
Deterministic Planning in the Fifth International Planning
Competition: PDDL3 and Experimental Evaluation of the

Planners

Alfonso E. Gerevini⋆ Patrik Haslum◦ Derek Long# Alessandro Saetti⋆

Yannis Dimopoulos+
⋆ Dipartimento di Elettronica per l’Automazione, Università degli Studi di Brescia, Brescia, Italy

◦ NICTA & The Australian National University, Canberra, Australia
Department of Computer and Information Sciences, University of Strathclyde, Glasgow, UK

+ Department of Computer Science, University of Cyprus, Cyprus
⋆{gerevini,saetti}@ing.unibs.it◦patrik.haslum@anu.edu.au#derek.long@cis.strath.ac.uk+yannis@cs.ucy.ac.cy

Abstract

The international planning competition (IPC) is an important driver for planning research. The
general goals of the IPC include pushing the state of the art in planning technology by posing new
scientific challenges, encouraging direct comparison of planning systems and techniques, developing
and improving a common planning domain definition language,and designing new planning domains
and problems for the research community. This paper focuseson the deterministic part of the fifth
international planning competition (IPC5), presenting the language and benchmark domains that we
developed for the competition, as well as a detailed experimental evaluation of the deterministic
planners that entered IPC5, which helps to understand the state of the art in the field.

We introduce an extension ofPDDL, calledPDDL3, allowing the user to express strong and soft
constraints about the structure of the desired plans, as well as strong and soft problem goals. We
discuss the expressive power of the new language focusing onthe restricted version that was used
in IPC5, for which we give some basic results about its compilability into PDDL2. Moreover, we
study the relative performance of the IPC5 planners in termsof solved problems, CPU time, and plan
quality; we analyse their behaviour with respect to the winners of the previous competition; and we
evaluate them in terms of their capability of dealing with soft goals and constraints, and of finding
good quality plans in general. Overall, the results indicate significant progress in the field, but they
also reveal that some important issues remain open and require further research, such as dealing with
strong constraints and computing high quality plans in metric-time domains and domains involving
soft goals or constraints.

Keywords: Keywords: Automated Planning, Planning Systems, PDDL, Planning Languages, Knowledge Repre-
sentation in Planning, Preferences in Planning, Plan Constraints, International Planning Competition, Benchmarks
for Planning, Experimental Evaluation of Planning Systems.

1 Introduction

The international planning competition (IPC for short) is an important driver for research in AI plan-
ning that is biennially held in conjunction with the International Conference on Automated Planning
and Scheduling. The general goals of the IPC include pushingthe state of the art in planning technol-
ogy by posing new scientific challenges, encouraging and conducting direct comparison of planning
systems and techniques, developing and improving a common planning domain definition language,
PDDL [29, 36, 41], and designing new planning domains and problems for the research community that
are increasingly realistic. This paper focuses on the deterministic part of the fifth international planning
competition (IPC5 for short), which is the classical part ofthe competition addressing planning prob-
lems where the initial state is completely specified and the relevant effects of the available actions are

1

deterministic. We present the language and benchmark domains developed for the competition, and a
detailed experimental evaluation of the deterministic planners that entered IPC5.

While IPC5 shares the same general goals of the previous planning competitions, it has some im-
portant novel features making this event significantly different from the previous competitions [1, 41,
50, 51]. In particular, the deterministic track of IPC5 emphasises the importance of plan quality, which
is crucial in many applications, but which previously did not receive sufficient attention. Motivated
by a desire to capture plan quality, a significant new versionof PDDL, called PDDL3, has been de-
signed.PDDL3 includes some new constructs that can better characteriseplan quality by allowing the
user to express both strong and soft constraints on the structure of the desired plans.PDDL3 also in-
cludes soft problem goals through which we can express over-constrained planning problems (called
“over-subscription” problems in [15, 23, 62]).

Plan trajectory constraints are particular linear temporal logic formulae expressing constraints on
possible actions in the plans and on intermediate states reached by the plans (such constraints are also
known as “temporally extended goals” [2, 5]). Soft goals andconstraints are preferences that we wish
to satisfy in order to generate a good plan, but that do not have to be achieved in order for the plan
to be correct. Strong plan constraints, in contrast, express properties that the acceptable plans must
satisfy. Moreover, they allow the user to provide control knowledge to domain-independent planners
supporting the extendedPDDL language. By adding them as goal conditions, we can prevent aplanner
from exploring parts of the plan space, as, e.g., in [3, 48], possibly making its exploration faster or
guiding the planner towards better quality solutions. Thisis not the way plan constraints were used in
IPC5, but such possible use is another motivation for introducing them intoPDDL.

Dealing with (strong or soft) plan trajectory constraints and soft goals poses a new challenge to fully
automated planning. While soft constraints have been extensively studied in the CSP literature (e.g.,
[9, 24, 60]), only recently has the planning community started to investigate them [14, 15, 21, 53, 62, 63].
When using soft constraints and goals, it can be useful to give different importance to them. For this
purpose,PDDL3 allows the domain modeler to assign different penalties toviolated constraints and
unachieved goals.

