects (even after effects with stdly false conditions have been removed). That
is very likely to render it effectively unsolvable even bythest current classical planners. In fact, we
have confirmed that is the case for both FF and8&\5 with constraints that are trivially satisfiable,
i.e., that are satisfied in the solution generated by thenglawhen ignoring the constraints [33].

However, a trajectory constraint of typéways can also be enforced by adding to the precondition
of any action that may possibly falsify it the regressiontd tonstraint formula through the action. In
the case of the above constraint, that amounts to adding

(forall (?c2 - crate ?s2 - storearea)
(inmply (and (connected ?sl ?s2) (not (conpatible ?cl ?c2)))
(not (on ?c2 ?s2))))

to the precondition of thdr op action (as this is the only action that maKesy ?c1 ?s1) true). As
theconnect ed andconpat i bl e predicates are static, the resulting addition to the prditimms of the
corresponding grounded actions would be only a conjuncifditerals (albeit a fairly large number of
them). Itis likely that this would not significantly slow dova planner, at least when the constraint can
be trivially or “easily” satisfied.

19

SGPLANS is, so far, the only planner to handle problems wathDL3.0 trajectory constraints in a
manner other than by compiling the constraints away. Ambaedg®PC5 benchmark problems, it solves
some that have in excess of 2000 ground constraints, sdyctedoes not suffer from the same kinds of
issues as current compilation methods. However, we hawveohlserved that S& AN5’s mechanism
for dealing with trajectory constraints has its own probgerfror example, S&.AN5 solves no IPC5
benchmark problem in the Pipesworld domain with constsajdescribed in Section 3), and we have
observed that in some cases adding just a single (satigf@intstraint to a problem causes SIAN5S
to fail whenever that constraint forces the solution plabedlifferent from the one S&.AN5 finds for
the original problem (regardless of whether the problemdtaér constraints or not).

Thus, itis clear that effective and general handlingpbL3.0 trajectory constraints is still an open
research question. Ultimately, the question of whethey ithibest done by compiling the constraints
away, and if so what the compilation scheme should look keéf constraints can be better dealt with
in a more direct way, may depend both on the particular plaand characteristics of the constraint
formulas of interest.

3 The Benchmark Domains

The benchmark domains used in IPC5 were derived from a yapfesources: some are inspired by
(potential) applications of planning technology; some emeodings of benchmark problems used in
other areas of computer science and operations reseatbpare were created for the explicit purpose
of trying out the new language features offereddnypL3.0. As in previous planning competitions,
domains were designed in several “versions”, each usindfereint subset oPDDL3.0 features. In
most cases, however, these different versions encodeathditifferent problems and should properly
be considered to be different domains, sharing only a cormtimeme. The name of each domain version
indicates the language category it belongsRoopositionaldomains use only constructs of level 1 of
PDDL2 [29, 41];MetricTimedomains also use constructs of level 2 or $0bL2.1; SimplePreferences
domains extend the propositional or metric-time variarith preferences over the problem goapsjal-
itativePreferenceslomains include preferences over action preconditionspaaterences over state
trajectory constraintdyletricTimeConstraintslomains extend the metric-time variant with strong state
trajectory constraints; and, finallgomplexPreferencetomains use the full power ¢fobL3.0. Note
that all domains are not represented in every language@ateg

In line with the aim to emphasise plan quality in the evalwatf competing planners, many of the
domains encode optimisation problems, in which it is sigalifitly easier (in some cases completely
trivial) to find a plan that only satisfies the hard goals andst@ints of a problem instance (indeed,
in some domains there are no hard goals!), and the true diffiias in finding a plan that also has
high quality. For the same reason, we also, for some domdasgned the problem instances very
carefully. Creating problems by simply assigning randonu@s to costs/penalties runs a high risk of
resulting in problems that are simple, in the sense thah@tsolutions lie at an extreme point where
one objective is ignored in favour of maximising satisfantof another. This situation we wanted to
avoid. Moreover, for most domains, the problems instanca®wesigned to have many solutions with
significantly different qualities and requiring the planfiad a good compromise among the different
(possibly conflicting) terms in the objective function tatiopise.

Three domainsover s STRIPS Pi peswor | d Tankage-Nontemporal afl peswor | d Tankage-
Temporal) were recycled from previous competitions, as § twameasure advancement in the field.
However, new versions of these domains, with preferencésanstraints, were also created. In all, we
developed 32 new domains, or new versions of existing dosnaimd 978 problem instances. Most of
these were automatically generafed.

3.1 Openstacks

The Openstacks domains are all, to a greater or lesser ddgreed on the “minimum maximum open
stacks” combinatorial optimisation problem, which can betesd as follows: A manufacturer has a

5The problem generation tools are available from the IPCSsitebt t p: / /i pc5.ing. unibs.it/.

20

product sequence: 2 3 5 1 | 1 2 3 5 4
order 1 {1, 2}): X - - X | X X

order 2 {1, 3}): X - - X | X - X

order 3 {2,4}): X - X | X - = X
order 4 ({3, 5}): X - X | X X
order 5 {4,5}): X X | X X
open stacks: 2 4 5 4 2| 2 3 3 3 2

Figure 4: lllustration of how the number of open stacks isgkdted for two different production se-

guences. An “X” denotes that the order includes a requesh&corresponding product; a “-" that the
order is open at a point in the sequence, even though it ddésalode a request for the product made
at that point. For the first production sequen2ge3 4, 5, 1) the maximum number of simultaneously
open stacks is 5, while for the second sequen¢®,(3, 5, 4) it is 3, which is also the optimal value for

this problem instance.

number of orders, each for a combination of different pradu®©nly one product can be made at a
time, but the total required quantity of that product is mati¢hat time. From the time that the first
product requested by an order is made to the time that allymtsdncluded in the order have been made,
the order is said to be “open” and during this time it requaéstack” (a temporary storage space). The
problem is to order the making of the different products sd the maximum number of stacks that are
in use simultaneously.e., the number of orders that are in simultaneous productigomjnimised.

Figure 4 illustrates the relationship between a set of ardero different production sequences, and
the number of open stacks for a small example problem.

This and several related problems have been studied in tipesaesearch (see, e.g., Fink & Voss,
[27]). Itis a pure optimisation problem: for any instancetod problem, every ordering of the making of
products is a solution, which at worst uses as many simutasig open stacks as there are orders. The
problem is known to be NP-hard [49]. Recently, it was posed @sallenge problem for the constraint
programming community (see Smith & Gent, [61]).

3.1.1 Openstacks Propositional

The Openstacks Propositional domain is a direct encodirtgebpenstacks problem. There are two
different formulations of the domain. In th@ain formulation, the encoding is done in such a way
that the length of a plan equals the maximum number of opaksfalus a problem-specific constant
(equal to twice the number of orders plus the number of prtgjudhus, minimising the number of
actions in the plan also minimises the objective functiom, the maximum number of open stacks.
However, because no plan quality metric can be specifiedemptbpositional $TRIPIADL) fragment

of PDDL, a different formulation had to be used in the competitionthis, thesequencetbrmulation,
additional action preconditions and effects ensure th&voactions can be executed in parallel, so that
minimising the number of parallel steps is equivalent toimising the number of actions. The constant
offset between the number of steps and the maximum numbeyesf stacks is larger in the sequenced
domain (equal to twice the number of orders plus twice thelmemof products).

As a result of the 2005 Constraint Modelling Challenge, gddibrary of instances of the openstacks
problem, as well as data on the performance of a number a@frdift solution approaches, is available.
The instances used in IPC5 comprise 25 problems from thisskdcted mainly for variety, plus five
extra instances of trivially small size.

3.1.2 Openstacks SimplePreferences

The Openstacks SimplePreferences (SP) domain models Eepraimilar to, yet radically different
from, the original openstacks problem. The main ingredi@né the same: a set of products to be made,
a set of orders, each for some subset of products, and theamh$hat an order is “open”, and requires
a “stack”, from the point where the first product requestedh®yorder is made to the point where the
last such product is made. The difference lies in the ohjedtinction: in this problem, the number of

21

stacks that may be used is fixed to a (instance-dependersterdnand the constraint that all requested
products must be included in each ordesadt i.e., it does not have to be satisfied for a plan to be valid,
but the plan is given a penalty for each violation. The oldjecis to minimise the total penalty for
unsatisfied product requests. Put another way, given aasiifle (due to the limited number of stacks)
openstacks problem, the planner is asked to find the maximgadited) subproblem that is solvable.

Instances of the Openstacks SP domain were constructedsteordard openstacks problems (the
same as selected for the propositional domain, except tbdrfival and the five largest) by choosing
two additional parameters: (1) a penalty function for uis$ieid product requests and (2) a limit on the
number of stacks available. Two different models for theghgrassociated with unsatisfied product
requests were used, each in roughly half the instances: én thie objective is simply to minimise
the number of unsatisfied requests, while in the other, ptsthequested by each order were weighted
according to an (arbitrarily choseajder of importanceMost instances do not have a sufficient number
stacks to permit solutions with zero penalty, but a few (jeots 15-18) unintentionally do.

3.1.3 Openstacks QualitativePreferences

The Openstacks QualitativePreferences (QP) domain caslilre objective functions of the Open-
stacks Propositional and Openstacks SP problems in a vegiglim. That is, a solution may use any
number of stacks and may drop any set of product requestsnbstt minimise the sum of a price per
stack used and the total penalty for unsatisfied requests.

Problem instances of this domain were constructed fronaintss of the Openstacks SP domain, by
simply assigning a price to stacks. The price per stack wias $iee total penalty for unsatisfied product
requests divided by the optimal (or, in the case of probleBisl8, best known at the time) number of
stacks required to accommodate all requests, with the aimmagfng the two extreme solutions roughly
equal in value.

3.1.4 Openstacks Time and MetricTime

The Openstacks Time and MetricTime (MT) domains again haeesame elements as the original
openstacks problem but very different objective functidnshe Openstacks Time domain, the objective
is to minimise plan makespan. Making each product takesfardift amount of time, but any number
of products can be made in parallel (as long as all ordersesing the products are simultaneously
open). In the Openstacks Time domain the maximum numberagkstin use is fixed, while in the
MT domain it is unlimited, and the objective function is a gleied combination of makespan and the
number of stacks used. There are no soft goals.

Problem instances were created from standard openstack&eprs (again the same set of prob-
lems as used for the Openstacks SP and QP domains) by ags{gnpart random) action durations,
attempting to ensure that the scheduling of the productingedctions dominates plan makespan. The
fixed number of stacks available in instances of the OpeksfEime domain was set close to the upper
bound (number of orders). For the MT domain, the price pesksteas determined by comparing the
makespan of the best plans found with different fixed numbgssacks, and choosing a value equal to
the average decrease in makespan per stack added, follagéig the principle of trying to make the
extreme points on the spectrum of trade-offs roughly equehliue.

3.2 Rovers

The Rovers domain, introduced in IPC3 [50], models the mabbf planning for one or more au-

tonomous rovers performing planetary exploration in oreobtain samples of rocks or soils from
certain waypoints, or having images of some objects. In |R@5reused the Strips and Numeric ver-
sions of this domain, as Propositional and MetricTime, eesipely® We also created two new domains
that are, very loosely, based on the Rovers domain.

6The problem set for the Rovers MetricTime domain extenddRi@8 Rovers Time set with some very large instances.

22

#1 #2 #3 #4 #5
#1)(sanmpl e w2) 39.5 +23.7 +0 —-26.9 —-39.5

(#2) (sanpl e wpb) 38.4 +0 +154 +23.7
(#3) (sanpl e wp7) 116.2 +0 +0
(#4) (1 mage obj 7) 312 —26.9
(#5) (1 mage obj 8) 39.5

Figure 5: Example of goal cost relations for a (very) smalv&s problem. Entries on the diagonal
give, for each goal, the optimal cost of achieving that gdahe, while each off-diagonal entiy, ;)
shows thalifferencebetween the optimal cost of achieving both goalasd # and the sum of the costs
of achieving each of them alone. A negative value represesymergy effect between goalsahd #,
while values greater than zero indicate the goals are erieq.

3.2.1 Rovers MetricSimplePreferences

The Rovers MetricSimplePreferences (MSP) domain modelstebenefit maximisatioproblem, in
which the task of the planner is not to plan for all given gdai$ to select and plan for a subset of
goals so as to maximise the net benefit, defined as the sum @élines of goals achieved by the plan
minus the sum of the (independent and constant) costs ofasdti the plan. In the domain used in the
competition, the net benefit maximisation objective wasnmeiilated as a minimisation objective. Net
benefit maximisation and other cost-benefit trade-off peoid have been studied in OR and scheduling,
and have also attracted interest among planning reseandtwmtly [62, 22]

Instances of the Rovers MSP domain were created by a genethbthaimed at generating “in-
teresting” problems, having balanced costs and valuesdch subset of goals and thus non-obvious
optimal solutions. The steps involved are: (1) Generatingdom) base problem instances, with (ran-
dom) actions costs and a relatively large number of potegtals. (2) Finding out the real cost of
achieving small sets of goals (single goals and pairs ofgjohy optimally solving the corresponding
planning problems. (3) Calculating base values for each(@od some pairs of goals), using the known
costs to estimate the kind and strength of interaction betvgoals. (4) Randomising goal values by
adding or subtracting a random percentage.

The calculation of goal base values aims to make the acHewab benefit of all goal sets roughly
equal: the base value of a single-atom goal that has no atiena with other goals equals the optimal
cost of achieving the goal. A goal that has osj)nergyrelations with other goals, meaning the cost of
achieving the set of goals together is less than the sum cft$teof achieving each of them individually,
has this base value reduced by half the average synergy,efteite for a goal that has only the opposite,
interferencerelations with other goals, it is increased by the corresjiag amount. Goals with mixed
relations are treated as goals with only synergies, butdnguaction of any pair of such goals that are
in an interference relation is given an additional valuejado the interference effect.

As an example, Figure 5 shows the optimal cost of achieviog sengle goal and each pair of goals
in a small Rovers instance. The goal of obtaining a sampia fr@ypointwp5 has only interference
relations with other goals: its base value is the cost ofewthg the goal alone3g.4) plus half the
average interference effect (i.€(23.7+ 15.4423.7) /3) /2). The goal to take an image of objexttj 8
has synergy relations to two other goals (with an averagergyreffect 0f33.2), but also an interference
relation, with the goa(sanpl e wp5) : the base value of this goal is the cost of achieving it alone
(39.5) minus half the average synergy effect. However, goal pair {(sanpl e wp5) ,(i mage
obj 8) } is given an extra base value 3.7 (the interference effect between the two). Final values for
goals (and goal pairs that have a base value) are obtainettygeor subtracting a random percentage
(in the range [-100%,+100%)]) of the base value to it.

The set of instances of this domain forms three groups: ifitsie(problems 1 to 7), all goals have
only synergy relations to other goals; in the second (prokl8& to 13), goals have only interference
relations; and in the third (problems 14 to 20), there is a afithe two kinds of goal relationshigs.

"Because only actions that move the rovers have non-zerdrctiss version of the domain, it turned out that some goals in
some of the problems we generated could be achieved by zst@lems, and therefore got a base value of zero. This problem
was fixed by assigning such goals a small vall#é-10% of the total goal value.

23

The method is not fool-proof: a final test run, using a simgdéroal planner for net benefit prob-
lems, was made to filter out problems that were too easy oatyaared too hard.

3.2.2 Rovers QualitativePreferences

The Rovers QP domain is also based on the IPC3 Rovers domiiagain, models a very different
problem. This domain was designed explicitly to test cormggblanners’ ability to trade off soft state
trajectory constraints against one another. Constraintise Rovers QP domain are all safe., a plan
does not have to satisfy them, but is given a penalty for eadatisfied constraint. Problems also
have regular hard goals (same as in the original Rovers dgm@ian constraints may contradict each
other, or the hard goals: an optimal solution in this domsgiorie that selects a jointly achievable set of
constraints with maximum value (the “value” of a constrdiaing the penalty avoided by satisfying it).

State trajectory constraints in the Rovers QP domain arfcat, in the sense that they do not
encode any real preferences on plans. As in the case of therRMSP domain, constraints (and
their associated penalties) for the problem instances gemerated by a general method, with the aim
of producing problems with non-obvious optimal solutioi@&ven a base problem, a set of candidate
constraints is found by mining a set of plans for the probleandidates are constraints satisfied by at
least one plan, but not by all. The strategy for assigningftiers to constraints is again to calculate a
base value, in a manner intended to make the values of alim@gatisfiable sets of constraints roughly
equal, and determine final values by randomly adding or aabtrg a percentage of the base value. The
joint satisfiability of sets of constraints is approximabgdooking at the set of plans.

The base problems and plans used to create instances of tkesR@P domain were the instances
of the Rovers domains(TrIPsversion) used in IPC3 and the plans submitted by plannetipating
in that competition.

3.3 Pathways

The Pathways domains are inspired by the field of molecutdoby, specifically the study of biochem-
ical pathways. “A pathway is a sequence of chemical reasfioa biological organism. Such pathways
specify mechanisms that explain how cells carry out thejlomfanctions by means of molecules and
reactions that produce regular changes. Many diseasesecaxrptained by defects in pathways, and
new treatments often involve finding drugs that correct éhdsfects.” [64] The function of a pathway,
at an abstract level, can be modelled as a planning problectios represent some of the different
chemical reactions that can appear in a pathway (assatigaxtions, association reactions requiring
catalysts, and synthesis reactions). The problem goalésistruct a sequence of reactions that pro-
duces one or more substances. Goals are generally disj@rictithe domain used in the competition,
however, these disjunctions were compiled away). The plast@mlso choose a limited number of sub-
stances to use as input for the sequence of reactionspiree, aspects of the initial state of the problem
are left to the planner. This feature was introduced maiminake the problems non-trivial to solve.

The Pathways domains created for IPC5 are based on the peatlofvthe Mammalian Cell Cycle
Control as described in [47] and modelled in [16]. Figure 6vgs an example of a small part of the
network of reactions.

3.3.1 Pathways Propositional

The Pathways Propositional domain uses a simple quaétaticoding of chemical reactions, where
only the presence/absence of a substance is modelled atigenguantity that is available. The goals
are conjunctions of binary disjunctions (compiled intai@as$ with disjunctive preconditions).

As an example, consider the network of reactions depicteféignre 6, and suppose we seek a
pathway producing eithé?AF-RAFK or MEK-{ p1, p2} using at most one of the substan&dg-, RAFK
and VEK-RAF-{ p1} as input. Without the restriction to using at most one inptstance, finding a
solution to this problem would be a trivial task: simply giying all possible (chains of) reactions of the
pathway generates all producible substances. Howevects®) a limited number of input substances
that can generate the desired output is more challenginge that in the network shown in Figure 6,

24

MEK- { p1} RAF-{p1}

Figure 6: An example of a small biochemical reaction netwd@hipses represent substances, squares
represent reactions, and edges indicate substances cedguroduced by them. The shaded nodes are
substances that can be chosen as inputs.

@
3

producingRAF-RAFK from a single input substance is not possible, so we areddrceatisfy the other
disjunct, synthesisinyeK-{ p1, p2} . If, on the other hand, the number of input substances was not
limited, producingRAF-RAFK would be easier.

3.3.2 Pathways SimplePreferences

This domain has the same basic structure as the propositiensson, with the difference that both goals
(products that must be synthesised by the pathway) and itied 8tate constraints (maximum number
of input reactants) are soft. The plan metric is a weighted sti preference violations. Problems in
this domain do not admit solutions that satisfy all prefee=s) in particular, in order to synthesise the
desired products some input reactants must be used.

The penalties associated with preferences for desiredutaigd the pathway were computed using
estimates of the minimum number of required initial reatdawith the aim of ensuring that the trade-off
between the two kinds of preferences is non-trivial (ileatfpreferences of one kind do not completely
dominate the cost function).

3.3.3 Pathways MetricTime and ComplexPreferences

The Pathways MetricTime domain models chemical reactibaggaeater level of detail, with reactions
consuming and producing certain quantities of substarcebstaking a certain amount of time. Goals
are expressed as sums of substance concentrations thabengisherated by the reactions of the path-
way. The objective function is to minimise a linear combioaf the number of input substances used
by the pathway and plan makespan.

The ComplexPreferences domain adds numerous preferemgesraing the concentration of sub-
stances along the pathway and the order in which substarepsaluced. The metric is a combination
of penalties for violations of these preferences, the nurabsubstances used and plan makespan.

3.4 Pipesworld Domains

The Pipesworld domain was introduced in IPC4 [42]. It modeésproblem of transporting batches of
petroleum products in a network of pipelines, with or witheestrictions on “tankage” (space in inter-
mediate storage tanks). In IPC5, the Tankage-Nontemp®tdbé) and Tankage-Temporal versions of
this domain were reused, and two new domain versions weatatte

3.4.1 Pipesworld TimeConstraints

The Pipesworld TimeConstraints (TC) domain is based onR@4 Pipesworld Notankage-Temporal
domain. Like several other IPC5 domains, it adds hard deeslfior the achievement of subgoals.

25

In the context of the planning competition, the main diffiguh constructing problem instances with
hard deadlines is to ensure that those deadlines can indaneh One might expect that determining if
given deadlines are feasible should be within the capgsildf temporal planners. In practice, however,
most temporal planners cannot do this. In particular, ndriteetemporal planners participating in the
full PDDL3.0 subtrack of IPC5 could do so. Therefore, including uvedole problems in the competition
set would not have served any purpose.

To ensure deadline goals were feasible, we made use ofrexjsiians (specifically, solution plans
submitted by planners competing in IPC4), simply selectorgeach problem one solution plan, with
a preference for plans achieving goals quickly, and extrgaleadlines from that plan. A similar ap-
proach was used by for the construction of some problemstimiti+windows for IPC4 [42]. In addition
to deadlines for the achievement of goal atoms (encoded wsithi n constraints), problems in this
domain also have (a fairly large number of) conditional de&d, modelled byal ways-wi t hi n
constraints. In retrospect, this was perhaps somewhastsixeg since most of the problems with only
subgoal deadlines are already too hard for the competingpls.

3.4.2 Pipesworld ComplexPreferences

The Pipesworld ComplexPreferences domain is very sinol&ipesworld TC, with the difference that
in this domain, deadlines are soft, i.e., preferencesausté hard constraints. Deadlines are specified
only for goal atoms, but each goal can have several (inargasieadlines with different (increasing)
penalties for missing them.

The method for selecting deadline goals and penalty valoeiétances of Pipesworld CP has
similarities to those used for the Rovers MSP and Rovers QRaifts. Given a base instance of the
Pipesworld (Notankage-Temporal) domain, upper and lowenks on the time required to reach each
subset of goal atoms were derived: upper bounds from a ¢afeof valid solution plans for the
problem instance (the plans found by competitors in IPC4)lawer bounds using various admissible
makespan heuristics. The set of distinct values appeagrgveer or upper bounds define a set of
“interesting” time point$. Each goal atonp and interesting time poirit such that is not less than the
lower bound on the time required to achigyedefines a potential deadline goélyi t hi n ¢ p), of
which a random subset was selected. The base value of aesktiadline goal is 1, plus 1 for every
other selected deadline goal such that the pair of them iwkino be unachievable. Final penalty values
were chosen by randomly adding or subtracting a percentife dase value.

3.5 Storage

The Storage domains model a transportation problem inwglei kind of spatial reasoning, similar to
that found in some kinds of puzzle domains (e.g., Sokobam@(:t?> — 1)-Puzzle). The goal is to
unload crates from one or more containers and deposit thestoiage spaces (“depots”) using hoists.
Space inside each depot is divided into “areas”: hoists céyrrmmove between adjacent areas, and can
only enter and leave the depot to/from certain areas. CGrate deposited in an area, block further
movement through the area. Thus, in a plan to store more tharciate in a depot, leaving the first
crate just inside the door is not going to work. Movement migtslepots (in the “loading area”) is
unrestricted.

Figure 7 shows a small example of Storage instance. Notetitass to the depot is only through
areaD32, and that thus, depositing a crate there prevents movirgy otates into the depot. Likewise,
after putting a crate in arda22, only the area closest to the door will be reachable. Thasgghe goal
in this example is to stow four crates, and there is only oot store them in, the first two must
be placed in ared311, D12, or D21. This situation can be particularly problematic for delettaxed
plan heuristics [11] : in the delete relaxation, the optirfeadd also the easiest) solution is to store all
crates in are®32, which is clearly not very indicative of the real plan.

8Two time values are not considered distinct if they differéss than a given tolerance, This filtering is necessary because
upper bounds are derived from plans, which tend to haverastart times shifted by (often wildly different) epsilonlwes.

26

LOADAREA

CRATE1
D11 |D12
CRATE2

D22

DEPOT1
8
[~

CRATE3

TSN IVINOO

CRATE4

[mrosm

Figure 7: Example of a small Storage problem.

The different Storage domain versions add action duratipreferences and trajectory constraints.
Altogether, they involve almost all the new featuresrofL3.0. There is no numeric version of this
domain.

3.5.1 Storage Propositional and Time

The Storage Propositional domain encodes the basic probleaescribed above. In the Storage Time
domain actions have non-unit duration and the objective mihimise plan makespan, but otherwise it
is identical to the Propositional version.

3.5.2 Storage SimplePreferences and QualitativePrefereas

The Storage SimplePreferences domain differs from the d¢itipnal version in that goals are soft.
Additionally, in this domain some crates are incompatibitnveach other, and preferences specify that
only compatible crates are stored in the same depot omdpihiat, that incompatible crates stored in
the same depot are located at non-adjacent areas. Thers@amreferences for keeping certain areas
clear, and for having the hoists located in depots diffefeamh those where crates are stored at the end
of the plan.

The QualitativePreferences version extends Storage $Hwaterences over trajectory constraints,
which concern the use of available hoists for moving cratesthe order in which crates are stored in
the depots.

In both domains, plan quality is measured by the sum of thghted preference violations. In
general, preferences may contradict each other, so thag th@o plan satisfying all of them, forcing
the planner to make a trade-off.

3.5.3 Storage TimeConstraints

This domain extends Storage Time with trajectory constsaiimposing that a crate can be moved at
most once and that every hoist is used at least once, cartstaai the order in which certain crates are
stored, deadlines for storing crates, and a maximum timestih@ist can stay outside a depot. Besides
the goal of storing all crates, there are end-state comssranposing that incompatible crates are not
stored in adjacent areas and that all hoists are inside &.depo

There are three groups of instances, using different mogkaladors for state trajectory constraints:
ten instances contain only constraints of tgpevay s andsonet i ne; ten instances contain these two
plussonet i me- bef or e andwi t hi n; and ten instances further extended with constraints o typ
at - nost - once andal ways-wi t hi n.

Plan quality is measured by makespan. Note, however, thatiathe additional constraints, the
solution that is optimal for corresponding Storage Timéanses may not be valid.

3.5.4 Storage ComplexPreferences

This domain extends Storage Time with preferences over dla¢ gate and over state trajectory con-
straints. Trajectory constraints are similar to those fbimthe TimeConstraints version, but in this
version there are many more (soft) constraints, which feedly contradict each other so that there

27

is no plan satisfying all preferences. The plan metric is aghted sum of preference violations.
However, since some constraints impose deadlines or ¢onditdeadlines (using thei t hi n and
al ways-wi t hi n modal operators), time also plays a part in determining plaaity.

3.6 TPP (The Travelling Purchaser Problem)

The TPP domains are inspired by the Travelling Purchasdsl®mg which is a known generalisation
of the Travelling Salesman Problem. The problem can be di&isdollows: We have a set of products
and for each product a known demand. We also have a set of tmadaeh of which can provide a
known limited amount of each product at a known price. Thepaser must select a subset of markets
such that the given demand for each product can be purchasdd;onstruct a tour which starts and
finishes at a distinguished location (called the depot) asitb\all the selected markets. The objective is
to minimise a combination of the travel cost (sum of knowngdésr each leg of the tour) and purchase
cost (sum over all products and markets of the quantity optieeuct purchased at the market times the
price at which it is offered).

The problem is NP-hard and arises in several applicatioasnlgnin routing and scheduling con-
texts. Computing optimal or near optimal solutions for tHPIis a topic of active research in operations
research (see, e.g., [57]).

3.6.1 TPP Metric

The TPP Metric domain encodes the original Travelling Paseln Problem. There are two different
purchasing actiondyuy- al | andbuy- al | needed: the first buys at a certain market the whole
amount of a product sold at that market, while the second Bugsnarket the amount of a product that
is needed to satisfy the remaining dem&ntravel between any two locations (markets and the depot)
incurs a travel cost. Travel costs are symmetric.

Figure 8 shows an example of a small TPP instance with two etsdnd three types of goods; the
available amount and price for each type of good is shownéndble next to each of the markets, and
the travel cost on the edges of the graph. The purchaser ¢a#eglt r uck) is at the depot. The goal
in this instance is to acquire 10 units@bods 1, 100 units ofgoods2 and 10 units ofjoods3, and
return the truck to the depot. The optimal plan for this ins&is a tour passing both markets, buying
goods1 andgoods3 atnmar ket 1 andgoods?2 atmar ket 2. Compared to the simplest plan, i.e.,
the one with the fewest actions, this saves 780 units of nayteThus, it is likely that a planner that
considers only the distance to the goal and not the plan engiflicome up with quite a poor plan.

3.6.2 TPP Propositional

This domain simplifies the original TPP by discretising theoaints of goods into “levels” and assuming
prices are the same for all products at all markets. Trav@kcare coarsely approximated by making the
map of connections between locations a less than complapdhgiThe goal is still to acquire a certain
total amount of (some subset of) the different goods.

Since this is a propositional domain, it has the defaultaibje of minimising the number of parallel
steps. Because of this, most of the instances of this donaammore than one depot and more than one
purchaser (“truck”), which allows the number of plan stepb¢ reduced by parallelising operations.

3.6.3 TPP SimplePreferences

This domain is similar to the Propositional domain versiaith the difference that goals are all soft
(i.e., preferences). Besides a general preference formmsixig the amount of goods acquired, there are
also preferences over the relative amounts of some kindeadgjthat is acquired. For example,

9This encoding avoids the need for a purchase action with @narargument (the amount to purchase), which is not pezdhitt
in PDDL (for reasons detailed in [29]). It does, however, introdaceonstraint that is not present in the original problema,
that the market from which a fraction of the available googuschased must be visited last. This additional couplingveen
the problems of optimising purchase and travel costs mémstiere are instances of the TPP for which the optimal isolwan
not be represented by any plan.

28

MARKET1 n MARKET2

Goods| Amount| Price Goods| Amount| Price
1 14 5 50 30 2 200 2
2 100 10
3 20 8

TRUCK] “pepor

Figure 8: Example of a simple TPP world.

(preference p3A (inply (stored goods2 |1) (stored goodsl |2)))

indicates that when 1 unit @foods?2 is purchased, 2 units @foods1 should be. These preferences
may conflict with the general preference for acquiring as Imas possible, since the total amounts
available of different kinds of goods may be different. Frample, if there is only one unit available
of bothgoods1 andgoods2, buying the one unit ofjoods2 leads to a violation of the preference
above (while not buying it violates the general preferemeédilying everything). This forces planners
to trade-off the satisfaction of the two kinds of preference

The plan quality metric is composed solely of weighted pefee violations. The relative weights
of preferences were set so that plans storing certain lefegods would be better than the empty
plan. There are also some preferences for “sensible plang’, a truck not leaving a market without
having loaded purchased goods, or not unloading goods fnentrtick by the end of the plan. These
preferences are never in conflict with preferences of therdtinds and therefore do not affect the best
achievable plan quality. To some extent, they are a substituaction costs, which can not be modelled
in this PDDL fragment.

3.6.4 TPP QualitativePreferences

This domain version extends the SP version with prefereoeestrajectory constraints. These include
constraints about which truck to use for different kinds obds and constraints imposing the use of
every truck. Plan quality is measured by weighted violaiohthe soft goals, soft constraints and soft
action preconditions. Similarly to the SP version, ins&of this domain generally do not admit a
solution satisfying all the preferences.

3.6.5 TPP MetricTime

This domain version extends the Metric version with actiomations. It has explicit actions for load-
ing and unloading goods (not present in the Metric versian)pse duration depend on the amount
loaded/unloaded. The objective function is a linear coratiam of plan makespan and the sum of pur-
chase and travel costs. Similar to the propositional versiostances can have more than one truck,
making it possible to reduce makespan by parallelising atjpers.

This domain also has an additional twist, in that the actioyity the entire quantity of a product
sold at a market gets a (known) “rebate rate”, i.e. a lowezgrThis rate, like the ordinary price, may
vary between markets, and some markets may not offer it.at all

3.6.6 TPP MetricTimeConstraints

The TPP MetricTimeConstraints (MTC) extends the MT versitth several hard constraints. Domain-
wide constraints impose that in the final state, all purcti@geods are stored in a depot (i.e., not left
lying in the market or in a truck), that every market can betet by at most one truck at the same
time, and that every truck is used (loaded) at some pointarptan. Moreover, instances of the domain
have additional constraints concerning the relative arnteoidifferent types of goods stored in a depot,
the number of times a truck can visit a market, the order inclvigjoods should be stored, the order in
which some type of goods should be stored and another baaugihtjeadlines for delivering goods once
they have been loaded in a truck. Plan quality is a linear ¢oation of makespan and the total cost of
travelling and purchasing.

29

Trucks World

L AN L2 Optimal plan
K ~—— @ | [(LOAD PACKAGEL TRUCKL Al L1)
! A (LOAD PACKAGE2 TRUCKL Al L1)
o XPackacEr T~
| N (DRIVE TRUCKL L1 L2)
!
| X packace2 Y

I
I
I
I | |
l 11 || (DELI VER PACKAGE2 L2)
- oFN PR
-——_ R [SISISISIS)
- NWAOIO

FF plan

(UNLOAD PACKAGEL TRUCKL Al L2)
|] (DELI VER PACKAGEL L2)
! (UNLOAD PACKAGE2 TRUCKL Al L2)

/

N

I

I

\ I \ :
\ \

\ TRUCK1 }

N - = / I

(LOAD PACKAGEL TRUCKL Al L1)

(DRI VE TRUCKL L1 L2)

| | (UNLOAD PACKAGEL TRUCKL Al L2)
(DELI VER PACKAGEL L2)

(DRI VE TRUCKL L2 L1)

(LOAD PACKAGE2 TRUCKL Al L1)

i (DRI VE TRUCKL L1 L2)
L (UNLOAD PACKAGE2 TRUCKL Al L2)
! . |] (DELI VER PACKAGE2 L2)

NN W

oo o000

whH BHOo

80T [- -~

|

|

|

|

|

|

|

|

|
2
OO
PR

Figure 9: Gantt charts of the optimal plan and the plan coegbly FF for movingpackagel and
package2toL2 byt ruckl from the sketched initial world state.

There are three groups of instances, using different mogkaladors for state trajectory constraints:
ten instances contain only constraints of tgbevay s andsonet i me; ten instances contain these two
plusat - nost - once andsonet i nme- bef or e; and ten instances further extended with constraints
of typeal ways-wi t hi n.

3.6.7 TPP ComplexPreferences

This domain extends the MT version with various prefererimh over the final state and over state
trajectory constraints. Trajectory constraints are samib those in the MTC domain version, and the
plan metric is a weighted sum of preference violations. Hmwethis domain also has the same hard
goals as the MT version, i.e., that the requested amountabf tgpe of good is stored at the end of the
plan.

3.7 Trucks

The Trucks domains are all (single-vehicle-type) trantdam domains with two additional constraints.
The first is that the cargo space in each truck is limited anitldd into areas, similarly to the space
inside a depot in the Storage domain, and a package can bedl@ad or unloaded from an area of a
truck only if all areas between this area and the truck door are unoccupiethénwords, the storage
space in a truck functions like a stack: last in, first out. $aeond constraint is that packages must be
delivered by a deadline.