In order to make the language extensions more accessible forthe competitors, IPC5 used a first
version ofPDDL3, calledPDDL3.0, where we have imposed some simplifying restrictions, such as a
limited form of modal operator nesting in the specification of trajectory constraints. While there is more
than one way to specify the importance of a soft constraint orgoal, as a first attempt to tackle this issue,
in PDDL3.0 we have chosen a simple quantitative approach: each softconstraint and goal is associated
with a numerical weight representing the cost of its violation in a plan (and hence also its relative
importance with respect the other specified soft constraints and goals). Weighted soft constraints and
goals are part of the plan metric expression, and the best quality plans are those optimising such an
expression. Using this approach we can express that certainplans are preferred to others.

In order to evaluate the performance of the competing planners, the organisers of IPC5 developed
several new planning domains and a large collection of new benchmark problems over these domains,
that can also serve as a reference for future research. Some of the new domains are inspired by new
applications of planning technology, e.g., to problems of molecular biology, or to known problems that
have been investigated in other fields of computer science, such as the travelling purchaser problem
studied in operations research.

A total of twelve planners entered IPC5. Even though they didnot all attempt all of the problems,
the size of the resulting data set is substantial. Given the limited amount of time available during
the competition for analysing these results and assigning the awards, the organisers of IPC5 used an
informal evaluation method similar to the one used for the previous competition [41], with the main
difference that the evaluation criteria focused on the number of solved problems and plan quality, rather
than CPU time and scalability.1 The winners of IPC5 were: MAX PLAN and SATPLAN (version 2006)
for the propositional optimal planning subtrack, and SGPLAN 5 for satisficing (sub-optimal) planning

1A detailed description of the IPC5 evaluation criteria usedto assign the IPC5 awards is available on the competition website:
ipc5.ing.unibs.it.

2

subtrack [13].2 In this paper, we analyse the performance of the IPC5 planners more rigorously, and
much more in detail, in terms of their relative performance,advancement with respect to the state-of-
the-art in fully-automated deterministic planning systems, and qualities of the solutions found for the
IPC5 benchmarks.

In summary, the main contributions of our work are:

• An extension of thePDDL language that supports soft goals and soft and strong state trajectory
constraints representing temporally extended goals;

• Some basic results about the expressiveness ofPDDL3.0 and its compilability into the previous
versions of the language;

• A detailed evaluation of the relative performance of the twelve IPC5 planners, for each domain
category involving different fragments ofPDDL3.0;

• An evaluation of the performance of the IPC5 winners with respect to the winners of the previous
IPC and of the quality of solutions they computed;

• A collection of new benchmarks for testing planning algorithms and systems for problems speci-
fied with bothPDDL3.0 andPDDL2.

The paper is organised as follows. Section 2 introducesPDDL3 focusing especially onPDDL3.0, and
it gives some basic results about the compilability of the new features ofPDDL3.0. In Section 3, we
present the test domains that we developed for IPC5. In Section 4, after a very brief description of the
IPC5 planners, we analyse in detail their performance. Finally, in Section 5, we summarise the results
and give the conclusions.

2 The PDDL3 Language

The planning domain description language,PDDL, was first proposed by Drew McDermott for the first
international planning competition in 1998 [36]. The language was based on Lisp syntax, using a
structure based on the widely used variants ofSTRIPS notations. Establishing a common standard
language has had a similar impact on planning research as theintroduction of standards in other areas of
research: it opens the route to stronger collaboration, exchange of tools, techniques and problems and
provides a platform for comparative evaluation of approaches. The language has been, from the outset,
strongly linked to the competition series, with developments in the language being seen as drivers for
the direction of the competition challenges.

PDDL has been extended in several stages, in order to capture moreexpressive variants. The sig-
nificance and impact of these changes is described below, in Section 2.1. There have been several
explorations of the expressive power of the different variants of PDDL, mainly concentrated on the no-
tion of compilability. Recent results include a demonstration that temporal features can be compiled
away in polynomial work, subject to certain constraints on the forms of concurrency that can appear
in the problem [59], while others have examined the compilability of conditional effects, timed initial
literals and domain axioms [28, 54, 65].

For the fifth planning competition,PDDL was extended to include two important new features [31,
32]. The first is the ability to express goals that apply not only to the final state of the trajectory of states
visited by a plan, but also to the intermediate states. Thesegoals take the form of trajectory constraints,
familiar from work on temporal logics. The second extensionis the ability to express soft constraints,
or preferences.

Both of these extensions to the language are motivated by thedesire to see planning bridge the gap
between research and application. Many real problems require the specification of goals that are more
complex than be easily expressed in earlier versions ofPDDL. These include constraints on the states
that a plan visits as well as on the state in which it finishes. It can also be important to specify the

2The term “satisficing”, introduced for planning in [41], hasbeen largely adopted in the planning community for plannersthat
do not offer any guarantee about the quality of the plans theycompute. While some satisficing planners aim to find plans of good
quality, many others ignore the quality aspect completely,aiming only to find a solution plan as quickly as possible.

3

relative benefits of different, perhaps conflicting, desirable conditions that a plan should satisfy, so that
a plan might be constructed to evaluate these benefits against the costs of achieving them.

2.1 A Brief Review of PDDL

In order to provide the background that is required to place the discussions that follow in context, this
section contains a short overview ofPDDL. The key details of syntax and semantics ofPDDL can be
found in [29, 41].