3.7.1 Trucks TimeConstraints and Time

The TimeConstraints version of the Trucks domain is the onehich the additional constraints are
most naturally expressed. The goal is to have packagesiadigstination by certain deadlines. Solution
quality is measured by plan makespan. However, the mostulifiaspect of the problem is meeting
the deadlines, which were determined so that a valid plart exggoit truck capacity well (though not
necessarily fully). The durations of actions that move ksuare generally much greater than those of
other actions (such as loading, unloading and deliversmjhat efficient routing is a primary concern.
For example, consider the following simple instance of theéin: There are 2 objecisackagel
andpackage?2, that need to be transported from their initial locatidnto L2 using one truck with two
load area®\1l andA2, each of which can carry one package. The travel time betteetwo locations
is 100 time units, whereas loading and unloading takes 1 tinite The optimal plan for this problem
is depicted in Figure 9. First both packages are loaded ofribk at locatiorL_1, then the truck moves

30

to locationL2 where the packages are unloaded and delivered. The bottarhiohFigure 9 depicts
the plan that is generated by first running FF on the propmsliversion of the domain (obtained by
removing action durations) and then scheduling the actiakéng into account their actual durations.
Note that this plan is suboptimal. This can be attributedheoftict that the relaxed plan heuristic used
by FF does not distinguish between the usage of the two |lezabaand (accidentally) generates a plan
where the first package is loaded in the area closer to the tham blocking the use of the inner load
area. If there is the deadline thaackagel must be delivered to location2 by time 200, then the
upper chart in Figure 9 represents the only valid plan, aadmhg can become more difficult.

In this domain version, deadlines were specified\by hi n constraints. However, we also created
an equivalent version in which the constraints are compiienltimed initial literals.

The Trucks Time domain is the same as the TC version but witteadlines for package deliveries.

3.7.2 Trucks ComplexPreferences Domain

The Trucks ComplexPreferences domain has the same bagituse as the TC version, but the deadline
constraints are soft, i.e., modelled as preferences. taaéydelivering all packages is still a hard goal,
though.) In addition, there are preferences over othee stajectory constraints, imposing a partial
consistent ordering on the delivery of packages, congtainout the use of storage areas in trucks, and
constraints imposing that a package can be loaded at most onc

Plan quality is measured by the sum of weighted preferenglations. In general, preferences
concerning delivering packages within deadlines are tghdst weighted, but preferences about which
load areas inside trucks are used and how are also important.

For all instances of this domain, there exists no plan whatlsfes all preferences. In the example
shown in Figure 9, the following preference

(forall (?p - package ?t - truck) (preference plA (always
(forall (?a - truckarea) (inply (in ?p ?t ?a) (closer ?a a2))))))

indicates the desire that, if a package is in a truck, it isroarg@a nearer to the truck door than the loading
areaa? (i.e., in the example of Figure 9 on the nearest @&p On the other hand, the preferences

(preference p2A (within 120 (delivered packagel |2)))
(preference p2B (within 150 (delivered package2 |2)))

express the desire that two particular packages are detiwegithin 120 and 150 time units, respectively.
In order to satisfy the second set of preferences, theseagasknust be loaded together into the same
truck, and hence the previous preference will be violatedhidlV option leads to a higher quality plan
depends on the precise weights associated with the prefesen

3.7.3 Trucks Propositional

The Trucks Propositional domain differs from the TC versioainly in that time is modelled as a
discrete resource (with a fixed number of levels). Only addidriving trucks consume time, and, due
to the encoding, such actions cannot be executed conclyrrent

The deadlines for package delivery mean instances of theutolend to have many deadend states,
i.e., states from which some undelivered packages cannde¢lbeered in time. We have observed that
this causes the enforced hill-climbing strategy of FF tbifamany problem instances.

3.7.4 Trucks SimplePreferences and QualitativePrefereras

The Trucks SimplePreferences domain has the same basituseias the propositional version, but
has soft rather than hard deadlines. For each package, iharéard goal to deliver the package,
and a sequence of increasing soft deadlines with increg&nglties for violating them (similar to the
Pipesworld CP domain). For example, suppose the deadlirdefveringpackagel is 3. The set of
preferences

31

(preference plB (exists (?t - tine)

(and (delivered packagel |1 ?t) (less-or-equal ?t t4))))
(preference p2B (exists (?t - tine)

(and (delivered packagel |1 ?t) (less-or-equal ?t t5))))
(preference p3B (exists (?t - tine)

(and (delivered packagel |1 ?t) (less-or-equal ?t t6))))

expresses increasing penalties for late delivergatkagel (up to the limit three penalty units). The
plan metric in this domain is the number of violated prefees) so delays, i.e., the difference between
required and actual delivery time for each package, shoelthmimised. This encodes a simplified
form of the “sum tardiness” optimisation criterion, frealy used in scheduling.

The QualitativePreferences domain version extends thee®&ton with additional preferences over
state trajectory constraints, similar to those used forGReversion. Violation of these preferences is
combined with the soft deadlines in the plan quality metric.

4 Experimental Analysis of the Performance of the IPC5 Planers

In this section, after a very brief presentation of the pknsrihat entered the deterministic part of IPC5,
we experimentally investigate their performance in deté# conducted an extensive analysis using the
data from the competition, as well as additional resultamigd by further experiments. The analysis
has two main related aims: comparing the relative perfoceanf the IPC5 planners, and studying their
effectiveness more generally.

For the first aim, we analyse the data from the competitionifferg@nt ways according to the
domain categories involving different fragmentsribDL3 (Propositional, MetricTime, SimplePref-
erences, QualitativePreferences, ComplexPreferencesjdVimeConstraints). First we consider the
overall problem solving success ratio and the number oflprab solved by each planner with respect
to an increasing CPU-time limit. Then, for each domain vatiave give scatterplots showing a general
comparison of each planner w.r.t. the overall best perfogpilanner(s) using the benchmarks domains
altogether. (The detailed plots of the results for eacleddfiit domain are available from the IPC5 web-
site.) The planners are compared in terms of CPU time redfimegenerating a valid plan and quality
of the computed plan (measured using the specified plancreqpiression).

To get a better estimate of the significance of differencenfiormance observed among the com-
pared planners, we also make use of a statistical test, theoXun sign-rank test [67° This test
applies to a set of paired observations (a sample from arda@mulation), and tells us if it is plausible
to assume that there is no correlation between the paintiserged quantities. In our case, these paired
observations are, e.g., the runtimes of two planners onailmegroblem instance, and “no correlation”
between them means it is equally likely that we will see oraapeér solving a problem faster than the
other as it is that we will see the opposite on a random sanfgieodlems. The sample is our set of
problem instances for some IPC5 domain category. Obvipusyances in each of the IPC5 problem
sets are not drawn uniformly at random from the set of all jgots in the corresponding domain: al-
though for many domains there was an element of randomnéss problem generation process, many
parameters, for example, problem size, were also selesystematically within some fixed range, by
us. However, it is not inaccurate to say that our problemaetsandom samples, albeit drawn accord-
ing to someunknown distributior(by which it is much more likely to draw problems that we calesi
reasonable and interesting or representative of appicgtioblems)! In particular, the construction
and selection of problems was done without knowledge of hewcompeting planners would behave
on them: thus, we can at least say that the sample distribigioot (intentionally) skewed to favour
or disfavour any planner. The Wilcoxon test is approprisgeduse it does not require us to know the
sample distribution, and makes no assumptions about thiskdition. That is, we have no way to know
a priori how hard a planning problem is, and hence we have stoildlition of the performance of the
competing planners for these problems. As a consequenseritical that we use a non-parameterised

10This test was also used by the organisers of IPC3 to analgseshilts of that competition [50].
11For most of the domains, the criteria we used for selectiegotnchmark problems are coded in the fully-automated gnobl
generation tools that are available from the IPC5 website.

32

Planner Planning Capability Plan Quality Measure

D N SG C SC Propositional Others
Optimal
CPT2 VA — — — — #Steps Makespan
FDP - - - - - #Actions -
IPPLAN-1SC - - - - - #Steps -
MAXPLAN — - - - — #Steps —
MIPS-BDD - - - - - #Actions -
SATPLAN — - - - — #Steps —
Satisficing
DOWNWARDO4sA - — — — - #Actions -
IPPLAN-G1SC - — — — - #Actions -
HPLAN-P - - V4 - 4 - Problem metric
MIPS-BDD — — Vv — VA — Problem metric
MIPS-XXL 4 Vv Vv V4 4 #Actions Problem metric
SGRANS5 VA Vv Vv Vv VA #Actions Problem metric
YOCHANPS v — Vv — — #Actions Problem metric

Table 1: Summary of the capabilities (columns 2—6) and nreasof plan quality (columns 7-8) of
planners participating in IPC5. “D” means durative actigih' numeric fluents, “SG” soft goals (i.e.,
preferences over atoms in the goal state), “C” trajectonst@ints and “SC” soft trajectory constraints.
The plan quality measures are those indicated by the IP@astéar their planners.

test. When the statistical test indicates a significanedgffice, this means that it is quite likely that we
would have seen a similar result if we had taken a differemiga according to the same distribution. In
our context, this means that when we find that, say, plannerfaster than planner B in some domain
category, then it is highly likely that if we were to generatere problems in this domain category
— following the same construction method and selectioregatas we did when generating the IPC5
problem set for the domains in this category — planner A véliffister than planner B on most of those
problems too.

For the second general aim of our experimental investigatiee compare the IPC5 planners with
the best performing planners of the previous competiti®?C@). Moreover, for a selection of the
benchmark problems, we compare the quality of the solutimesluced by the IPC5 planners with
respect to (a) the corresponding optimal solutions (whercowgd obtain such solutions), (b) the best
sub-optimal solutions that we obtained by running othenpéas that did not enter IPC5 or other “ad
hoc” methods, or (c) lower and upper bounds on the qualityhefdptimal solutions. Finally, for a
selection ofPbDL3 domains involving preferences, we evaluate the behawbtine IPC5 planners
with and without the preferences in the test problems.

All compared planners were run on the same machine. The @R&limit was 30 minutes and for
each process at most 1 Gbytes of RAM was allowed.

4.1 The IPC5 planners

Participating in IPC5 were six optimal planners: CPT2, FDPPLAN-1SC, MaXPLAN, MIPS-
BDD and SATPLAN; and seven satisficing planner©MINWARDO4sA, IPPLAN-G1SC, HRAN-
P, MIPS-BDD, MIPS-XXL, SGPAN5 and YOCHANPS.

Table 1 briefly summarises the capabilities of the competitcAs can be seen, SGRN5 and
MIPS-XXL are the only planners supporting all language dess used across the competition do-
mains. HRAN-P and MIPS-BDD support soft goals and trajectory constsaifOCHANPS soft
goals and durative actions, and CPT2 supports durativeregtiwhile the remaining competitors are
limited to the propositional subtrack only.

The table also shows the plan quality measure optimised tly ekithe competitors. Most of the
optimal planners are optimal only w.r.t. the parallel plandth, i.e., number of steps, but two of them,
FDP and MIPS-BDD, optimise the number of actions in the plash @ne of them, CPT2, is able to
optimise makespan in problems with durative actions (whéduces to parallel length in the case of
plain propositional problems). Among the satisficing plarsy some try to find plans of good quality

33

according to the metric function specified in the problemrdéfin, while some always aim to minimise
the number of actions in the plan, and some may not considarqlality at all, focusing only on finding
a plan quickly. For the purpose of evaluating plans foundh®gé planners, for propositional domains
we measure plan quality in terms of number of actions (bexdas these domains, all the satisficing
planners use this criterion), while for the other domaindel®wed the principle of always evaluating
them according to the problem metric.

In the rest of this section, we give brief descriptions ofteatthe competing planners. More details
can be found in the short papers by the planners’ authorswhiag collected in the IPC5 booklet [13].

CPT2 (Vincent Vidal & Sebastien Tabary)

CPT2 is the new version of the CPT planner that participatd®C4, which combines a partial-order
causal-link branching scheme with a powerful pruning megra based on constraint propagation.
The planner handles durative actions and is optimal w.iakespan. In the new version, the constraint
formulation has been extended with several new pruningsraiel the underlying CP engine has been
replaced with a new, more efficient, implementation.

FDP (Stephane Grandcolas & Cyril Pain-Barre)

Like CPT2, FDP is also based on CP mechanisms, but designeptfmal sequential planning instead
of temporal planning. FDP uses a planning graph-like stinecto represent partial plans, a number of
filtering rules to remove inconsistent possibilities framststructure, and a branching rule based on the
deletion/preservation of each atom at each step to decanbegproblem. By incrementally extending
the size of the plan structure, FDP ensures that the planslg éire optimal w.r.t. the number of actions.

IPPLAN (Menkes van den Briel, Subbarao Kambhampati & ThomasVossen)

IPPLAN reformulates the planning problem as an integer ogning (IP) problem and solves it
using the CPLEX solver, combining and extending ideas fremegal previous IP encodings. It supports
different IP formulations, some of which ensure optimality.t. the parallel length in the plan while
othersdon’t. Thus, IPPLAN participated in two versionss@as an optimal (IPPLAN-1SC) and one as
a satisficing planner (IPPLAN-G1SC). IPPLAN uses $#1®IPSto-SAS translator component from
the FAST DOWNWARD planner [40] to convert problems frorDDL to a multi-valued state variable
representation.

MAXPLAN (Zhao Xing, Yixin Chen & Weixiong Zhang)

MAXPLAN, similarly to SATPLAN, converts the planning problem intseries of propositional satis-
fiability problems and relies on a SAT solver to answer théde SATPLAN, MAXPLAN finds plans
that are optimal w.r.t. the parallel length. Howevera¥MPLAN differs from SATPLAN in several
important respects: The search for a shortest plan stams & upper bound on the length and works
downward until the last solution has been proven optimal, the encoding into SAT incorporates in-
formation learned while solving previous SAT problems, adlas additional mutex constraints. The
SAT solver is also modified to take advantage of the speciatttre of SAT problems that result from
the encoding.

MIPS-BDD (Stefan Edelkamp)

MIPS-BDD is based on symbolic exploration of the state spasimg BDDs to compactly represent
sets of states. It handl@®DL3.0 trajectory constraints, which are compiled into Blakticenata and
preferences. In propositional problems, it finds plans afimal length (i.e., optimal w.r.t. the number
of actions). In problems with preferences, the plannel séhrches for plans of increasing length
and records the best (w.r.t. the problem metric) plan founéhas thus ensuring that when the search
space has been completely exhausted, the value of the thastrplan is optimal. In the competition,
however, for problems with preferences, MIPS-BDD outphtsliest plan found within the available
CPU time, and therefore did not guarantee optimality.

34

SATPLAN (Henry Kautz, Bart Selman & Jorg Hoffmann)

The 2006 version of SATPLAN is an updated version of the SASdad planner that participated in
IPC4. Itis optimal w.r.t. the parallel plan length. The mdifferences from the previous version are
the use of a different SAT encoding (using variables for kaattions and fluents) and the use of limited
mutex propagation on the planning graph that forms the ldigiee encoding.

DOWNWARD 04sA (Malte Helmert)

DowNWARDO4sA is almost identical to the AT DOWNWARD planner that participated in IPC4. It
translates thebDL problem specification into a multi-valued state variableresentation (“SAS+")
and searches for a plan using a heuristic derived from theatayraph constructed from the SAS+
representation. The main improvement compared to the IR€gion of the planner is the addition
of safe abstractiopa form of problem simplification that allows the planner tdve certain kinds of
simple problems without search.

MIPS-XXL (Stefan Edelkamp, Shahid Jabbar & Mohammed Nazih)

MIPS-XXL uses a combination of several heuristic searcthoes, including an extension of dtRric-
FF’s search and a best-first search using external memai)(dihe planner handleDbL3.0 trajec-
tory constraints and preferences, by compiling them intotBautomata and numerical fluents, respec-
tively, as well as problems with durative actions and tinratial literals. Similarly to MIPS-BDD, the
planneris “optimal in the limit”, i.e., after exploring tttwmplete state space, but was in the competition
configured to output the best plan found within the avail&@hJ time, with no guarantee of optimality.

SGPLAN 5 (Chih-Wei Hsu, Benjamin W. Wah, Ruoyun Huang & Yixin Chen)

SGR.ANS is the new version of the SGRN planner that also participated in IPC4. Features in the
new version include a new heuristic, similar to the causapgrheuristic used byAST DOWNWARD,

for planning at the subgoal level, and extensions to hardleeanew features ofDDL3.0. Like several
other planners, for problems with preferences $G¥5 employs a strategy of iteratively searching for
better plans after the first plan has been found. Unlike otbenpeting planners, however, trajectory
constraints are not compiled away but handled directly leyséarch.

HPLAN -P (Jorge Baier, Jeremy Hussell, Fahiem Bacchus & Sheila Métaith)

HPLAN-P is a heuristic search planner for problems with prefessnbuilt on top of the TLPAN
system. It also handles a subclass of trajectory conssrdigtcompiling these into parameterised finite
state automata. The heuristic guiding the search combBgtesates of the cost of reaching the goals,
the cost of satisfying preferences, and different estimatehe final plan metric value.

YOCHANPS (J. Benton & Subbarao Kambhampati)

The YOCHANPS planner translate®bL3.0 problems with preferences into so calferl benefi{partial
satisfaction) problems, and solves them using thea%’™ planner [23]. The main difference between
problems as expressedmmDL3.0 and net benefit problems is that while in the former, thedlve is

to minimise a penalty for violated (goal and preconditiorgfprences, in the latter the objective is to
maximise the utility of achieved goals and minimise the @dstctions in the plan. &,A”S solves net
benefit planning problems by heuristic search, using ammsslble heuristic based on cost propagation
over a planning graph.

4.2 Summary of the Main Results

Our experimental analysis contains many results. At a ggferel, we can derive at least the following
eleven interesting observations. With respect torhative performancef the optimal propositional
IPC5 planners, we note that:

35

1. In terms of the number of problems solved within the contipet CPU-time limit, consider-
ing the entire propositional problem set AMPLAN and SATPLAN perform similarly (although
SATPLAN is, in general, better with respect to lower CPU+ifimits) and both are significantly
better that the other competing optimal planners. Howekerg is at least one domain in which
both these planners are outperformed by some other IPChglan

With respect to theelative speeaf thesatisficinglPC5 planners, we note that:

2. For every domain category, SGAN 5 performs significantly better than the other IPC5 planners
both in terms of CPU time and number of problems solved witlig CPU-time limit up to 30
minutes.

With respect to th@lan qualityof the satisficinglPC5 planners, we note that:

3. In the propositional domain category, SGIR5 produces better quality plans than the other
compared planners, except IPPLAN-G1SC, which, howevéresdar fewer problems.

4. In the metric-temporal domain categoryp®HANPS performs better than the other compared
planners but solves far fewer problems than $GiP5.

5. Across the simple and complex preferences domain cagsgavith respect to plan quality, SG-
PLANS performs generally better than the other IPC5 plannersggbdfor MIPS-BDD in the
simple preferences domain category, which, however, sdefewer problems. For the quali-
tative preferences category, SGH 5 performs better than HRN-P and similarly to the other
planners.

6. In domains with strong state trajectory constraints, SH®XL is slightly better than SGEAN5
in terms of plan quality (these two are the only planners ceting in this domain category).
However, the performance of both planners, in terms of tied ttumber of problems solved in
this domain category, is quite poor. Domains of this kincadie present an open challenge for
future research.

Finally, concerning the performance of the IPC5 plannegeineral, we note that:

7. A comparison of the IPC5 optimal propositional planneitbthe winner of the propositional op-
timal track at IPC4 (the 2004 version of SATPLAN) shows tliet 2006 version of SATPLAN
is significantly faster than the previous winner, while tieefprmance of M\X PLAN and CPT2 is
similar to that of the IPC4 winner. Moreover, CPT2, the onpfimal temporal planner of IPC5,
performs significantly better than the winner of the optiteshporal track of IPC4 (CPT).

8. A comparison of SGEAN 5 with the winners of the satisficing propositional and noeteémporal
tracks at IPC4 (EsT DOWNWARD [40] and SGRAN4 [17], respectively), shows that SGAN5
performs better with respect to both CPU time and plan qualit

9. A study of plan quality for a subset of propositional donsa&nd problems shows that the solu-
tions computed for these problems by the IPC5 satisficingries are in general very goéd.

10. A study of the quality of plans found by IPC5 satisficingrpiers for a large subset of metric-
temporal domains indicates that these are generally oérgihor quality.

11. A study of the quality of plans found by the IPC5 satisficplanners for a subset of problems
with preferences shows that (a) the planners are, in gertialg significantly better than “blind
luck”, i.e., than the expected value of plans found whileefisrding the preferences, but also
that (b) the planners often find plans of rather poor quatigmpared to what is known to be
achievable.

12The subset of domains and problems considered for this sinaiynd for the analysis described in the next two items are
those for which we were able to compute optimal solution®wer/upper bounds on the optimal solutions.

36

Problems CPT2 FDP IPPLAN-1SC | MAXPLAN | MIPS-BDD | SATPLAN
Solved/attempted 53/210 | 46/240 2317140 84 /240 54 /240 83/210
Success ratio 23.1% 19.1% 16.4% 35.0% 22.5% 39.5%

Table 2. Number of solved/attempted benchmark problem&énpropositional IPC5 domains and
success ratio for CPT2, FDP, IPPLAN-1SCANPLAN, MIPS-BDD and SATPLAN.

Number of solved problems Propositional Domains
% x CPT2 ' ' ' '
80 | o FDP
. IPPLAN-1SC o
70 v MaxPlan &
+ MIPS-BDD &OOOW vvvvv
o SATPLAN ol

60
50
40
P

30 R
20

10

=
i |‘M+++++++ 1
10 100 1000 10000 100000 1e+06
CPU-time limit (milliseconds)

0

Figure 10: Number of problems solved by the IPC5 optimal pé&aa with respect to an increasing
CPU-time limit (logarithmic scale) for propositional doms.

4.3 Relative Performance of the Optimal Planners

Since the IPC5 optimal planners, CPT2, FDP, IPPLAN-1S@XMLAN, MIPS-BDD and SAT-
PLAN, produce optimal quality solutions, we compare therty @mterms of number of solved prob-
lems and CPU timé&® Although these planners are optimal with respect to twoedifiit measures,
number of actions and number of parallel steps, here wegistethis difference and treat them all
equally. All the IPC5 optimal planners attempted the (s@¢yeapositional versions of the benchmark
domains, while only one planner, CPT2, attempted the teaipersion. For this reason we focus the
analysis in this section on only propositional domains.

Number of solved problems

Table 2 shows the number of (propositional) benchmark moisl attempted and solved by the IPC5
optimal planners, as well as their corresponding overattess ratio. We consider a problem non-
attempted by a planner if the domain variant to which it bglwas not attempted by the planner; we
consider a domain variant non-attempted by a planner ifritaios no problem that was solved by the
planner within the CPU-time limit of the competition (30 rmtes). MAX PLAN solves more problems
than any other compared planner, although the gap with cespeSATPLAN consists of only one
problem, while SATPLAN is the planner with the best succesi® mmong those compared.

In Figure 10, the optimal planners are compared in terms aiber of solved problems within a
CPU-time limit ranging from 10 milliseconds to 30 minutes.h&v the CPU-time limit is very low
(about half of a second), CPT2 solves more problems than tngy oompetitor; for CPU-time limits
higher than half a second SATPLAN solves more problems tharother optimal planners, except
for the highest considered CPU time whereaPLAN solves one problem more than SATPLAN,
and both these two planners solve many more problems thay etleer compared planner. Note that
although the number of problems solved by MPLAN increases significantly for CPU-time limits near
the competition limit, we experimentally observed thatha&0 additional CPU minutes this planner
solves only two additional problems.

13puring the evaluation of the competition results we realisieat for a few problems MxPLAN produced sub-optimal
solutions. This was most probably due to an implementatiog bn the evaluation of an IPC5 optimal planner, each prable
with a known sub-optimal solution is considered unsolved.

37

u
1e+06 F
le+05
10000 |
1000 |

100 ¥

10

u
1e+06 F
1le+05 |
10000 |
1000 |

100 ¥

10

CPU-time of CPT2, IPPLAN-1SC, FDP, MKPLAN, MIPS-BDD versus SATPLAN

+

T #H&%%ﬁ—k«w’—ww# T
+ + +
& + '++
,Lo% + N A
é +
8 .,
2 * P
o+ +
+ « &
+
. ++ ‘\,é(, P +.+
+ +
oA & S
* 4) v 4+
S CPT2s 1)

LI %%W#w o
+ - 4

_IPPLAN-ISC +

g+

S
1,)
it 4
b

(ol o, FOP

R O
+ /4

T LG T
+ o+ o+ ++H—0M>1}»+:#t

*

+
R
+
A

."MwP@n+.

+

T e IﬁHFﬁ—HM»j}»H o

[& T]
+ s
il S

L) + &+ 5 £ 4

S e o
£ +y, '\/&]
,+' ’19((i
- MIPS-BDD + _

10

100 1000 10000 le+05 u1o

100 1000 10000 le+05

L
U10 100 1000 10000 1le+05

u1o0

100

1000 10000 le+05

§)

10 100 1000 10000 le+05 U

CPU-time of CPT2, IPPLAN-1SC, FDP, Ak PLAN, MIPS-BDD versus MXx PLAN

T T T '++m+¢+', T T T M++ﬂ!—m ERa T T T+ T T TF ++'+g i T T +W++W¢+'g T
+# k3 + o ¥ - S o +$-- o +
s ST + : - + e r LA A N +
% o ¥ % o ° + s P L
K L A ¥ el & . 25 g
Te 3 e 3 e S i - T Yo A o
<+ - K < . G g xS * < +
P& B # A&] + &t 1 T S e K e
i M R SN + L Esch el N "
Rt Tt + E + - -
s & ¥ + & + & " & b &
v Py v E 5 i v - AR S 1 S 1
PR % - - R T
e CPT2 + i APPLAN-1SC + T FDP -+ + & 7 SATPLAN + .- MIPS-BDD +

10

100 1000 10000 le+05 u1o

100 1000 10000 le+05

U10 100 1000 10000 1le+05

u1o0

100

1000 10000 le+05

U

10 100 1000 10000 le+05 U

Figure 11: Performance of the optimal planners with respec8 ATPLAN (plots on the top) and
MAXPLAN (plots on the bottom) in terms of CPU time for propositionafmhins. In the plots on the
top (bottom) of the figure, on the-axis there are the CPU milliseconds of SATPLAN AMPLAN).

CPU-time performance relative to SATPLAN and MAXPLAN

In order to give a compact graphical representation of trexal/performance of the IPC5 planners, we
use scatterplots comparing the performance results of paplanners. For analysing the relative CPU
time of the optimal planners, as well as of the satisficingnp&s in the next sections, we consider all
the problemattemptedy both the compared planneasdsolved by at least one of them.

The two sets of scatterplots in Figure 11 compare SATPLAMt§bN the top of the figure) and
MAXPLAN (plots on the bottom), respectively, with the other IPC5iropt planners. On the-axis
there is the performance of the reference planner (eithérF3AAN or MAX PLAN), on they-axis the
performance of the other compared planner. For instanessider the plot concerning the performance
of CPT2 versus SATPLAN, each cross symbol indicates the dRld tised by CPT2 to solve a
particular test problemytvalue) w.r.t. the time used by SATPLAN:{value). When a cross appears
above (under) the main diagonal of a scatterplot, CPT2 igesi¢faster) than the reference planner; the
distance of the cross from the main diagonal indicates thfpeance gap (the greater the distance,
the greater the gap). The scatterplots have additionallphliaes dividing the picture into sectors.
A cross under the line labelled “1oF” (over the line labellé®S”) corresponds to a problem where
CPT2 is at least one order of magnitude faster (slower) thamdference planner. Similarly, the lines
labelled “20F” (“20S”) and “30F” (“30S”) identify sectorsf@catterplots corresponding to problems
where the compared planner is at least two and three, resglgcbrders of magnitude faster (slower)
than the reference planner. Crosses with “U” on ghaxis correspond to problems solved by CPT2
and unsolved by the reference planner; crosses with the dlifevon thec-axis correspond to problems
solved by the reference planner and unsolved by CPT2.

In general, as is consistent with the analysis of Figure i® ctosses with the “unsolved value” on
they-coordinate are much more dense than the crosses with tlseled value” on the:-coordinate,
indicating that the reference planners solve more probléis the other compared planners.

In the plots on the top of Figure 11 most of the crosses areatie/main diagonal, indicating that
SATPLAN is generally faster than the other compared plasin€he plots on the bottom part of the

38

SATPLAN—*| MAXPLAN — —» CPTb\ﬂ MIPS-BDD— ~ %= IPPLAN-lS#
\—> p

Figure 12: Partial order of the performance of the optim&3mlanners in terms of CPU time according
to the Wilcoxon test for the propositional domains. A solicbav indicates that a planner performs better
than the other planner (or cluster of planners) with configelevel 99.9%; a dashed arrow indicates
that a planner performs better with confidence level 98.1%.

FDP- ~

figure give a less clear indication for AKPLAN, since there are many crosses above the diagonal but
also many below it.

The scatterplots of Figure 11 give a general visual indicatf the relative performance of the
compared planners considering all test problems, wherenmescases the crosses corresponding to
different problems cannot be distinguished because thegamverlapped. In order to have a somewhat
more specific indication, we counted the number of crosseadh region of each plot. For the sake of
brevity, here we omit these numerical data, which are aphglan [33], but, when useful, we present a
gualitative assessment of the compared planners basedbrdata. According to this analysis, with
respectto FDP, IPPLAN-1SC and MIPS-BDD AMPLAN is more often faster than slower, and the
number of problems for which it is much faster is greater ttt@number of problems for which it is
also much slower. On the other hand, CPT2 is often fasterddu¢s fewer problems than McPLAN
(see Table 2).

Statistical analysis

Figure 12 shows the results of the Wilcoxon sign-rank tesagaring every possible combination of
pairs of optimal IPC5 planners. We consider all the test |gmis attempted by both the compared
planners and that are solved by at least one of them.

The data for carrying out the Wilcoxon test are derived akvad. For each planning problem we
compute the difference between the CPU times of the two glenineing compared. When a planner
does not solve a problem, the corresponding CPU time is tthieecompetition CPU-time limit (i.e.,
60 minutes):* This defines the samples of the test for the CPU-time analJf$is absolute values of
these differences are then ranked by increasing numbarsingt from the lowest value. (The lowest
value is ranked 1, the next lowest value is ranked 2, and goTdren we sum the ranks of the positive
differences, and we sum the ranks of the negative diffeené¢he performance of the two compared
planners is not significantly different, then the numbehefpositive differences is approximately equal
to the number of the negative differences, and the sum ofathlesrin the set of the positive differences
is approximately equal to the sum of the ranks in the otherisatitively, the test considers a weighted
sum of the number of times one planner performs better thamther. The sum is weighted because
the test uses the performance gap to assign a rank to eachrparfce difference.

The Wilcoxon test is characterised by a probability valukioh represents the level of significance
of the performance gap. In our analysis we use a default cemdiel level equal to 99.9%; hence, if
the probability-value is greater than 0.001, then we rethsehypothesis that the performance of the
compared planners is statistically similar, and accepattenative hypothesis that their performance
is statistically different. Otherwise, there is no stétaily significant evidence that they perform differ-
ently; so we consider that, on the evidence we have, thepperbretty much similarly. For the sake of
conciseness, this paper contains only a general desceriptithe statistical results; the interested reader
can find more details in [33].

14This is the minimum value such that the performance gap faoalem solved by one planner and unsolved by the other
compared planner is bigger than the performance gap for aslylgm solved by both the compared planners. An alternative
choice would have been (1) using the competition limit, iahicowever, would have given less importance to the planbiétya
of solving a problem within the CPU-time limit, or (2) consithg only the problems solved by both the planners, whicsoime
cases could have significantly reduced the data for perfagrsiatistical test.

39

Category P Dow.04sA | IPPG. | MIPSB. | MIPSX. | SGRAN5 | HPLAN. YOCH.
P 240 180/240 | 51/240 — 68/240 | 217/240 — 751160
D 130 - - - 39/130 | 110/130 - 58/80
N 40 — — — 81740 40/ 40 — —
N+D 130 - - - 23/130 | 119/130 - 12/40
SG 110 - - 29/110 | 43/110 | 110/110 - 34/90
N+SG 20 — — — 6/20 20/20 - 20/20
D+C 50 - - - 8/50 29/50 - -
N+D+C 50 — — — 6/50 18/30 - -
SC 100 - - 16/80 12/80 100/100 | 70/100 -
N+D+SC | 108 — — — 22/88 105/108 — —
Total 978 180/240 | 51/240 | 45/190 | 235/938 | 868/958 | 70/100 | 199/390
Success % 75.0% 21.3% 23.7% 25.1% 90.6% 70.0% 51.0%

Table 3: Total number of IPC5 benchmark problems (column)“BAd number of problems
solved/attempted by ®wNwaRDO4sa, IPPLAN-G1SC, MIPS-BDD, MIPS-XXL, SGRN5,
HPLAN-P and YOCHANPS (3rd-9th columns) for different domain versions (the esuof the plan-
ners are abbreviated). “D” indicates domains with duraticgons, “N” with numeric fluents, “SG”
with soft goals, “C” with strong constraints on state tragees, and “SC” with soft constraints on state
trajectories. “—" indicates that the corresponding doreairere not attempted by the planner.

Figure 12 contains a graphical summary of the Wilcoxon tssatbout the relative performance of
the optimal planners in terms of CPU time. A solid arrow frormlanner A to a planner (or a cluster
of planners) B indicates that the performance of A is siaafly different from the performance of
(every planner in) B, and that A performs better than (evdanper in) B. A dashed arrow from A
to B indicates that A is better than (every planner in) B a iiggmt number of times, but there is no
significant Wilcoxon relationship between A and (any planing B with a confidence level equal to
99.9%; on the other hand, the relationship does hold withrdidence level slightly less than 99.9%,
which will be indicated in every statistical comparisorg(efor the analysis in Figure 12 it is 98.1%).
When there is no arrow connecting two (clusters of) planneesconsider these (clusters of) planners
having a similar performance.

According to the results of the Wilcoxon test, in terms of Cittde SATPLAN performs statis-
tically better than MxPLAN, CPT2, FDP, MIPS-BDD and IPPLAN-1SC, whileAMPLAN per-
forms better than FDP, IPPLAN-1SC and MIPS-BDDAKPLAN also performs better than CPT2,
although with a confidence level equal to 98.1%. Note thatrésult is not inconsistent with the results
in the scatterplot of Figure 11 indicating that CPT2 is gaiigifaster than MxPLAN for the prob-
lems solved byothplanners. This is because for the Wilcoxon test we also denghe problems that
are unsolved by one of the two compared planners (using tihe€€PU-time limit for each unsolved
problem). Hence, when the number of the problems solved byctwmpared planners is significantly
different, like for MAXPLAN and CPT2 (see Table 2), the result of the Wilcoxon test canfiereht
from the observations that we can make from the corresparstiatterplot. In fact, if we consider only
the subset of the problems solved by both these plannersgsiiis of the Wilcoxon test is that CPT2
performs statistically better than Ak PLAN.

4.4 Relative Performance of the Satisficing Planners

We compare the performance of the IPC5 satisficing planmeiesrims of number of solved problems,
CPU time and plan quality. Table 3 shows the number of problsotved/attempted by the compared
planners for the different versions of the benchmark dosyaas well as their overall success ratio. As
previously noted, the only planners that support all thepiiag capabilities used in the competition
are MIPS-XXL and SGPAN5, but with a very different performance. In particular, Bach domain
version, SGRPANS5 solves a much higher number of problems than any othefisatg planner, and
the success ratio of this planner is the highest among th@awed planners.

In the rest of this section, we evaluate the performance efstitisficing planners for different
domain categories.

40

Number of solved problems Propositional Domains
225

T
X Downward04sa
o IPPLAN-G1SC
L] MIPS-XXL
v SGPlan5
¢ YochanPS

200

175
150
125
100
75)
50 AIFN g vvvv
25

10 100 1000 10000 100000 1le+06
CPU-time (milliseconds)

Figure 13: Number of IPC5 propositional benchmark problsoised by the IPC5 satisficing planners
with respect to an increasing CPU-time limit (logarithmiake).

4.4.1 Propositional Domains

Five of the IPC5 satisficing planners attempted the (sevepgsitional versions of the benchmark do-
mains: DOWNWARDO4sA, IPPLAN-G1SC, MIPS-XXL, SGPANS5 and YOCHANPS. In this section
we analyse the relative performance of these planners ie ohetail.

Number of solved problems

Figure 13 shows the number of (propositional) benchmarlbleras solved by the IPC5 satisficing
planners within an increasing CPU-time limit, which ran@esn 10 milliseconds to 30 minutes. Re-
gardless of the CPU-time limit, SGRN 5 solves more problems than the other compared planners. For
CPU-time limits greater than about one secondWNwWARDO4SA solves many more problems than
IPPLAN-G1SC, MIPS-XXL and WCHANPS, and for CPU-limits between 10 and 100 seconds it
performs almost as well as SGAN 5.