PDDL allows actions to be described in terms of pre- and postconditions. The expressive levels of the
language are associated with tags that are used to label domain files: the addition of a tag to a domain
file indicates that the domain may use the corresponding syntax layer of the language. Preconditions
can be simple conjunctions of atoms (or literals, if negative preconditions are allowed), or even arbitrary
formulae (if quantification and ADL are allowed). Postconditions can contain add and delete effects and
may use conditional effects, if allowed, and also quantification.

PDDL2.1 [29] extended the language to include number-valued fluents (with a corresponding “re-
quirements” tag). A variant of these was included in the original PDDL specification, but had not been
adopted. Two other important extensions were added inPDDL2.1, both relying on the use of numbers:
plan metrics, which can be used to specify the way in which plans are to be evaluated in a specific prob-
lem instance, and durative actions. Durative actions are actions that execute over an interval of time.
These can be of constant duration, of a duration determined by the state in which the action is executed
or, most complex of all, of variable duration, which may be selected by the planner, possibly subject to
constraints.

The use of durative actions implies that plans are embedded on a metric time line and, therefore,
a plan must specify the time at which an action is to be executed. The structure of a durative action
is equivalent to two standard (instantaneous) actions, oneat the start of the durative action and one
at the end, combined with an additional constraint — the action invariant. The start and end of the
durative action can therefore have pre- and postconditions, each with the same semantics as the standard
instantaneous actions. The start is applied at the time specified in a plan using the action and the end is
then applied at the appropriate interval following this. The invariant is a logical condition (constrained
by the same syntax limitations as preconditions) that must remain true throughout the interval over
which the durative action is executing.

The introduction of durative actions intoPDDL required that a decision be made about the structure
of plans that do not use durative actions. It was proposed that, in all cases, plans would take the same
form: time-stamped actions. Thus,STRIPSplans, in which time matters only for the ordering of actions,
can be represented by simply labelling each of the actions with its position index in the plan, starting
from 1. The consequence of this decision is that allPDDL plans are considered to be embedded in a real
time line. This observation extends to plans for simpleSTRIPSproblems which allows plans to have
parallel actions. This semantics, which achieves the same effect as the semantics of GRAPHPLAN plans
[10], is not the one that had been traditional forSTRIPSplans before GRAPHPLAN, where even partial
order plans were generally interpreted in terms of the set ofpossible serialisations of the partial orders.

The semantics ofPDDL2.1 is discussed in detail in [29]. Essentially, aPDDL2.1 plan describes a
trajectory of states, where states are valuations on the propositional and metric variables of the problem.
The initial state is as specified for the planning problem. Transitions are caused byhappenings, which
are the collections of instantaneous actions (either simple actions in the domain or else the start or end
points of durative actions) that occur at the same time points. It is worth emphasising that the semantics
is uniform in its treatment of the end points of durative actions and instantaneous actions, so that the two
kinds of actions can be mixed freely in a single plan, if it is considered appropriate to model a domain in
this way. Each happening causes a state change according to the effects of the actions that occur at the
corresponding time point. Invariants are checked in the intervals between happenings, where durative
actions are executing.

In both cases (plans withSTRIPSactions and plans with durative actions), it is possible forhappen-
ings to contain multiple instantaneous actions occurring together. In order to ensure that the behaviour
is well-defined, it is required that these simultaneous actions be non-interfering. A simple paradigm is
used to define the concept of interference, based on the observation that action effects can be seen as

4

analogous to data-base updates affecting the state: mutex locks. The idea is that, to access a particular
variable, an action requires a lock — a read-lock if it simplyneeds to access the value of the variable
(to check the satisfaction of a condition) and a write-lock if it must update the value (for an effect).
Write-locks are mutually exclusive with any other kinds of lock by any other actions, while multiple
read-locks are possible without inconsistency. Two consequences of this are that an action requires a
write-lock even if the update it performs does not actually change the original value of the correspond-
ing variable and two actions are considering interfering ifthey both update the same variable, even if
they agree about the new value it should take. The only exception to this rule is in the use of certain
commutative arithmetic effects:increase anddecrease effects, in particular, are not considered to
require independent write-locks to update a metric variable. The reason for this is discussed in detail
in [29] and is not important to the remainder of the discussion in this paper.

For the purposes of IPC3,PDDL2.1 was considered to be split into “levels”. These were not de-
fined as part of the syntax of the language and are, essentially, identified with certain combinations of
requirements tags. The levels that were used correspond to:simple STRIPS (level 1), domains with
numeric fluents (level 2) and durative actions with discretedurations (level 3). Finally, level 4 contains
the simple continuous process model that was proposed as part of PDDL2.1, although never used.

PDDL2.2 [26] extended the language still further, adding axioms, which allow derived propositions
to be inferred from the satisfaction of logical formulae in astate, and timed initial literals, which specify
effects that are triggered at predetermined times during the execution of the plan. These allow simple
deterministic exogenous events to be modelled, such as sunrise and sunset at certain predefined times.