CPU time and plan quality relative to SGPLAN5

Figure 14 gives a compact representation of the overallopedince of the IPC5 satisficing planners
w.rt. SGRANS5 in terms of CPU time and plan quality for all the proposiabbenchmark prob-
lems. Concerning CPU time, in general, SAR5 solves a problem more quickly than any other
compared planner, and often the performance gap is at leestoaler of magnitude in favour of
this planner. SGEAN5 is almost always faster than IPPLAN-G1SC and MIPS-XXL. @aned

to DOWNWARDO4sA and YOCHANPS, for several problems SGRN5 is slower. However, the num-
ber of problems for which SGRAN5 is faster is much higher than the number of problems for tvitic

is slower, especially for performance gaps larger than adermf magnitude (the interested reader can
find an exact count in [33]).

The plots on the bottom part of Figure 14 compare the perfaceaf the IPC5 satisficing planners
for propositional problems in terms of plan quality with pest to the performance of SGRN5. For
this analysis, as well as for the following plan quality carpons, we consider all the benchmark
problems solved byoth the compared planners. In each of these plots, a cross abel@\ the
main diagonal corresponds to a problem for which the planpaed by the compared IPC5 planner
is worse (better) than the plan computed by SG#®5 for the same problem. The crosses above the
diagonal labelled “2tW” (below the diagonal labelled “2)®brrespond to problems for which the plans
computed by the compared IPC5 planner are at least two tinoesewbetter) than the ones computed
by SGRANS for the corresponding problems. The plans computed by IS@B are generally better
than those computed bydvNwARDO4SA, since most of the crosses in the corresponding plot appear
above the main diagonal. However, the plan quality plotdgufe 14 do not give a very clear indication
for the other pairs of compared planners. The numericalidagach plot help to better understand their
relative performance: the number of problems for which $&¥5 computes plans with quality better

41

CPU-time of DODWNWARDO4sA, IPPLAN-G1SC, MIPS-XXL and YWCHANPS versus SGIAN5

U PRSI I A LA R t h Y u ! T ¥ U o U ¥ ! i LIMAHM !
1e+06 | SN | v o T . S T + S k
g R AT 1. 5 o o] 5 . o]
1e+05 © e w&y e s T [Y T A
T+ ++#++ RN g ; N o ; g
S e W FT Ot . N + TN
10000 | v £, + - + S + E
Yo o Mo LT & A A @ & A N t @ .
I, @+ - - « AR ((+ - +
000 S, T ! &« A L ' T, T o
L) . . 1 . . [. . S]
1 + +.+++¢§ f 0 L RN * ! ~° : +‘+++++++ O R
I
: + ‘ & & : 4 &
100 £ : ° ® L 2° 2°
Downward04sa + .~ IPPLAN-G1SC + < MIPS-XXL + .~ YochanPS +

10

10 100 1000 10000 1e+05 U10 100 1000 10000 le+05 U10 100 1000 10000 le+05 U10 100 1000 10000 1le+05 U

Number of actions of DBWNWARDO4sSA, IPPLAN-G1SC, MIPS-XXL and YWCHANPS versus SGIAN5

1000 T T

7 T T - T T
4 .
i -))
$+¢ e) r) e e
20W: 17 + e 2UW: 0 + s 2tW: 0 + e s 2tW: 0 + g
| w125+ x 7 | W7+ . - 1 W: 36 + 5 W: 43 + |
100 T . . .
+E A A4
'#i e +,+ +
+ . Gl
10k P ' B:33+ | - B:17+ | e e B:10+ | ot) B: 10 +
[§ r 2tB: 0 + W&@’, 2tB: 0 + q/@ . oy 2tB: 0 + q{@ r 2tB: 0 +
% - S o % o % -
. " Downward04sa + ~ % IPPLAN-G1SC + S MIPS-XXL + ~ % YochanPS +
1 10 100 1 10 100 1 10 100 1 10 100 1000

Figure 14: Performance of the IPC5 satisficing planners fopgsitional domains w.r.t. SGRN5 in
terms of CPU time (plots on the top) and plan quality (plotglmbottom) for propositional domains.
In the plots on the top (bottom) part of the figure, on thexis there is the CPU time (number of
actions) of SGPAN5; on they-axis there is the CPU time (number of actions) a)\BNWARDO4SA,
IPPLAN-G1SC, MIPS-XXL and Y0CHANPS, respectively.

IPPLAN—GlSQ"‘ YOCHANPS - - > DOW94.SA‘
SGRAN5—*| DOW.04sA —* YOCHANPS‘ﬂ MIPS-XXL—*IPPLAN-G1SC \ /4 /

\
SGRANS5— —» MIPS—XXL‘

CPU-time analysis

Plan quality analysis

Figure 15: Partial order of the performance of the IPC5 Baitngy planners in terms of CPU time and
plan quality according to the Wilcoxon test for the IPC5 prsitional domains. Dashed arrows indicate
that the corresponding performance relationships holtl aainfidence level 97.9%.

than the plans generated by MIPS-XXL an@d&HANPS (crosses in the “W” and “2tW” sectors) is
greater than the number of problems for which it computesse/@lans (crosses in the “B” and “2tB”
sectors). On the other hand, IPPLAN-G1SC produces bettditgplans more often than SGRN5.

Statistical analysis

Like for the optimal planners, we use the Wilcoxon test toensthnd whether the performance gaps
between two IPC5 satisficing planners are significant. Fesdfplanners, we test not only the difference
in CPU time but also the difference in the quality of the plémsy find. The test procedure for plan
quality is essentially the same as the one previously destr(in Section 4.3), but with two main
differences: First, we normalise the difference by divglinwith the value of the better plan (so that,
for example, if the value of the plan found by planner A is 20@ @he value of the plan found by
planner B is 220, the difference is 10%, in favour of planngif ghe objective is to minimise). Second,
we limit the comparison to the set of problems solved by bddinipers.

Both these modifications stem from the same cause, whiclaighle magnitude of the value of a
good plan may vary greatly between domains, or even betwesigms in the same domain (unlike

42

CPU time, which is measured on the same scale for every prgblghis is particularly acute iRbDL2
(metric-temporal) aneDDL3.0 problems. For example, in ti@enst acks Time domain quality is
measured by plan makespan, with values of good plans raimgthg hundreds, while i@penst acks
MetricTime the measure of quality is a sum of makespan antl @nd good plans have values of several
thousands for larger instances. But it happens also for gmoyositional domains, even though the
measure of quality is plan length for all of them. For examghe longest plan found for any instance
in the St or age Propositional domain contains 80 actions, while in @penst acks Propositional
domain, more than half the instances have minimal plan lengteater than that, and several containing
over 450 actions.

Since the Wilcoxon test uses a ranking of the differenceséat values in each sample pair, if we
compared the absolute plan quality values directly, withmmrmalisation, such differences in the mag-
nitude of values between domains could result in an unirgéras, with small relative differences in
a domain with large values weighted as more important thgelaelative differences in a domain with
small values® Normalisation helps to avoid this problem. However, thelfagimple normalisation
scheme we apply is not perfect, as, for example, it does ketitdo account the amount of difference
in plan quality that is possible (i.e., the difference betwéhe optimal and worst possible plans), which
may also be subject to variation between domains. Reswtddbe interpreted in light of this.

Figure 15 gives a graphical summary of the Wilcoxon restsua the relative performance of the
IPCS5 satisficing planners for the benchmark propositionathfgms of the competition. In terms of CPU
time, SGRANS5 performs statistically better than any other comparediea. In terms of plan quality,
IPPLAN-G1SC performs better thandvNWARDO4sA and YOCHANPS, and it also performs better
than MIPS-XXL and SGPANS5 but with confidence level 97.9%.

4.4.2 Metric-Temporal Domains

The IPC5 metric-temporal domain versions consist of nin@aios: one version ofPP involving nu-
merical fluents but without action durations; a version facke ofOpenst acks, St or age, Tr ucks
andPi peswor | d involving action durations, but without numerical fluerdasd a versions for each of
TPP, Openst acks, Pat hways andRover s involving both action durations and numerical fluents.
The IPC5 satisficing planners that attempted the benchmabitgms in these domains are MIPS-XXL,
SGR.ANS5 and YOCHANPS.

Number of solved problems

Figure 16 shows the number of metric-temporal benchmarklpros solved by the IPC5 satisficing
planners within a CPU-time limit ranging from 10 milliseasito 30 minutes. For every CPU-time limit
that we considered, SGRN5 always solves many more problems than the other compaagh@is;
while, in terms of solved problems, the performance of MIR®E and YOCHANPS is similar. Re-
markably, within 30 minutes SGRN5 solves 269 of the 300 benchmark problems, whieCiANP S
and MIPS-XXL only a much smaller percentage of them.

CPU time and plan quality relative to SGPLAN5

The scatterplots on the left side of Figure 17 give a compagifycal representation of the performance
of MIPS-XXL and YOCHANPS w.r.t. SGPANS in terms of CPU time for all metric-temporal bench-
mark problems. Since in each plot every cross appears aheveain diagonal of the plot, it is easy to
see that SGEAN 5 outperforms MIPS-XXL and YCHANPS in terms of CPU time.

In the scatterplots on the right side of Figure 17, compatirggperformance of MIPS-XXL and
YOCHANPS relative to SGEANS in terms of plan quality, many crosses are above the magoda,
but there are also many of them that are below it. As indicatethe numerical data in these plots,
which count the number of crosses in the different sectorseiims of plan quality SGRANS5 is not
the best IPC5 satisficing planner that attempted the megnporal problems. The plans computed

15We have observed that this does indeed happen, and doesagltree results of some statistical tests, though not inge lar
number of cases.

43

Number of solved problems Metric-time Domains
275

o MIPSXXL
250 v SGPlan5
205 | o YochanPS

200
175
150
125
100
75
50
25
0

10 100 1000 10000 100000 16+06
CPU-time (milliseconds)

Figure 16: Number of problems solved by the IPC5 satisficilagpers with respect to an increasing
CPU-time limit (logarithmic scale) for metric-time domain

CPU-time of MIPS-XXL and YoCHANPS vs SGPANS Plan metric value of MIPS-XXL and CHANP S vs SGPANS
U ; ; e — T T T 1e+05 T T T —— T T T ——
1le+06 R N + . . E) :
et [] 10000 | 1]
1e+05 | & . 1 &5 -] 20W: 0+ i 2W: 7 +
e ool v o W: 44 + e W: 27 +
~ ' o N ’ - 1000 | ’ 4
10000 F+ e ; A C %, . B
= < B o <« ‘ 100 #
+ F g T E
1000 -31 '\é{ 7% [Né(’ B e B: 26+ i B:43+
= . ; - R~ 2tB: 4+ & 2B: 27 +
100 £+ A 9 1 . . o] 10 A A E
- -) +Q, Q) +% Q
10) . MIPS-XXL +) . YochanPS + N >~ MIPS-XXL + W YochanPS -+
10 100 1000 10000 1e+05 ~ U10 100 1000 10000 1le+05 U 1 10 100 1000 10000 1 10 100 1000 10000 le+05

Figure 17: Performance of MIPS-XXL andOCHANPS with respect to SGRNS5 in terms of CPU
time (left plots) and plan quality (right plots) for metritne domains. In the plots on the left (right), on
thez-axis there is the CPU time (number of actions) of S@i®5; on they-axis there is the CPU time
(number of actions) of MIPS-XXL and §CHANPS.

by SGRANS are more often better than worse with respect to the plansrgéed by MIPS-XXL.
However, there is no SGRNS5 plan that is at least two times better than the corresponblitPS-
XXL plan, while MIPS-XXL computes some plans that are siguifitly better than those computed
by SGR.ANS5. Moreover, in terms of plan quality, YCHANP S tends to perform better than SGR 5:
the plans generated byOCHANPS are more often better than worse, and there is a large muhbe
plans that are at least two times better.

Interestingly, YOCHANPS produces plans of very good quality (both compared to therdwo
planners and to known upper and lower bounds) for problertiei@penst acks Time domain (which
correspond to the crosses inside the dashed region in theside scatterplot of Figure 17). This is a
pure makespan optimisation domain. All three planners asgesorm of post-scheduling of plans to
improve makespan, but it appears that the schedulers use@&ByAan 5 and MIPS-XXL produce very
poor results in this domain: by recovering the partial orde6GR.AN5’s and MIPS-XXL'’s plans
and rescheduling them optimally (using the simple critigath algorithm), we were able to improve
the makespan of these plans significantly. However, thehezkded plans are still worse than those
produced by YOCHANPS, indicating that this planner is not only doing a bettérgb scheduling the
sequential plan it finds, but that it is also better at findilagp that can be scheduled with low makespan,
at least in this domain.

Statistical analysis

The qualitative results of the Wilcoxon test comparing teef@rmance of the IPC5 satisficing planners
for the metric-temporal benchmark problems are given inufggl8 (further details are available in
[33]). This analysis confirms that the performance gap betw'8 GRANS5 and the other compared

44

YOCHANPS —*| MIPS-XXL
SGFLANS"{ YOCHANPS — MIPS-XXL SGR.ANS
CPU-time analysis Plan quality analysis

Figure 18: Partial order of the performance of MIPS-XXL, SGAR5 and YOCHANPS in terms of
CPU time and plan metric value according to the Wilcoxonfasthe IPC5 benchmark metric-temporal
problems.

planners is significant in terms of CPU time and is in favoulS@R.AN5. While in terms of plan
quality, YOCHANPS performs statistically better than the other comparadns@rs.

4.4.3 Domains with SimplePreferences

The IPC5 SimplePreference domain category contains sixadftna version of each aPP, Openst acks,
Pat hways, St or age and Tr ucks, all of which are propositional, and one versionRdver s,
which also uses numeric fluents and effects (however, thesesed only in a very simple manner to
encode action costs). The IPC5 planners that attempteckttagory of benchmark domains are: MIPS-
BDD, MIPS-XXL, SGR.AN5 and YOCHANPS. For most of these problems, computing a valid plan is
very simple: 90 problems over 130 have only soft goals, amdt@¢he empty plan is a solution for each
of them. On the other hand, for these problems computingrayitih good quality is not a trivial task.

Number of solved problems

Figure 19 shows the number of problems solved by MIPS-BDDRBHX XL, SGRANS5 and YOCHANP S
within a CPU-time limit ranging from 10 milliseconds to 30moies. For every CPU-time limit con-
sidered in this analysis, SGRN5 solves many more problems than the other compared plararets
within 30 CPU minutes it solves all problems. For CPU-timmeits between about 1 second and 30
minutes, YOCHANPS solves more problems than MIPS-XXL and MIPS-BDD, whilddaver limits
these three planners perform similatfy.

Within the highest CPU-time limit considered (30 minuteéSI; R.ANS solves all the 130 bench-
mark problems of the SimplePreferences domain versiongdee number of problems solved by
YOCHANPS, MIPS-XXL and MIPS-BDD is much lower. This is somewhaipsising, because the
empty plan is a valid plan for 90 of these benchmark problé¥age that SGPANS5 computes only one
empty plan, YOCHANPS two, MIPS-BDD five, and MIPS-XXL nine.

CPU time and plan quality relative to SGPLANS

Figure 20 gives a representation of the overall performantéPS-BDD, MIPS-XXL and YoOCHANPS
w.rt. SGRANS5 in terms of CPU time and plan quality for all IPC5 benchmantdypems in the Sim-
plePreferences domain versions. The distribution of theges in the plots on the top part of the figure
show that SGPANS5 is generally faster than the compared planners. Morethveplots on the bottom
part of the figure indicate that SGRN5 performs better than MIPS-XXL andO€CHANPS in terms

of plan quality as well. However, the comparison of the plgaserated by SGRN5 and MIPS-
BDD does not clearly indicate that one planner performseoéiitan the other in terms of plan quality.
The number of problems for which SGRN5 computes plans that are better than those generated by
MIPS-BDD is slightly greater than the number of problemswigrich it computes worse plans, but
there is no problem for which SGRN5 computes a significantly better plan.

181t js worth noting that MIPS-XXL solves several problemsngsa CPU-time limit near the limit of the competition. The
reason is not fully clear, but we think it is due to the planimgation phase of the planner, which exploits the entiralalle
CPU time and, probably because of an implementation buginetes slightly after the competition CPU-time limit. Hewver,
in our analysis we do not consider such plans because thet@®Uimit of IPC5 was 30 minutes, and we don't have data
concerning plans produced by the other compared plannerg additional CPU time.

45

Number of solved problems SimplePreference Domains
140 T T T

% MIPS-BDD
o MIPS-XXL

120 - ¢ SGPlans
o YochanPS

100

80

60

40

10 100 1000 10000 100000 1le+06
CPU-time (milliseconds)

Figure 19: Number of problems solved by the IPC5 satisficilagnpers with respect to a given CPU-
time limit (logarithmic scale) for the IPC5 benchmark Simteferences problems.

CPU-time of MIPS-BDD, MIPS-XXL and WCHANPS versus SGIRAN5

N OLé N h ! ¥ VPSR T T s UPLINALE)/Z (L UMM P PP A P
e+06 | . + : + ’ . E
- - ’ e
+)) ; + # 4
++*#+°9 L . o) 4., to A
1e+05 | A TE S - . Y E
+ : + : P
"
++ ,yoe,') r . \/oe’) A TE N ,*‘++ /
10000 Fy)) F 12) T W o) 3
) & S < - e <« ¥
1000 f R N & - 4 s E
RS o + NS . PR
: . < £ . % . . . <
100 F ra LA ra L ra v
_MIPS-BDD + L MIPSXXL + _~ YochanPs +

10

10 100 1000 10000 le+05 U10 100 1000 10000 1e+05 U10 100 1000 10000 1e+05 U

Plan metric value of MIPS-BDD, MIPS-XXL and&cHANPS versus SGIAN5

10000 T T

T T T g T T
2tW: 0 + Q,," 2tW: 19 + S 2tW: 12 + IV
1000 |k W: 12 + o r"'t&" W: 35 + "+,"'L&" W: 39 + & ,,/87,
S L A
e R A
100 F SF + LR 1 .]
- - + e e
o ,Jm'Jrr'
A . . X Ry X
i B 7+ & B:6+ Py B:8+
10 ¢ e 28:2+ k 2tB: 1+ ¥ S 21B: 1+ E
ot S ‘ o
+ # #f' A
) MIPS-BDD + A MIPS-XXL + S YochanPS +
1 10 100 1000 1 10 100 1000 1 10 100 1000 10000

Figure 20: Performance of MIPS-BDD, MIPS-XXL and¥HANPS with respect to SGRNS5 in
terms of CPU time (top plots) and plan quality (bottom pldts)the IPC5 benchmark SimplePrefer-
ences problems. In the plots on the top (bottom) part of thedigon ther-axis there is the CPU time
(plan metric value) of SGIEAN5; on they-axis there is the CPU time (plan metric value) of MIPS-
BDD, MIPS-XXL and YOCHANPS.