2.2 State Trajectory Constraints

State trajectory constraints assert conditions that must be met by the entire sequence of states visited
during the execution of a plan. They are expressed through temporal modal operators over first order
formulae involving state predicates. In this section we present the syntax and semantics of the exten-
sions introduced inPDDL3.0. As will become clear, certain constraints have been placed on the ways
in which the syntax can be exploited, in particular, in the nesting of modalities. Ultimately, the devel-
opment of PDDL is a compromise between the goals of convenient expressive power, the needs of the
competition, and the limits of the planning technology available at the time of the competition. One of
the consequences of this compromise is that it is sometimes appropriate to add constraints that limit the
problems that a planner must contend with, even if there are natural ways to allow the expressive power
to be extended.

2.2.1 Syntax and Intended Meaning

The basic modal operators used in IPC5 are:always, sometime, at-most-once andatend. The last
of these is used to identify conditions that must hold in the final state when a plan has executed, making
them equivalent to traditional goal conditions. For convenience, therefore, unadorned goal conditions
are assumed to be “at end” conditions. This assumption serves to preserve the standard meaning for
existing goal specifications. The semantics of these modalities is given below (Section 2.2.2) along
with examples of their use, but we will provide brief illustrations here to support intuitions about their
use. For example,(always (clear A)) expresses a condition that an object,A, must remain clear
throughout a plan,(sometime (clear A)) expresses thatA must be clear at some point in the plan
(not necessarily at the end) and(at-most-once (clear A)) expresses thatA can only be clear in
at most one single unbroken period during execution of the plan.

The operatorwithin is included to be used to express deadlines. For example,(within 10 (clear A))

specifies thatA must be clear by time 10. In addition, rather than allowing arbitrary nesting of modal
operators (in the competition, at least), some specific combinations are encoded in explicit opera-
tors. These are:sometime-before, sometime-after, always-within. Other modalities could
be added, but these are sufficiently powerful for an initial level of the sublanguage modelling con-
straints. Examples of the use of these are:(sometime-before (clear A) (clear B)) specifies
that ifA is ever clear during the execution of a plan, thenB must also have been clear before that point;
(sometime-after (clear A) (clear B)) is similar, except that it requiresB to be clearafter the

5

point at whichA is clear. Finally,(always-within 5 (clear A) (clear B)) specifies that every
timeA is made clear,B must be clear within 5 time units of that point in the execution of the plan.

Modal expressions can be combined in propositional formulae, but we limit their combination to
conjunctions and universally quantified expressions (which can be considered equivalent to conjunc-
tions since the models are all finite).PDDL3.0 does not support any syntactic nesting of modal operators.
Allowing arbitrary nesting, or even depth-bounded nesting, of modalities creates a very rich collection
of different constraints, most of which are unnecessary forthe expression of very interesting problems.
However, allowing them within the language would force the designer of aPDDL3.0 planner to consider
how to deal with them. In order to arrive at an appropriate compromise between modelling expres-
siveness and competition challenge, it was decided that a collection of additional modalities, equivalent
to specific nested structures of primitive modal operators,should be included asPDDL3.0 expressions.
Thus, the limitation on nesting is a pragmatic decision intended to make the task for the competition
entrants more tightly defined. An example of an expression that it is not possible to capture without
nesting of modalities is(sometime-after p (sometime-before q r)), which asserts thatif p
is ever true in a stateandq is true in a subsequent state, thenr must be true in some state before the
one in whichq becomes true. This constraint cannot be captured using the existing modalities without
nesting, unless additional encoding tricks are exploited that directly modify the actions of the domain.
The extent to which the restrictions on the use of modalitieslimit what can be conveniently expressed
is difficult to assess, since there is very little practical experience in the use of the language to express
plan constraints. All that we can say is that the design of thebenchmark problems, and the examples
we considered, was not hindered in any way by the constraintswe impose.

It should be noted that, by combining modalities withtimed initial literals (defined inPDDL2.2
[41]), we can express further goal constraints. In particular, one can specify the interval of time when
a goal should hold, or the lower bound on the time when it should hold. Since these are interesting
and useful constraints, we introduce two modal operators as“syntactic sugar” over the basic language:
hold-during andhold-after.

Trajectory constraints are specified in the planning problem file in a new field, called:constraints,
that will usually appear after the goal. Constraints may also be specified in the action domain file. This
is convenient for the expression of constraints that apply to all plans produced for a particular do-
main — perhaps legal or safety conditions on operating procedures. The use of trajectory constraints
(in the domain file or in the goal specification) implies the need for the:constraints tag in the
:requirements list.

No temporal modal operator is allowed in preconditions of actions. That is, all action preconditions
are with respect to a state (or time interval, in the case ofoverall action conditions — the action
invariants described earlier). This decision ensures thatthe set of actions applicable at any state is
determined entirely by the state itself (which, of course, can contain a record of relevant parts of history
in memory) and is not affected by the trajectory of states that precede or succeed this state. This
“Markovian” requirement is consistent with our own view of what is an appropriate model of the way
that actions are constrained by causal relationships in practice. However, there is also a very significant
benefit which is to simplify the task, for a planner, of determining what choice of actions is open to it in
a state. Without this constraint, the general problem of determining whether an action is applicable in
a (fully specified) state is as hard as planning, since the conditions for execution could require arbitrary
goals to be achieved in the past or the future of the current state. Indeed, without placing the state in
the context of a trajectory, it is not clear whether the question of applicability of actions with modal
preconditions even makes sense.

The following is a fragment of the grammar describing the newmodalities ofPDDL3.0 for expressing
constraints (con-GD) (the full BNF grammar is given in [31, 33]):

<con-GD> ::= (at end <GD>) | (always <GD>) |
(sometime <GD>) | (within <num> <GD>) |
(at-most-once <GD>) |
(sometime-after <GD> <GD>) |
(sometime-before <GD> <GD>) |
(always-within <num> <GD> <GD>) |
(hold-during <num> <num> <GD> |

6

(hold-after <num> <GD> | ...

where<GD> is a goal description (a first order logic formula),<num> is any numeric literal (inSTRIPS

domains it will be restricted to integer values). In the interpretation ofwithin andalways-within
when consideringSTRIPSplans (and similarly forhold-during andhold-after) the numeric bounds
are counted in terms of planhappenings. For instance,(within 10 φ) means thatφ must hold within
ten happenings. These can be happenings of one action or of multiple actions, depending on whether
the plan is sequential or parallel.

Trajectory constraints allow specification of problems of avery different character to those captured
by simple goal specifications in the same domain. For example, in the Blocks World, it is clear that there
is a path from any state to any other state in a number of steps that is linear in the size of the problem
specification. However, it is possible for a planner to be faced with trajectory constraints that prune the
legal paths in such a way as to force exponential length plansto be required for some pairs of states.
This can be seen as follows: suppose there aren+ 3 blocks in a problem instance, namedA, B andC
andb1, ..., bn. By adding the constraints:

(and (always (on A table)) (always (on B table)) (always (on C table))
(forall (?x - block)

(always (or (= ?x A) (= ?x B) (= ?x C) (not (on ?x table)))))
(always (not (on b1 b2))) (always (not (on b1 b3))) ...
(always (not (on b1 bn))) (always (not (on b2 b3))) ...
(always (not (on b3 b4))) ...)

to a Blocks World problem, we can force it to behave like then-disc Towers of Hanoi problem, with
blocksA, B andC playing the roles of the pegs andb1...bn the discs. This problem only admits
exponential solutions, but is captured in a collection of constraints that is quadratic in the size of the set
of blocks. The semantics of the modal operatoralways is given formally below, but its use is consistent
with intuition: the formula to which it is applied must hold in every state in order for the modal formula
to hold over the trajectory.

A brief comment is required about the important decision notto include a modal operator for “next”,
which is used to significant effect in modal logics supportedby existing planners, TALPLANNER [48]
and TLPLAN [2]. In those planners formulae are often expressed using a “next” modality to trigger
conditions at the point of change in a proposition, e.g.,(p∧next¬p) ⇒ nextΦ. Two problems led us to
avoid adding the “next” modality to the language. Firstly, the fact that we do not allow nested modalities
severely limits the context in which the “next” modality might be useful (the example just described is
only really useful if it is nested inside an “always” modality). The second problem with attempting to
capture “next” inPDDL3.0 is a consequence of the necessary separation of the time point at which the
formula is evaluated and the time point to which the “next” modality is a reference: concurrent strands
of activity can affect the state between these time points. This means that the next state change following
the achievement of a particular condition could well be caused by a happening that is entirely irrelevant
to the condition of interest. For example, we might considerattempting to express a constraint that when
a truck arrives with a package at the destination of the package then in the next state the package should
be unloaded. On the real time line, the next state change following arrival of the truck at its destination
could be caused by a happening that affects an aircraft, say,in an entirely different part of the world
and, most importantly, this could be an entirely appropriate next state, despite having no relevance to
the next actions involving the truck. This observation doesnot prevent “next” being given a consistent
semantics, but it does make its use in modelling less intuitive.

2.2.2 Semantics

The semantics of goal descriptors inPDDL2.2 determines that they should be evaluated only in the con-
text of a single state (the state of application for action preconditions or conditional effects and the final
state for top level goals). In order to give meaning to temporal modalities, which assert properties of
trajectories rather than individual states, it is necessary to extend the semantics to support interpretation
with respect to a finite trajectory (generated by a plan). Thesemantics of the modal operators is consis-
tent with that used for modal operators in LTL and other treatments of modal temporal logic [52, 56].

7

Recall that ahappeningin a plan for aPDDL domain is the collection of all the instantaneous (start
or end points of) actions that occur at the same time. This time is then the time of the happening, and a
happening can be “applied” to a state by simultaneously applying all effects in the happening (which is
well defined because no pair of such effects may interfere). The association of a real-valued continuous
variable representing the time at which a state begins is an important difference from some treatments
of temporal logics. The semantics is still based on the familiar conditions over sequences of states, but
several modalities also depend on the values of these times.

Definition 1 Given aPDDL domainD, a planπ and an initial stateI, π generates the trajectory

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉

iff S0 = I and for each happeningh generated byπ, withh at timet, there is somei such thatti = t and
Si is the result of applying the happeningh to Si−1, and for everyj ∈ {1 . . . n} there is a happening in
π at tj .

Note that there is intentionally no happening at time 0. The initial state holds at this time and must
persist for a non-zero period of time, so the first happening is at timet1 > 0.

Definition 2 Given aPDDL domainD, a planπ, an initial stateI, and a goalG, π is valid iff the
trajectory it generates,〈(S0, 0), (S1, t1), ..., (Sn, tn)〉, whereS0 = I, satisfies the goal:

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= G.