Statistical analysis

The results of the Wilcoxon test comparing the performarfcte IPC5 satisficing planners for the
benchmark SimplePreferences problems (Figure 21) conffiengéneral picture indicated by the previ-
ous analysis in Figure 20: SGRN 5 performs statistically better thanOCHANP S and MIPS-XXL in
terms of CPU time and plan quality, while it performs betteart MIPS-BDD in terms of CPU time,
and similarly to MIPS-BDD in terms of plan quality.

46

SGRANS—*| YOCHANPS —* MIPS-XXL SGRANS —*™
N \ MIPS-XXL = — * YOCHANPS
N < MIPS-BDD— —™

\
MIPS-BDD

CPU-time analysis Plan quality analysis

Figure 21: Partial order of the performance of MIPS-BDD, MBHXXL, SGR.AN5 and YOCHANPS
according to the Wilcoxon test for the IPC5 SimplePrefeesmmroblems. A dashed arrow indicates that
the performance relationship holds with confidence leved%6

Number of solved problems QualitativePreference Domains
100

T T T T T
X MIPS-BDD
920 L] MIPS-XXL 1
o HPlan-P
80 v SGPlans y

70
60
50
40
30
20
10

10 100 1000 10000 100000 1le+06
CPU-time (milliseconds)

Figure 22: Number of problems solved by the IPC5 satisficitagipers with respect to an increasing
CPU-time limit (logarithmic scale) for the IPC5 problemdire QualitativePreferences domains.

4.4.4 Domains with QualitativePreferences

The results of this experimental comparison concern thditatige Preferences versions of five bench-
mark domainsTPP, Openst acks, Rover s, St or age andTr ucks), which are propositional do-
mains extended with soft state trajectory constraints dkasesoft goals. Similar to the problems of the
SimplePreferences versions of our benchmark domains, &oymroblems with qualitative preferences
finding a valid plan is a simple task (in particular, 40 of tf#®benchmark problems that we used have
no hard goal, and hence the empty plan is a valid plan for thieat}computing a good quality plan can
be much more difficult.

The IPC5 planners supportirgpbL3 qualitative preferences that we compare in this sectien ar
MIPS-BDD, MIPS-XXL, HR.AN-P and SGPANS.

Number of Solved Problems

Figure 22 shows the number of problems with preferencesamtérn preconditions and state trajectory
constraints that are solved by the compared planners wathincreasing CPU-time limit ranging from
10 milliseconds to 30 minutes. Overall, for every CPU-tirmait considered, SGEANS solves more
problems than the other planners; for CPU-time limits highan about 100 milliseconds, HEN -P
solves more problems than MIPS-XXL and MIPS-BDD, while MHXZL and MIPS-BDD per-
form similarly.

It is worth noting that, within about 5 CPU minutes, SGIR 5 solves all these IPC5 benchmark
problems producing no empty plan. By contrast, a small peagge of the plans generated by the other
three planners are empty. Most of these plans are computéagf®PP domain.

CPU time and plan quality relative to SGPLAN5

Figure 23 shows the performance of HEN-P, MIPS-BDD and MIPS-XXL w.r.t. SGEANS in
terms of CPU time and plan quality. As indicated by the distiion of the crosses in the plots of the
top part of the figure, SGIAN5 is always faster than MIPS-BDD and MIPS-XXL, and very ofiten

47

CPU-time of MIPS-BDD, MIPS-XXL and HPaN-P versus SGBANS

U+ + T A HHAH O+ + T SR FR T A
1e+06 -fm* o L o L ;ﬁ g PO J
HER # . *)) T + R
o ' , o ' AT s o T :
les05 | 0 : 1o S AERECS]
o ; - L ; - y g ¥
. \/oo", . \,06, . <
000 S g) S S) S T) ; R
’ . <« « . < o i < H.r(& ¥
L 4 4 + .
1000) R . R F e RN
. . e . - < . . . <
100 [A L S N L
_“MIPS-BDD + L MIPSXXL < . .7 HPan-P +

10 % % '
10 100 1000 10000 le+05 U10 100 1000 10000 le+05 U10 100 1000 10000 le+05 V]

Plan metric value of MIPS-BDD, MIPS-XXL and HRN-P versus SGPANS

10000 T T e T T S T T
> > >4
2tW: 6 + o 2tW: 5 + o 2tw: 21 + # P
. - 2 - . o+ g
1000 k W: 9+ o 2" wig+ P 2" w4+ 1 w A 2
+ . + 7 Py
+ + i
v T Ry -
100 3 + s E
* ¥ T
i B: 6+ B:3+ L B: 19 +
e 2tB: 4 + ¥ s 2tB: 3 + ¥ A 2tB: 3 + E
* MIPS-BDD + -/ . MIPS-XXL + o _HPlan-P +
1 & bl gy
1 10 100 1000 1 10 100 1000 1 10 100 1000 10000

Figure 23: Performance of MIPS-BDD, MIPS-XXL and H&N -P w.r.t. SGRANS in terms of CPU
time (top plots) and plan quality (bottom plots) for the IPi@Schmark problems in the QualitativePref-
erences domains. In the plots in the top (bottom) part of thed, on thes-axis there is the CPU time
(plan metric value) of SGEAN5; on they-axis there is the CPU time (plan metric value) of the other
compared planners.

SGRAN5—™ HPLAN-P
MIPS-BDD
— - —_— - — — -
SGR.ANS HPLAN-P MIPS-BDD MIPS-XXL MIPS-XXL
CPU-time analysis Plan quality analysis

Figure 24: Partial order of the performance of MIPS-BDD, MHXXL, HPLAN-P and SGPANS
according to the results of Wilcoxon test for IPC5 benchnablems of the QualitativePreferences
domains.

is faster than HEAN-P as well (with the exception of severEPP problems, for which we observed
that HR.AN-P generates empty plans).

The distribution of the crosses in the plots on the bottont pathe figure shows that SGRNS
also computes plans that are more often better than worse whe plans generated by HEN-P,
MIPS-BDD and MIPS-XXL. It is worth noting that the computeahjgty plans are again worse than
the non-empty plans.

Statistical analysis

Figure 24 shows the results of the Wilcoxon test compariegirformance of the IPC5 planners for the
benchmark problems in the QualitativePreferences donmaiians. In terms of CPU time required for
finding a valid plan, SGPAN5 performs statistically better than the other comparedmpdas. In terms
of plan quality, SGPPANS5 performs statistically better than HEN-P, while it performs similarly to
MIPS-BDD and MIPS-XXL.

48

Number of solved problems ComplexPreferences Domains
110 T

e MIPS-XXL ' ' A
100 - v sSGPlan5 b
90
80
70
60
50
40
30 v
20 Joor
10
0 . 1200900000000000000000000000005¢! 1 !
10 100 1000 10000 100000 1e+06
CPU-time (milliseconds)

Figure 25: Number of problems solved by MIPS-XXL and S@R5 with respect to an increasing
CPU-time limit (logarithmic scale) for the IPC5 problemsGomplexPreferences domains.

4.4.5 Domains with ComplexPreferences

The results of this experimental comparison concern fiveaimygmporal domains extended with soft
goals as well as soft state trajectory constraints. ThestharComplexPreferences versions of domains
TPP, Pat hways, Pi peswor | d, St or age andTr ucks. Only two planners attempted this category
of benchmark problems: SGRN5 and MIPS-XXL.

Number of solved problems

Figure 25 shows the number of problems solved by MIPS-XXL 8&R.AN5 within an increasing
CPU-time limit ranging from 10 milliseconds to 30 minutesorkevery CPU-time limit considered,
SGR.ANS solves many more problems than MIPS-XXL. S@R5 solves all test problems except
three large ones in domaki peswor | d ComplexPreferences. It is worth noting that, while most of
these problems can be solved by the empty plan (becauseadd g soft), neither of the compared
planners generates empty plans.

CPU time and plan quality (direct comparison)

Figure 26 compares the performance of MIPS-XXL and $&¥5 in terms of CPU time and plan
quality. Since in the plot on the left side of the figure allsgses are above the main diagonal, it easy to
see that SGEAN5 outperforms MIPS-XXL in terms of CPU time. In terms of plamadjty (plot on

the right side of the figure), SGRN5 again performs generally better than MIPS-XXL, although f
few test problems it performs significantly worse. Note tihatre are two classes of test problems here,
depending on whether the plan metric expression has to bienisigd (crosses in the plot) or maximised
(circles in the plot). For maximisation problems, when tireles appeabelowthe main diagonal, it
means that MIPS-XXL performsorsethan SGRANS5 (for minimisation problems it is the other way
around).

Statistical analysis

The results of the Wilcoxon test comparing the performaridél® S-XXL and SGRANS5 for the IPC5
problems with complex preferences indicate that in ternfSRI) time SGRANS5 performs statistically
better than MIPS-XXL, while in terms of plan quality it perfos better with confidence level 98.1%.
4.4.6 Domains with MetricTimeConstraints

The only two IPC5 planners that support this category of haerark problems are SGRN5 and
MIPS-XXL. The results of their experimental comparison cemn the MetricTimeConstraint version

49

CPU-time of MIPS-XXL vs SGPANS Plan metric value of MIPS-XXL vs SGRN5
1

{U R S R AL I I W PRI 000 T T
1e+06 L o 4
Ei 2tW: 2 +, 4o
o : W:18 +, 1
le+0s F ¥ 7, A 100)
' ,\/0@ - o -
10000 T F g 7 ,,4;#
& . -
L < i ©
1000 S of B3+ A
) & p 2tB: 3 +
100 [a8] L
3 MIPS-XXL (Min) +
1 v v MlIPS—X)I(L + 1 § MJPS-XXL (I ax) o
10 100 1000 10000 le+05 U 1 10 100 1000

Figure 26: Performance of MIPS-XXL and SGMN5 in terms of CPU time (left plot) and plan quality
(right plot) for the IPC5 problems in ComplexPreferencemdms. In the plot on the left (right) side, on
the z-axis there is the CPU time (plan metric value) of S@R5; on they-axis there is the CPU time
(plan metric value) of MIPS-XXL. For plan quality, in case&n metric maximisation, MIPS-XXL
performs worse than SGRN5 when the circles appebelowthe main diagonal, while for plan metric
minimisation problems, it performs worse when the crossesovethe main diagonal.

Number of solved problems MetricTimeConstraints Domains
50 T T T

o MIPS-XXL
45 v SGPlans -

40
35
30
25
20
15 ¥

10 + q
5k -

0 000 1 1 1 1

10 100 1000 10000 100000 1e+06
CPU-time (milliseconds)

Figure 27: Number of problems solved by MIPS-XXL and S@R5 with respect to an increasing
CPU-time limit (logarithmic scale) for the IPC5 benchmaxkkhins with strong plan trajectory con-
straints.

of four domains Pi peswor | d, Tr ucks, St or age and TPP), involving various types of (strong)
state trajectory constraints.

Number of solved problems

Figure 27 shows the number of problems solved by MIPS-XXL 8@&R.AN5 within an increasing
CPU-time limit ranging from 10 milliseconds to 30 minutesorkevery CPU-time limit considered,
SGR.ANS solves many more problems than MIPS-XXL, but about 50% eflBC5 problems in this
domain category remain unsolved.

CPU time and plan quality (direct comparison)

Figure 28 shows the performance of MIPS-XXL and S@RS5 in terms of CPU time and plan quality
for the IPC5 problems involving strong state trajectory stoaints. Since all crosses in the plot on
the left side of the figure are above the main diagonal, &G is always faster than MIPS-XXL.
However, in terms of plan quality, the plot on the right sidehe figure shows that often MIPS-XXL
generates plans that are better than or similar to the quureing plans computed by SGAN5.

50

CPU-time of MIPS-XXL vs SGPANS Plan metric value of MIPS-XXL vs SGRN5

U+t + ++++'+ﬂ4H+' P LFR SIS LIRS 1e+05 T T T T
1e+06 F 3 S
5 10000 F e
lev0s p , A 2tW: 0 + p
g . W: 5+
SN 1000 A E
10000 - PN E
« 100
L+ <] E E
1000 ¢ % K B: 8 +
; + 2tB: 4 +
P q/OQ 10 _’1>\$ F 4
100 F, . . E $® “
T MIPSIXXL - P MIPS-XXL +
10 e . 1 A . I - ! h)
10 100 1000 10000 le+05 U 1 10 100 1000 10000 1e+05

Figure 28: Performance of MIPS-XXL with respect to SIGAR 5 in terms of CPU time (left plot) and
plan quality (right plot) for the IPC5 problems with strongte trajectory constraints. In the plot on the
left (right) side on ther-axis there is the CPU time (plan metric value) of S@R5, and on they-axis
there is the CPU time (plan metric value) of MIPS-XXL.

Statistical analysis

According to the Wilcoxon test comparing the CPU times of $&¥5 and MIPS-XXL for the IPC5
problems involving strong state trajectory constraints,eapected by observing the plot on the left
of Figure 28, SGPANS5 performs better than MIPS-XXL. Concerning plan qualitye thumber of
problems for which both the planners compute a solutiondaddw for a significant statistical analysis
of the results.

45 How Good is the Performance of the IPC5 Planners?

In the previous section, we have given a comparative evaluaf the performance of the IPC5 planners;
in this section we analyse their CPU time and plan qualityhwéspect to (a) the winners of the previous
competition, and (b) exact or estimated lower/upper bowndke distance from the optimal solutions of
the IPC5 plans for a subset of the benchmark problems. Fordageparately analyse optimal planners,
satisficing propositional planners and satisficing megimporal planners; for (b) we separately analyse
a subset of the IPC5 plans febbL2 andpPDDL3 problems.

4.5.1 Performance Relative to the IPC4-Winner Optimal Plamer

The optimal planners that won IPC4 are: for the proposititraek, the 2004 version of SATPLAN
[46] (here indicated with SATPLAN.ipc4); for the metrigxie track, CPT [66] (here indicated with
CPT.ipc4).The analysis in this section shows that, overall, the optptanners that won IPC5 improve
on the performance of the optimal planners that won IPC4.

The tables in Figure 29 compare the CPU times of SATPLAN.igod CPT.ipc4 with the CPU
times of the IPC5 optimal planners for all the IPC5 proposiél and temporal domains. For this
analysis, as well as for the comparison of the best IPCA4fatig planners with the IPC5 satisficing
planners, we summarize the result of the experiment by aogitiite number of test problems in which
the IPC4 winner planner is faster (slower), at least onerovflenagnitude faster (slower) and at least
two orders of magnitude faster (slower) than the comparé&bIflanner (these values are lower bounds
because for the unsolved problems here we consider the dedgePU-time limit, which is a lower
bound of the actual solution time). Bold data emphasise d¢ingparisons that are in favour of the IPC5
planners.

Overall, we have that for a large number of test problems|RI@5 version of SATPLAN is faster
than the IPC4 winner version, which is faster than the newigaronly for a few problems. Moreover,
for many test problems the 2006 version of SATPLAN is at leswt order of magnitude faster, while
this is never the case for the IPC4 version. On the other resmhrding to this analysis, we observe no
significant improvement for the other optimal propositibplanners of IPC5.

51

SATPLAN.ipcdvs | 20S | 10S| S F | 1oF | 20F

CPT2 2 9 34 || 32 9 2

FDP 8 14 26 49 28 16 -

IPPLAN-1SC o| o|o]so]| 3| 10 SEE"C“VS 233 1;’5 189 g
MIPS-BDD 8 14 22 62 45 14

MAXPLAN 0 8 41 || 59 9 1

SATPLAN 1 17 65 8 0 0

Figure 29: Numbers of IPC5 test problems for which SATPLA®N4 and CPT.ipc4 are faster/slower
than the IPC5 optimal propositional and temporal plann&he table columns distinguish the number
of problems for which the reference planner is faster (spweS)-columns, and th@inimumnumber

of problems for which it is at least one order of magnitudedaéslower), 10F(S)-columns, and at least
two orders of magnitude faster, 20F(S)-columns.

DowNwARD.ipcdvs | 20S | 1o0S| S F 1oF | 20F DOWNWARD.ipc4vs | 2tW | W B | 2tB
DOWNWARD.04sA 0 1 83 51 2 1 DOWNWARD.04sA 0 3 72 | 17
IPPLAN-G1SC 0 4 14 164 | 144 | 111 IPPLAN-G1SC 0 29 3 0
MIPS-XXL 0 2 39 139 | 111 | 85 MIPS-XXL 1 16 || 13 0
SGR.ANS 26 | 114 | 165 54 13 0 SGR.ANS 0 84 || 65 0
YOCHANPS 0 0 16 113 | 59 35 YOCHANPS 0 14 || 41 0

Figure 30: Minimum numbers of IPC5 test problems for whiclkhMiINWARD.ipcO4 performs bet-
ter/worse than the IPC5 satisficing propositional planndiise table on the left concerns CPU time
(the meanings of the column labels is as in Figure 29); thie tai the right gives the numbers of prob-
lems for which DDWNWARD.ipc4 produces better (worse) plans, B(W)-columns, andagtltwo times
better (worse) plans, 2tB(W)-columns.

The results of the Wilcoxon test comparing the IPC4 versio8 ATPLAN and the IPC5 optimal
propositional planners indicate that the only IPC5 plarthat performs statistically better than SAT-
PLAN.ipc4 is the IPC5 version of SATPLAN.

Concerning the optimal metric-temporal planners, the piothe right side of Figure 29 indicates
that CPT2, which was the only competing IPC5 planner of thitegory, significantly improves the
previous (IPC4 awarded) version of CPT. The result of thec@bn test confirms that CPT2 is statis-
tically faster than CPT.ipc4.