This definition contrasts with the original semantics of goal satisfaction [29], where the requirement
is thatSn |= G. The contrast reflects precisely the requirement that goalsare now interpreted with
respect to an entire trajectory. Action preconditions may not include modal operators, and therefore their
interpretation continues to be relative to the single statein which the action is applied. The interpretation
of simple formulae,φ (containing no modalities), in a single stateS is unchanged and continues to be
denotedS |= φ. In the following definition we rely on context to make clear where we are using the
interpretation of non-modal formulae in single states, andwhere we are interpreting modal formulae in
trajectories.

Definition 3 Letφ andψ be atomic formulae over the predicates of the planning problem plus equality
(between objects or numeric terms) and inequalities between numeric terms, and lett, u1 andu2 be any
real constant values. The interpretation of the modal operators is as specified in Figure 1.

Note that this interpretation exploits the fact that modal operators are not nested. A more general
semantics for nested modalities is a straight-forward extension of this one. Note also that the last four
expressions in Figure 1 are expressible in different ways ifone allows nesting of modalities and use of
the standard LTL modalityuntil. Taking (until φ ψ) to mean that there is a state in whichψ is true and
in all states before this (if any)φ is true. The modalityweak-until is also occasionally used, where
(weak-until φ ψ) is taken to mean thatφ is true in all states before some state in whichψ is true,if there
is one(otherwiseφ is always true). The following equivalences can be proved (amongst many others —
indeed,until is sufficient to capture all other modalities that do not havenumeric arguments [19]):

(weak-until φ ψ) ≡ (until φ (ψ ∨ (always φ)))

(always-within t φ ψ) ≡ (always (φ → (within t ψ)))

(sometime-before φ ψ) ≡ (weak-until (¬φ ∧ ¬ψ) (ψ ∧ ¬φ))

(at-most-once φ) ≡ (always (φ → (weak-until φ (always ¬φ))))

(sometime-after φ ψ) ≡ (always (φ → (sometime ψ)).

The constraintat-most-once is satisfied if either its argument is never true (so the implication in
the above equivalence is trivially satisfied because the antecedent never holds) or else, once it becomes
true, it remains true until a state is reached in which the proposition becomesand remainsfalse. That is,
once the proposition first becomes false, after having been true, it must remain false thereafter, allowing
at most oneinterval in the plan over which the argument proposition is true. An example of the use of
this modality is in the following: “Each truck should visit each cityat mostonce”:

8

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (atend φ)
iff Sn |= φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= φ

iff Sn |= φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always φ)
iff ∀i : 0 ≤ i ≤ n · Si |= φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime φ)
iff ∃i : 0 ≤ i ≤ n · Sj |= φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (within t φ)
iff ∃i : 0 ≤ i ≤ n · Si |= φ andti ≤ t

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (hold-after t φ)
iff if tn > t then∃i : 0 ≤ i ≤ n · Si |= φ andti > t,

if tn ≤ t thenSn |= φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (hold-during u1 u2 φ)
iff if tn > u1 then

∀i · 0 ≤ i ≤ n · if u1 ≤ ti < u2 thenSi |= φ,

∀j · 0 ≤ j < n · if tj ≤ u1 < tj+1 thenSj |= φ

if tn ≤ u1 thenSn |= φ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at-most-once φ)
iff ∀i : 0 ≤ i ≤ n · if Si |= φ then∃j : j ≥ i · ∀k : i ≤ k ≤ j · Sk |= φ

and∀k : k > j · Sk |= ¬φ
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime-after φ ψ)

iff ∀i · 0 ≤ i ≤ n · if Si |= φ then∃j : i ≤ j ≤ n · Sj |= ψ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (sometime-before φ ψ)
iff ∀i · 0 ≤ i ≤ n · if Si |= φ then∃j : 0 ≤ j < i · Sj |= ψ

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (always-within t φ ψ)
iff ∀i · 0 ≤ i ≤ n · if Si |= φ then∃j : i ≤ j ≤ n · Sj |= ψ andtj − ti ≤ t

Figure 1: Semantics of the basic modal operators inPDDL3.0.φ andψ stand for arbitrary (syntactically
valid) goal formulae ofPDDL3.0;t, u1 andu2 are real values.

(:constraints
(and (forall(?t - truck ?c - city) (at-most-once (at ?t ?c))) ...))

To satisfy this constraint, each truck may visit each city and stay there any length of time, but once it
leaves it cannot return during the execution of the plan.

Of the constraintshold-during andhold-after, (hold-during t1 t2 φ) states thatφ must be
true in every state during the interval[t1, t2), while (hold-after t φ) states thatφ must be true in
some state after timet. The first can be expressed by using timed initial literals tospecify that a dummy
timed literald is true during the time window[t1, t2) together with the goal(always(implies d φ)).
A variant of hold-during whereφ must holdexactlyduring the specified interval could be easily
obtained in a similar way. Thehold-after modality can be expressed by using timed initial literals to
specify thatd is true (only) from timet, together with the goal(sometime (and d φ)).

The modal operatorswithin andalways-within are of particular interest. An example of a
constraint usingalways-within is the following: “Whenever the energy of a rover is below 5, it
should be at the recharging location within 10 time units”:

(:constraints
(and (forall (?r - rover)

(always-within 10 (< (energy ?r) 5) (at ?r recharging-point))) ...))

This modality is interesting because it highlights the way that the semantics relies on the time asso-
ciated with the achievement of individual states. Another example is the following:

(:constraints
(and (forall (?t - truck ?p - package ?l - location)

(always-within 10 (and (at ?t ?l) (in ?p ?t) (destination ?p ?l))
(at ?p ?l))) ...))

9

This condition requires that any time a truck carrying a package arrives at the location which is the
destination of the package, then the package must be delivered within ten time units. The time limit can
be manipulated to ensure that the only behaviour possible isto immediately unload the truck following
its arrival at a particular location.

2.3 Soft Constraints and Preferences

A soft constraint is a condition on the trajectory generatedby a plan that the user would prefer to see
satisfied, but is prepared to accept might not be satisfied because of the cost involved, or because of
conflicts with other constraints or goals. While soft constraints have been extensively studied in the
constraint-satisfaction literature [9, 24, 60]), the planning community has started to consider them only
relatively recently (see, for example, [8, 14, 15, 21, 53, 62, 63]).

There is still contention about the best way to capture and handle preferences, with some advocat-
ing a reward-based approach (e.g., [12]) and others advocating a qualitative approach (e.g., [37]). In
particular, where a user has multiple soft constraints, there is a need to determine which of the various
constraints should take priority if there is a conflict between them, or if it should prove costly to satisfy
them. This can be expressed using a qualitative approach, for example by describing a partial order on
the conditions that are preferred. The advantage of this approach is that it is intuitive and consistent
with the demands of many potential applications. Unfortunately, it is also highly inconsistent with the
demands of straightforward comparative evaluation of planner performance, since the use of a partial
order introduces the complication of there being many incomparable plans, each maximally preferable.
To avoid this problem (which is particularly acute in a competition context),PDDL3.0 uses quantitative
preferences.

An example of the expressions we wish to capture is the following: “We prefer that every fragile
package is insured while it is loaded in a vehicle”.

(:constraints
(and (forall (?p - package)

(preference P1 (always (implies (and (fragile ?p) (loaded ?p))
(insured ?p))))) ...))

This example illustrates the power of combining preferences and trajectory constraints.

2.3.1 Syntax and Intended Meaning

The syntax for soft constraints falls into two parts. Firstly, there is the identification of the soft con-
straints, and secondly there is the description of how the satisfaction, or violation, of these constraints
affects the quality of a plan.

Goal conditions, including action preconditions, can be labelled as preferences, meaning that they
do not have to be true in order to achieve the corresponding goal or precondition. Thus, the semantics
of these conditions is simple, as far as the correctness of plans is concerned: they are all trivially
satisfied in any state. The role of these preferences is apparent when we consider the relative quality of
different plans. In general, we consider plans better when they satisfy soft constraints and worse when
they do not. Complications arise, however, when comparing two plans that satisfy different subsets of
constraints (where neither set strictly contains the other). In this case, we rely on a specification of the
violation costs associated with the preferences.

The syntax for labelling preferences over goal descriptorsis simple:(preference [name] <GD>)

(similarly for preferences over trajectory constraints).The definition of a goal description can be ex-
tended to include preference expressions. However, expressions in which preferences appear nested
inside any connectives, or modalities, other than conjunction and universal quantifiers, are prohibited in
PDDL3.0. Preferences appearing in the condition of a conditional effect are also invalid. Where a named
preference appears inside a universal quantifier, it is considered to be equivalent to a conjunction (over
all legal instantiations of the quantified variable) of preferences all with the same name.

The use of preferences in a domain or problem implies the needfor the requirements tag:preferences.
Preferences over state trajectory constraints are expressed in the(:constraints ...) field, while

10

preferences over goals are expressed in the(:goal ...) field. If a preference involves both a con-
straint and a goal, it is expressed in the:constraints field. Goal preferences expressed in the:goal

field are implicitly interpreted under theatend modality.
Preference names can be used to refer to the preference in theconstruction of penalties for the

violated constraint. Preferences with the same name share the same penalty.
Penalties for violation of preferences are calculated using the expression(is-violated <name>),

where<name> is a name associated with one or more preferences. This expression takes a value equal
to the number of distinct preferences with the given name that are not satisfied in the plan. InPDDL3.0
there are no degrees of satisfaction of a soft constraint — a constraint is satisfied or not. The violation
count includes every separate instance of a constraint withthe same name. This means that:

(preference VisitParis (forall (?x - tourist) (sometime (at ?x Paris))))

yields a violation count of1 for (is-violated VisitParis), if at least one tourist fails to visit Paris
during a plan, while

(forall (?x - tourist) (preference VisitParis (sometime (at ?x Paris))))

yields a violation count equal to the number of people who failed to visit Paris during the plan. The
intention behind this is that each preference is consideredto be a distinct preference, satisfied or not
independently of other preferences. The naming of preferences is a convenience to allow different
penalties to be associated with violation of different constraints.