4.5.2 Performance Relative to the IPC4-Winner Satisficing Rpositional Planner

The satisficing planners that won IPC4 are: for the proparséi track, AST DOWNWARD [40] (here
indicated with DDWNWARD.ipc4); for the metric-time track, SGRN4 [17] (here indicated with SG-
PLAN.ipc4). The analysis in this section shows that, overall, the wirofahe IPC5 satisficing track
improves on the performance of the satisficing plannerswiwat IPC4, both in terms of CPU time and
plan quality.

The tables in Figure 30 summarise the results of an expetaheomparison about the performance
of DOWNWARD.ipc4 with the IPC5 satisficing propositional planners, &irthe IPC5 propositional
benchmarks. Concerning CPU time, we have that 543# clearly outperforms DWNWARD.ipc4 for
most of the problems. In many cases S@RY5 is at least one order of magnitude faster, and in several
casesi itis at least two orders of magnitude faster. On ther didind, in most casesdWNWARD.ipc4 is
faster that the other IPC5 planners, with the exception®1BC5 version of @WNWARDO4SA.

Concerning plan quality (measured in terms of number ofoastin the plans generated for the
problems solved by both the compared planners), more thaplamner performs generally better than
the IPC4 winner. As the table on the right side of Figure 30n&)dhe number of test problems for
which IPPLAN-G1SC, MIPS-XXL and SGRAN5 compute better quality plans is higher than the
number of problems for which they produce worse quality pla®n the other hand, there are more
test problems for which DWNWARDO4sA and YOCHANPS generate worse quality solutions (w.r.t. the
solutions of the IPC4 winner) than test problems for whiakytproduce better solutions.

52

SGR.AN.ipcdvs | 20S | 10S| S F 1oF | 20F SGRAN.ipcdvs | 2tW | W B | 2tB
MIPS-XXL 0 0 1 128 | 111 | 85 MIPS-XXL 2 50 7 0
SGR.ANS 48 70 | 132 | 39 8 2 SGR.ANS 19 | 113 || 1 0
YOCHANPS 0 4 7 61 53 14 YOCHANPS 36 50 2 0

Figure 31: Numbers of IPC5 test problems for which the $&¥.ipc4 performs better/worse than the
IPC5 satisficing metric-temporal planners. The table onléfteconcerns CPU time: the table on the
right concerns plan quality. The meanings of the columnlkéee as in Figures 29 and 30.

The main results of the Wilcoxon test comparing the perforoeaof DOWNWARD.ipc4 and the
IPC5 satisficing planners for propositional domains are:

e In terms of CPU time, the only planners that perform stai@dly better than the IPC4 winner
are SGRANS5 and DowNWARDO4sA (the latter with confidence level 99.5%). In terms of plan
quality, SGRANS5 performs better than the IPC4 winner with confidence 1e&08%, while
DowNWARDO4sA performs worse;

¢ In terms of plan quality, the only planner that statistiggderforms better than the IPC4 winner
is IPPLAN-G1SC, which however, as we have seen in Table 2esa small percentage of the
test problems.

4.5.3 Performance Relative to the IPC4-Winner Satisficing Mtric-Temporal Planner

We now analyse the performance of the satisficing IPC5 plarswgporting metric-temporal domains
with respect to SGPAN .ipc4, the best IPC4 metric-temporal planner, for all theéringemporal IPC5
domains.

Concerning plan generation speed, as indicated by thetsdauthe table on the left hand side of
Figure 31, SGPANG is generally faster than SGEN.ipc4, and for many problems it is at least two
orders of magnitude faster. On the other hand, in most cisesther IPC5 planners considered in this
analysis are slower than SGAN .ipc4.

Concerning plan quality, interestingly, we observed tHathe compared IPC5 planners perform
generally better than SGRN.ipc4.

Finally, the results of the Wilcoxon test comparing the parfance of MIPS-XXL, SGPANS
and YOCHANPS with the performance of SGEN.ipc4 confirm the observation derived from Figure
31: SGRANS is the only IPC5 satisficing metric-temporal planner whiglstatistically faster than
SGR.AN.ipc4, while in terms of plan quality every IPC5 satisficingtnic-temporal planner performs
statistically better than SGRN.ipc4.

4.5.4 Quality of the Solutions for PDDL2 problems

In order to evaluate how good a plan for a problem is w.r.t. dpecified plan metric, we first need to
know the plan metric value of an optimal plan for the probldmthis section, we compare the plans
generated by the IPC5 satisficing planners with the planergéed by the optimal IPC5 planners. Ob-
viously, since the satisficing planners solve many morelprab than the optimal ones, in this analysis
only a subset of the solved problems can be considered. @a@the collection of optimal plans (w.r.t.
number of actions) for the propositional domains, we alsdus domain-specific solver to obtain op-
timal solutions for theOpenst acks propositional problems. Since for metric-timm®DL2 domains
the number of known optimal solutions is very limited, foistisategory of IPC5 benchmarks we also
compare the solutions generated by the IPC5 planners wlitti@as that approximate the optimal ones.
Figure 32 summarises the results of this analysis for thegsitional IPC5 benchmarks for which
we know optimal solutions (28 fro@penst acks, 4 fromPat hways, 9 fromPi peswor | d, 7 from
Rover s, 14 fromSt or age, 6 fromTr ucks and 8 fromTPP). The measure of plan quality here is
plan length, i.e., the number of actions. Overall, the 8aiingy IPC5 planners tend to perform well (an
exception is WNWARDO4sA, which overall has the worst behaviour in terms of distarroenfthe
optimal solution): the quality of most of the solutions exaed is at most 10% worse than the optimal

53

% of plans Propositional Domains
80

. Downward04sa (72I problems considered over 180 solved) —
70 b IPPLAN-G1SC (39 problems considered over 51 solved) wwwmm
gt MIPS-XXL (61 problems considered over 68 solved)

SGplan5 (76 problems considered over 217 solved) &
YochanPS (33 problems considered over 75 solved) Zzz:Z

60

50

40

30

20

10

7

0-1% 1-5%

5-10% 10-25% 25-50% >50%

Distance from the optimal solution

Figure 32: Plan quality distance of the solutions compute®bwNWARDO4SA, IPPLAN-G1SC,
MIPS-XXL, SGR.AN5 and YOCHANPS from the optimal plan metric value for a subset of problems
in every IPC5 propositional domain.

plan length, and there is a small percentage of the solutigtiisa quality that is 25% or more worse

than the optimal plan length. Interestingly, most of thersixeed plans computed by IPPLAN-G1SC
and SGRANS are optimal or nearly optimal. On the other hand, we obstratonly a small subset

of the IPC5 benchmark problems are considered in this aisadysl, moreover, most of them are small
instances (those solved by the IPC5 optimal planners). Ehawour of the IPC5 satisficing planners
may be different for larger instances.

A comparison of the solutions generated by CPT2, the onlybIBgtimal temporal planner, with
those found by the metric-temporal IPC5 satisficing plasireticates that, contrary to the propositional
case, for these problems the IPC5 satisficing planners pftatfuce poor quality solutions.

Since CPT2 solves only 21 temporal problems, in order to avere general analysis, Figure 33
shows the evaluation of the IPC5 plans in terms of lower bsifind their distance from the optimal
solution. We computed these lower bounds by running theioersf LPG described in [34] up to
some CPU hours, and we compared the solutions of the IPChgiamwith the solutions computed by
LPGZL For each IPC5 solution that is worse than the LPG solutiandiktance between the qualities
of the compared solutions provides a lower bound on themistérom the optimal solution. For each
evaluated planner, the analysis does not consider thegarsfor which the planner computes a solution
that is better than the one generated by LP G; these problenasi@ry small percentage of those solved
by both the planners.

The analysis confirms that most of the generated plans arfedfar the optimal solutions: for at
least 65% of the IPC5 metric-time benchmarks considerethfsranalysis, the solutions computed by
SGR.AN5 and MIPS-XXL are at least 50% worse than the optimal sohgtiavith a distribution of
their solutions over the lower bounds for the plan qualistaince that tends to increase with the size of
the bound.

The reason for the low plan qualities for SGH5 is not completely clear, but we believe it is
mainly because this planner optimises plan quality onlyeuegrtain particular conditions which rarely
occur in the considered test problems [44]. During seardBPIAN5 optimises only the makespan
when it runs best-first search, which is executed only whemtlin method based on enforced hill-
climbing fails (the hill-climbing does not optimise plan ality). If the problem can be serially de-
composed into some stages (called “subproblem level degsitiqm” [17]), SGRANS tries different
orders of these stages to get multiple feasible plans witardnt metric values. If SGIRARN5 employs
neither subproblem-level decomposition nor best-firstdgat never considers the plan metric during
the search [44].

MIPS-XXL attempts to optimise the plan metric during searatwever, evidently the implemented
techniques are not very effective within 30 CPU minutes ¢hmpetition limit). Finally, although both

1"The CPU-time limit for LPG was much higher than the one usethincompetition, and this analysisrist intended to
compare LPG with the IPC5 planners.

54

% of plans Metric-time Domains
5

— MIPS»XX[(60 problems clonsidered over 50 solved)
#5222 SGPlan5 (242 problems considered over 269 solved)
e YochanPS (68 problems considered over 70 solved)

>4

R

40

2a%a%e%

<

%%

30

X2

RS

20

10
0 :

0-1% 1-10% 10-25% 25-50% 50-100% >100%
Lower bound for the distance from the optimal solition

K R K

Figure 33: Percentage of the IPC5 solutions (satisficingr@es) for a large subset of problems in every
IPC5 metric-time domain with respect to increasing loweuntds for the plan quality distance from the
optimal solution.

Plan Metric openstacks-SimplePreferences Plan Metric rovers-MetricSimplePreferences
0000
%~ MIPS-BDD (2 solved) j j j j o' MIPS-XXL (6 solved) j j j ' j
---o--- MIPS-XXL (18 solved) X SGPlan5 (20 solved)
---%--- SGPlan5 (20 solved) * YochanPS (20 solved)
Best known soluton 1 | - Best known solution
Worst solution ----&--- Lower-bound
1000 F o Optimal solution E Empty solution

o Optimal solution

Synergistic Interfering
100 f 4
P a 1000
a - SeemseX
10t o 4 i
x ; \ X
a j=Es| ! N N
i N \
i \ N \/
| h 4
1 5 & |
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Figure 34: Plan quality evaluation for MIPS-BDD, MIPS-XXL,0CHANPS and SGPEANS5 in
Openst acks SimplePreferences arRbver s MetricSimplePreferences. On theaxis there are the
problem names simplified by numbers; on thaxis there is the plan metric value in log scale (the
lower the better).

these two planners schedule plan actions by a post-progesigjorithm, these techniques do not derive
significantly better plans. We conjecture this is becaussvofmain reasons: the implemented post-
processing step does not perform optimal action (re-)sdliveg} the original plans do not allow good
scheduling of the actions. In order to support the first cctojee, we ran a simple scheduling algo-
rithm on the plans generated by MIPS-XXL and S@R5 for theOpenst acks Time benchmarks,
obtaining considerably better plans.

Concerning YoCHANP' S, this planner attempts to minimise the number of actionsd search and
performs a post-processing step for improving their schiegu Somewhat surprisingly, this strategy
allows YOCHANPS to perform slightly better than MIPS-XXL and SGH 5, with fewer plans having
very poor quality and a more uniform distribution of the g@uas over the plan quality distance bounds.

4.5.5 Quality of the Solutions for PDDL3 problems

In this section, we study the quality of the solutions corepldiy the satisficing IPC5 planners for prob-
lems involving preferences. The main observation that wedeaive from the results of this analysis is
that, while in many cases the IPC5 planners produce goodtysalutions, there is also a large num-
ber of problems for which their solution is far from the opéhone. In the following, we analyse the

55

Plan Metric rovers-QualitativePreferences Plan Metric pipesworld-ComplexPreferences

T T T T T T T T T
MIPS-XXL (5 solved) -+o--
SGPlan5 (15 solved) -4-x-—-

Lower-bound
X Upper-bound ———

x' SGPIIanE (20I solvedl)

4 HPlan-P (14 solved)

Best known solution /

fffffff Lower-bound /B

10000 £ FF-jow quality solution (baseline) A - Y 100
—=== Worst solution A =

X
f

1000

100 |

X

10 !
10 L L L L L L L i L L L L L

0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16

Figure 35: Plan quality evaluation for HRN-P, MIPS-XXL and SGPBANS in Rover s Qualita-
tivePreferences ani peswor | d ComplexPreferences. On theaxis there are the problem names
simplified by numbers. On thg-axis there is the plan metric value (log scale): for the plothe left
side, the lower the better; for the plot on the right side higher the better.

IPC5 solution plans with respect to the best known solutmmthe optimal solutions, the worst plan
metric values, and the lower/upper bound on the optimaltswis. For a minimisation (maximisation)
problem, the lower bound is a plan metric value that is bdit@arse) than the optimal value, while
the upper bound is a plan metric value that is worse (betitem the optimal value.Rj peswor | d
ComplexPreferences is the only IPC5 domain encoding a msaiion problem). The definition of the
worst plan metric depends on the specific domain.

We derived the upper bound values using solutions that doeilobtained “easily”, meaning either
as a side-effect of the construction of problem instancelsy @ domain-specific polynomial procedure.
Optimal solutions, best known solutions and lower bound®wétained in a variety of ways, some by
domain-specific methods and some by general planning tgelgiusing a large amount of CPU time.
For a more detailed description, see [38].

We consider two domains involving soft goals and two domaiith preferences over state tra-
jectory constraints. Figure 34 shows the evaluation of fla@gpcomputed by the IPC5 planners for
Openst acks andRover s with soft goals. In general, the plans fgpenst acks SimplePreferences
generated by SGRANS5 and MIPS-XXL have low qualities. The solutions computedvby? S-X XL
are close to the worst plans and at least one order of magniadse than the optimal solutions; the
plans computed by SGRN5 are better, but they are often still significantly distanoinfi the optimal
plans. (In this domain, each preference can be violatedtlgxaicce, so the worst plan quality is the
sum of penalties over all preferences in the plan metric.)

The problems irRover s MetricSimplePreferences form three groups (in Figure 3dotled “syn-
ergistic”, “interfering” and “mixed”), which differ in cerin properties of the penalties associated with
soft goals (see Section 3). In this domain, the worst possiblution quality is infinity. However, the
empty plan is a valid plan for every instance of this domainyg consider this as our baseline. Almost
every plan computed by the IPC5 planners has quality bdtter the empty plan. The two planners
that behave generally better are SQR5 and YOCHANPS. For problems in the “synergistic” group,
they generally compute good quality plans; for problems$a‘interfering” group, the quality of their
plans is very close to the quality of the empty plan; finaly, froblems in the “mixed” group, in most
cases SGEAN5 and YOCHANPS compute plans that, in terms of plan quality, are clostrd@ptimal
solution than to the empty plan.

Figure 35 shows the evaluation of the plans computed by t&& tanners for domainRover s
andPi peswor | d with preferences over state trajectory constraints. Coricg Rover s Qualita-
tivePreferences, since problems have hard goals, as drteaml analysing plan quality, we used the
plans generated by FF [43] for solving the problems in thismdim modified by omitting all pref-
erences. The distances between the qualities of the bestnksolutions and the plan quality lower

56

Planner & Domain category] Probs [100%W | 33%W [Worse || Better [33%B | 100%B |

HPLAN-P

QualitativePreferences 70 0 0 1.42 75.0 37.0 21.0
MIPS-XXL

SimplePreferences 49 0 2.0 2.0 79.0 26.0 18.0
QualitativePreferences 12 0 0 0 33.0 33.0 33.0
ComplexPreferences 22 4.0 9.0 59.1 36.0 31.0 18.0
MIPS-BDD

SimplePreferences 29 0 0 0 82.0 48.0 44.0
QualitatativePreferences 16 0 0 0 68.0 50.0 37.0
SGR.ANS5

SimplePreferences 117 0 0 0.85 97.0 71.0 42.0
QualitativePreferences 85 0 0 1.17 98.0 95.0 77.0
ComplexPreferences 105 5.0 11.0 15.2 74.0 53.0 29.0
YOCHANPS

SimplePreferences 54 1.0 3.0 13.0 79.0 44.0 29.0

Table 4: Percentages of problems for which the solutionspeged by the IPC5 planners are
worse/better than the solutions generated by these plafiorethe same problems without preferences
in the plan-metric: at least two times worse (column “100% Vet least 33% worse (column “33%W”),
worse (column “W”), better (column “B”), at least 33% betfeolum“33%B”), at least two times better
(column “100%B”). Column “Probs” indicates, for each pl@nmand domain category, the number of
test problems considered for this analysis. The shade@ wadlicates the only case when the percentage
of the better solutions was smaller than the percentagesofitirse solutions.

bounds identify intervals containing the plan metric valoéthe (unknown) optimal solutions. Shaded
areas indicate problems for which the qualities of the IPGEipare (a) close to (at most 30% worse
than) the qualities of the corresponding best known sahstand (b) far from (at least 30% greater than)
their lower bounds; in these cases, the results of this @xeat are not very informative.

For most of the considered problems, the plan quality of F&tikast two times worse than the
optimal plan quality. The worst plan quality is given by thars of the preference weights in the
plan metric. Interestingly, all the plans computed by $@#®5 and HRAN-P are better than those
computed by FF, although they are not very good plans: thailities are often roughly in the middle
between the quality of the plan computed by FF and the opiitaal quality.

The problems irPi peswor | d ComplexPreferences require the satisfaction of the prolgeef-
erences be maximised, instead of their violation be mirgchisThe plans violating every problem
preference are the worst solutions and they all have quaditg. The lower/upper plan quality bounds
identify intervals containing the plan metric values of fa@known) optimal solutions. Shaded areas
indicate problems for which the IPC5 plan qualities are &)ffom (at least 30% lower than) the cor-
responding upper bounds and (b) are also close to (at mostl@0&s than) their lower bounds; in
these cases, the results of this experiment are not veryniafiive. The planner with the best behavior
is SGR.ANS5, which generates good quality plans for the small probledmyever, for medium-size
problems it often computes plans with qualities roughhjhia iniddle between the worst and the optimal
ones.

4.5.6 Behaviour of the IPC5 Planners for the Benchmark Prol@ms with/out Preferences

Since in a valid plan for @bbL3 problem the preferences specified in the plan metric do aeé h
necessarily to be satisfied, a planner that simply ignorestbould accidentally produce a plan satis-
fying some or most of them, possibly obtaining a good-gqualian. In order to give a general exper-
imental evaluation of the effectiveness of the methods @mgnted in the IPC5 planners to deal with
preferences, we conducted the following experiment. WeathiPC5 planners supportingbbL3.0
preferences using the IPC5 benchmarks modifiedelnyovingthe preferences, and we compared the
quality of the plans for the modified problems with the plaosthe corresponding original problems
containing preferences. In case a modified test problemagmno classical goals, for every tested

57

planner, we used the empty plan. The results of this expat@hanalysis are given in Table 4. If we
consider only the problems with hard goals similar resudis lse obtained.

In most cases, the techniques for dealing with the prefegimplemented in the tested planners
allow the planners to derive plans with better qualitiesmaekably, SGPANS5 achieves the highest
improvements (relative to its own solutions generated outtconsidering preferences), with the best
results for the problems involving soft qualitative statgjectory constraints (called qualitative prefer-
ences): 77% of the solutions are at least 2 times better th@sdlutions generated for the problems
with the preferences omitted. On the other hand, for evestgteplanner except MIPS-BDD, there are
some problems for which ignoring the preferences leads tebguality plans.

5 Conclusions

Planning has been tackling increasingly difficult problewith greater success over recent years. An
objective for the community is to move the focus of reseaoshards the solution of problems with
increasing relevance to application. In many applicatioras, the quality of plans is central to their
usefulness. In IPC5, differently from the previous IPCangjuality was important, both in the planning
language and in the evaluation of the competing planners.

In this paper we have presented a new versiopoafL, PDDL3, that was designed for the determin-
istic part of IPC5.pDDL3 includes new features that allow the user to specify pladityun terms of
constraints across the trajectories and in terms of preé@®over such constraints as well as over goals.
Although the concepts of constraints, both hard and sadtnat new, even to planning, the adoption of
a common language and the basis for benchmarks plays alo®téran promoting research into these
areas. In order to make the new language more accessible tB@5 participants, a restricted version
of PDDL3, PDDL3.0, was used for the competition. Several new plannersastipg some of or most
of the new features afDDL3.0 entered the competition. Some methods for compilinig $tajectory
constraints and preferences have recently been develapgarticular by some competing teams of
IPC5, e.g.,[25]), but these schemes were not designed hatlptirpose of studying the language the-
oretical expressiveness. Although a detailed study of ¥peessiveness afbDL3 is outside the goals
of this paper, we have given some new basic results aboubtheitability of PDDL3.0 state trajectory
constraints and preferences.

PDDL3.0 as well a®DDL3 could be further extended in many ways. An interestingipdiyg would
be to use an alternative way to define the importance of prées that is more based on qualitative
priorities rather than numerical weights, as outlined it[3However, the current version eDDL is
already a powerful language. As demonstrated by the resUBC5 and previous competitions, current
planners are not yet capable of dealing with many featuresof in a fully satisfactory.

Another contribution of our work is the development of a kigpllection of new benchmark do-
mains and problems, specified wtbDL3.0 andPDDL2, which we have presented in this paper. The
new benchmark domains were derived from a variety of sours@se are inspired by (potential) ap-
plications of planning technology; some are encodings othmark problems used in other areas of
computer science and operations research; and some watecatfer the explicit purpose of trying out
the new language features offered bybL3. In line with the aim to emphasise plan quality in the
evaluation of competing planners, many IPC5 domains enoptimisation problems, in which it is
significantly easier to find a plan that only satisfies the lggrals and constraints (if any) of a problem
instance, and the true difficulty lies in finding a plan thaoahas high quality. For the same reason, the
problem instances were designed very carefully so thatetample, they admit many solutions with
significantly different qualities or require the plannerfitod a good compromise among the different
(possibly conflicting) terms in the objective function. Bdiugh most of the domains and problems de-
veloped for the previous two IPCs [41, 50] are equipped wiptea metric function, only a few of them
had an emphasis on optimisation, or the emphasis was splieba time to plan and quality of plan in
a way that left it unclear what aspect was intended to matteem

Finally, we have presented the results of a large experiahéntestigation that includes a detailed
analysis of the data from the deterministic part of IPC5, &l ws additional experiments that we

58

conducted to better understand the effectiveness of tHedwwempared planners. The main conclusions
we can draw from this investigation are:

e The detailed analysis confirms that SATPLAN and®¥PLAN are the best (in terms of ability
to solve problems quickly) propositional optimal plannefghose participating in IPC5, which
is consistent with the preliminary informal evaluation bétplanners conducted during the com-
petition. However, it also shows that SATPLAN is generaligter than MXPLAN. Likewise,
our analysis confirms that, overall, SG&N 5 is the best satisficing IPC5 planner;

e The 2006 version of SATPLAN, CPT2 and SGH5 each offers a significant improvement
over the performance of the winner of the correspondingktiafcthe previous competition. In
this sense, we can say that they advance the state of thefalfyinutomated planning systems;

e An analysis of the quality of the plans generated by thefagtig IPC5 planners for a subset of
the benchmark problems shows that: for propositional gnais|, they tend to find good solutions
(as measured by the number of actions), while for metricgieral problems and problems with
preferences, the quality of the solutions they find is gdhefar from the best known to be
achievable;

e An analysis of the behaviour of the IPC5 planners supporingL3.0 preferences also shows
that the techniques they use to deal with preferences afalusethe sense that, for the most
part, they find plans of quality better than what would be exge from blind luck, i.e. from
completely disregarding preferences when solving thesblpms.

Overall, while we observed a clear advancement of the sifatbe-art in optimal propositional
planning as well as in satisficing planning (in terms of CRb&;j plan quality, and support for features
of the language), finding high quality plans in metric-temgddomains and in domains with preferences
remains an important open issue deserving further resesfott. Moreover, most of the benchmark
problems with hard state trajectory constraints are stifalved, suggesting that there is considerable
need for improved techniques for dealing with them.

Acknowledgements

We would like to thank the anonymous reviewers for many usedmments. The organisers of IPC5,
Yannis Dimopoulos, Alfonso E. Gerevini, Patrik Haslum ani@gsandro Saetti, would like to thank
all participants of IPC5 and the consulting committee of dieterministic track of IPC5. Alfonso E.

Gerevini and Derek Long would also like to thank Carmel DolakhStefan Edelkamp, Maria Fox, Jo-
erg Hoffmann, Ari K. Jonsson, Drew McDermott, Len Schublgen Serina, David E. Smith and Daniel
S. Weld for some very useful discussions abeobL3. NICTA is funded by the Australian Govern-
ment as represented by the Department of Broadband, Coroatiams and the Digital Economy and
the Australian Research Council through the ICT Centre afeignce program.

References

[1] F. Bacchus. The AIPS '00 planning competitiohl. Magazing 22(3):47-56, 2001.

[2] F. Bacchus and F. Kabanza. Planning for temporally ede¢ergoals Annals of Mathematics and
Artificial Intelligence 22(1-2):5-27, 1998.

[3] F. Bacchus and F. Kabanza. Using temporal logics to esgpsearch control knowledge for plan-
ning. Artificial Intelligence 116:123-191, 2000.

[4] C. Backstrom. Expressive equivalence of planning fdrsnas. Artificial Intelligence 76:17-34,
1995.

59

[5] J. Baier and S. Mcllraith. Planning with first-order tearplly extended goals using heuristic
search. IrProc. of 21st National Conf. on Artificial Intelligence (ARZ6), 2006.

[6] J. Baier and S. Mcllraith. Planning with temporally extked goals using heuristic search Aroc.
of 16th Int. Conf. on Automated Planning and Scheduling REA6) 2006.

[7] J. Benton and S. Kambhampati. YochanPS: PDDL3 simpléepraces as partial satisfaction
planning. In5th Int. Planning Competition Bookl€2006.

[8] J. Benton, M. van den Briel, and S. Kambhampati. A hybné&r programming and relaxed
plan heuristic for partial satisfaction planning probleritsProc. of 17th Int. Conf. on Automated
Planning and Scheduling (ICAPS’Q2007.

[9] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-edsconstraint solving and optimization.
Journal of ACM 1997.

[10] A. Blum and M.L. Furst. Fast planning through plannimgh analysis Artificial Intelligence
90:281-300, 1997.

[11] B. Bonetand H. Geffner. Planning as heuristic seafetificial Intelligence 129(1-2):5-33, 2001.

[12] B. Bonet and H. Geffner. Heuristics for planning withnadties and rewards using compiled
knowledge. InProc. of 10th Int. Conf. on Knowledge Representation (KR'R606.

[13] B. Bonet, A.E. Gerevini, and R. Givan. Abstract booldéthe Fifth Int. Planning Competition.
http://ipc5.ing.unibs.it,2006.

[14] R. Brafman and Y. Chernyavsky. Planning with goal prefees and constraints. Rroc. of 15th
Int. Conf. on Automated Planning and Scheduling (ICAPS'2G)5.

[15] M. Briel, R. Sanchez, M. Do, and S. Kambhampati. Effectipproaches for partial satisfaction
(over-subscription) planning. IRroc. of 19th National Conf. on Artificial Intelligence (AR®4),
2004.

[16] N. Chabrier, 2003.htt p://contrai ntes.inria.fr/ Bl OCHAM EXAMPLES/ ~cel | _
cyclel/cell _cycle.bc.

[17] Y. Chen, B.W. Wah, and C. Hsu. Temporal planning usingg®al partitioning and resolution in
SGPlan.Journal of Atrtificial Intelligence ResearcB6:323—-369, 2006.

[18] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automaterification of finite-state concurrent
systems using temporal logic specificatioA&M Transactions on Programming Languages and
Systems8(2):244-263, 1986.

[19] E.M. Clarke, O. Grumberg, and D. Peledodel CheckingMIT Press, 1999.

[20] S. Cresswell and A. Coddington. Compilation of LTL géaimulas into PDDL. InProc. of 15th
Eureopean Conf. on Artificial Intelligence, (ECAI'Q2004.

[21] P. J. Delgrande, T. Schaub, and H. Tompits. A generahéssork for expressing preferences
in causal reasoning and planning. Pmoc. of 7th Int. Symposium on Logical Formalizations of
Commonsense Reasoni2@05.

[22] M. Do, J. Benton, M. van den Briel, and S. Kambhampa#tnRing with goal utility dependencies.
In Proc. of 20th Int. Conf. on Atrtificial Intelligence (IJCAIN), 2007.

[23] M.B. Do and S. Kambhampati. Partial satisfaction (esiglbscription) planning as heuristic search.
In Proc. of 5th Int. Conf. on Knowledge Based Computer SystéB&$’'04) 2004.

[24] D. Dubois, H. Fargier, and H. Prade. Possibility thelorgonstraint satisfaction problems: Han-
dling priority, preference and uncertain#pplied Intelligence6:287-309, 1996.

60

[25] S. Edelkamp. On the compilation of plan constraints prederences. IfProc. of 16th Int. Conf.
on Automated Planning and Scheduling (ICAPS,@8)06.

[26] S. Edelkamp and J. Hoffmann. PDDL2.2: The languageferctassic part of the 4th International
Planning Competition. Technical Report 195, Institut fifiokmatik, Freiburg, Germany, 2004.

[27] A. Fink and S. Voss. Applications of modern heuristi@asdh methods to pattern sequencing
problems.Computers & Operations Reseay@6:17—-34, 1999.

[28] M. Fox, Long D., and Halsey K. An investigation into thepeessive power of PDDL2.1. IRroc.
of 16th European Conf. on Atrtificial Intelligence (ECAI-02D04.

[29] M. FoxandD. Long. PDDL2.1: An extension to PDDL for egpsing temporal planning domains.
Journal of Artificial Intelligence ResearcR0:61-124, 2003.

[30] H. Geffner, P. Haslum, M. Helmert, J. Hoffmann, V. VigdBL Bonet, and C. DomshlalRroceed-
ings of the ICAPS-07 Workshop on Heuristics for Domain-{pashelent Planning: Progress, Ideas,
Limitations, Challenges 17th Int. Conf. on Automated Planning and Scheduling (ISAR),
2007.

[31] A. Gereviniand D. Long. Plan constraints and prefeesrio PDDL3. Technical Report RT-2005-
08-47, Dipartimento di Elettronica per I’Automazione, Maisita di Brescia, 2005.

[32] A. Gerevini and D. Long. Preferences and soft constsaiim PDDL3. InProc. of ICAPS-2006
Workshop on Preferences and Soft Constraints in Plani@g6.

[33] A. Gerevini, A. Saetti, P. Haslum, D. Long, and Y. Dimgpas. Deterministic planning in the
fifth planning competition: PDDL3 and experimental evaloabf the planners. Technical Report
RT-2008-02-59, Dipartimento di Elettronica per I'’Autonaze, Universita di Brescia, 2008.

[34] A. Gerevini, A. Saetti, and I. Serina. An approach tocéint planning with numerical fluents and
multi-criteria plan quality Artificial Intelligence 172(8-9):899-944, 2008.

[35] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple or-fly automatic verification of linear
temporal logic. InProc. of 15th Workshop on Protocol Specification, Testing ®erification
1995.

[36] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, Meloso, D. Weld, and D. Wilkins.
PDDL - the planning domain definition language. Technicgbéte CVC TR98-003/DCS TR-
1165, Yale Center for Computational Vision and Control, 899

[37] E. Giunchigliaand M. Maratea. Planning as satisfigpikith preferences. Ii®roc. of 22nd Conf.
of Artificial Intelligence (AAAI'07)2007.

[38] P. Haslum. Quality of solutions to IPC5 benchmark peohé: Preliminary results. IRroc. of
ICAPS-07 Workshop on Int. Planning Competition: Past, & Futureg 2007.

[39] P. Haslum and P. Jonsson. Some results on the compteExitianning with incomplete informa-
tion. In Proc. of 5th European Conf. on Planning (ECP’99999.

[40] M. Helmert. The fast downward planning systeournal of Artificial Intelligence Research
26:191-246, 2006.

[41] J. Hoffmann and S. Edelkamp. The deterministic parB&44: An overviewJournal of Artificial
Intelligence Researcl24:519-579, 2005.

[42] J. Hoffmann, S. Edelkamp, S. Thiébaux, R. Englert, potace, and S. Triig. Engineering bench-
marks for planning: the domains used in the deterministit paIPC-4. Journal of Artificial
Intelligence Researcl26:453-541, 2006.

61

[43] J. Hoffmann and B. Nebel. The FF planning system: Fast generation through heuristic search.
Journal of Artificial Intelligence Researchh4:253-302, 2001.

[44] C. Hsu, B.W. Wah, and Y. Chen. Personal communicatiart.2007.

[45] F. Kabanza and S. Thiébaux. Search control in planrangefmporally extended goals. Rroc.
of 15th Int. Conf. on Automated Planning and Scheduling REA5) 2005.

[46] H. Kautz. SATPLANO4: Planning as satisfiability. #th Int. Planning Competition Booklet
2004.

[47] K.Kohn. Molecularinteraction map of the mammalian cgtle control and DNA repair systems.
Molecular Biology of the Cell10(8), 1999.

[48] J. Kvarnstrém and P. Doherty. TALplanner: A temporaitobased forward chaining planner.
Annals of Mathematics and Atrtificial Intelligenc@0(1-4):119-169, 2000.

[49] A. Linhares and H.H. Yanasse. Connection betweenrgsiattern sequencing, VLSI design and
flexible machinesComputers & Operations Resear@9:1759-1772, 2002.

[50] D. Long and M. Fox. The 3rd International Planning Cotiten: Results and analysigournal
of Artificial Intelligence Researcgt20:1-59, 2003.

[51] D. Long, H. Kautz, B. Selman, B. Bonet, H. Geffner, J. Klzg, M. Brenner, J. Hoffmann, F. Rit-
tinger, C. Anderson, D. Weld, D. Smith, and M. Fox. The AIP&ganning competition.Al
Magazing 21(2):13-33, 2000.

[52] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Syste8inger,
1992,

[53] I. Miguel, P. Jarvis, and Q. Shen. Efficient flexible piémg via dynamic flexible constraint satis-
faction. Engineering Applications of Artificial Intelligenc&4(3):301-327, 2001.

[54] B. Nebel. On the compilability and the expressive powkpropositional planning formalisms.
Journal of Artificial Intelligence Research2:271-315, 2000.

[55] S. Penberthy, JPlanning with Continuous Chang®hD thesis, University of Washington, 1993.
Available as technical report UW-CSE-93-12-01.

[56] A. Pnueli. The temporal logic of programs. Rroc. of 18th IEEE Symposium on Foundations of
Computer Sciencd 977.

[57] J. Riera-Ledesma and J. Salazar-Gonzalez, J. A heugigproach for the travelling purchaser
problem.European Journal of Operational Researdt0(3):599-613, 2005.

[58] J. Rintanen. Incorporation of temporal logic contrtd plan operators. IRroc. of 14th European
Conf. on Atrtificial Intelligence (ECAI'0QR000.

[59] J. Rintanen. Complexity of concurrenttemporal plaagnilnProc. of 17th Int. Conf. on Automated
Planning and Schedulin@007.

[60] F. Rossi, K.B. Venable, and N. Yorke-Smith. Controllip of soft temporal constraint problems.
In Proc. of 10th Int. Conf. on Principles and Practice of Coastt Programming (CP’04)2004.

[61] B.M. Smith and I.P. Gent. Constraint modelling chafjer2005ht t p: / / www. dcs. st - and.
ac. uk/ ~i pg/ chal | enge/ , 2005.

[62] D. Smith. Choosing objectives in over-subscriptioarpling. InProc. of 14th Int. Conf. on
Automated Planning and Scheduling (ICAPS;®2004.

62

[63] C. Son, T. and E. Pontelli. Planning with preferencaagi$ogic programming. IrProc. of 7th
Int. Conf. on Logic Programming and Nonmonotonic Reaso(ilRiNMR’04) 2004.

[64] P. Thagard. Pathways to biomedical discové&igilosophy of Scien¢&0, 2003.

[65] S. Thiébaux, J. Hoffmann, and B. Nebel. In defense of P@Rioms. Atrtificial Intelligence
168:38-69, 2005.

[66] V. Vidal and H. Geffner. Branching and pruning: An opthtemporal POCL planner based on
constraint programmindArtificial Intelligence 170(3):298-335, 2006.

[67] F. Wilcoxon and R. A. WilcoxSome Rapid Approximate Statistical Procedutesderle Labora-
tories, Pearl River, New York, USA, 1964.

63