Plans are awarded a value through the plan metric, introduced in PDDL2.1. The constraints can be
used in weighted expressions in a metric. For example:

(:metric minimize (+ (* 10 (fuel-used)) (is-violated VisitParis)))

would weight fuel use as ten times more significant than violations of theVisitParis constraint.
The violation of a preference in the preconditions of an action is counted as often as the action

occurs in the plan. For instance, suppose thatp is the name of a preference in the precondition of an
actiona, and thata occurs three times in planπ, with the preference unsatisfied in each case. If the plan
metric evaluatingπ contains the term(* k (is-violated p)), then this term will contribute3k to
the plan metric, since each instance of the action is considered to introduced a distinct instance of the
preference.

Anonymous constraints (constraints for which no name is provided) are automatically considered to
be weighted1, and are included as an implicit additional additive term inthe metric, positively if the
metric is to be minimised and negatively if is to be maximised. This ensures that a plan that satisfies
more constraints will be better than one that satisfies fewer, all else being equal. The default treat-
ment of anonymous constraints can be avoided simply by naming the constraints — a named constraint
contributes to the plan quality value only if it appears explicitly as a term in the metric.

2.3.2 Semantics

The expression:

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (preference Φ)

is always true, so this allows preference statements to be combined in formulae expressing goals
without changing the states in which the goals are true. A preference is a soft constraint, so fail-
ure to satisfy it is not considered to falsify the goal formula. In the context of action preconditions,
Si |= (preference Φ) is always true, too, for the same reason.

A preference(preference Φ) is satisfiediff 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= Φ andviolated
otherwise. To illustrate the interpretation of preferences take, as an example, the goal:

(and (at package1 london) (preference (clean truck1)))

11

which leads to the following interpretation (the lack of anyexplicit modality for the proposition in the
preference means that it is to be interpreted as a required condition of the final state):

〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (and (at package1 london)

(preference (clean truck1)))

iff 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at package1 london) and
〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (preference (clean truck1))

iff Sn |= (at package1 london)

iff (at package1 london) ∈ Sn, since the preference is always interpreted as true. In addition,
the preference would besatisfied

iff 〈(S0, 0), (S1, t1), ..., (Sn, tn)〉 |= (at end (clean truck1))

iff (clean truck1) ∈ Sn.

Now suppose that we have the following preferences and plan metric:

(preference p1 (always (clean truck1)))
(preference p2 (and (at end (at package2 paris)) (sometime (clean truck1))))
(preference p3 (at most once (in packeage2 truck1)))

(:metric minimize (+ (* 10 (is-violated p1)) (* 5 (is-violated p2))
(is-violated p3))).

Suppose we have two plans,π1, π2, andπ1 does not satisfy preferences p1 and p3 (but it satisfies
preference p2) andπ2 does not satisfy preferences p2 and p3 (but it satisfies preference p1), then the
metric forπ1 would yield a value (11) that is higher than that forπ2 (6), and we would say thatπ2 is
better thanπ1.

The task of determining whether a preference is violated is simplified by a restriction in the lan-
guage that allows preferences to appear only in conjunctions or universally quantified formulae. To
see why this constraint is necessary, consider the example formulae: (or Φ(preferenceΨ)) and
(preference(or ΦΨ)). Under one natural interpretation, these formulae are equivalent both in
terms of the satisfaction of the formulae and also in terms ofwhether the preference is satisfied. This
happens if we consider the first formula to mean thatΦ should be true but, failing that, it isprefer-
able that Ψ be true (rather than not true). With this interpretation, inthe state in whichΦ holds
but Ψ does not there is no violation, since the preference is irrelevant onceΦ is satisfied. This in-
terpretation has the property that it makes distinct the meanings of (or Φ(preferenceΨ)) and
(and Φ(preferenceΨ)). This apparently natural interpretation would lead to a situation in which
the violation count for the preference,Ψ, would be incremented only ifΦ were false. Unfortunately,
it opens up a significant complication: to be consistent, theexpression(or (preference p1 Φ)

(preference p2 Ψ)) should mean that only one of the two preference violation counts should be
incremented. The problem is to decide which. One possibility would be to assign the violation to the
least costly preference, measured according to the plan metric, but it seems a decidedly less natural in-
terpretation to require to take into account the plan metricin order to decide which preference has been
violated. Since disjunctions involving preferences, and formulae that are equivalent to disjunctions
including preferences, do not behave intuitively, they have been excluded from the language.

The same interpretation of preferences is applied to actionpreconditions that include them. For-
mally, a preference precondition is satisfied if the state in which the corresponding action is applied
satisfies the preference. The restriction on where preferences may appear in precondition formulae and
goals, together with the fact that they are excluded from conditional effects, means that this definition
is sufficient: the context of their appearance will never make it ambiguous whether it is necessary to
determine the status of a preference. Similarly, a goal preference is satisfied if the proposition it contains
is satisfied in the final state. Finally, an invariant (overall) condition of a durative action is satisfied
if the corresponding proposition is true throughout the duration of the action — once the invariant is
violated, the preference is unsatisfied, regardless of whether it is then resatisfied or violated again in
multiple disconnected intervals.

12

In some cases it can be hard to combine preferences with an appropriate weighting to achieve the
intended balance between soft constraints and other factors that contribute to the value of a plan (such
as plan makespan, resource consumption and so on). For example, to ensure that a constraint takes
priority over a plan cost associated with resource consumption (such as makespan or fuel consumption)
is particularly tricky: a constraint must be weighted with avalue that is higher than any possible con-
sumption cost and this might not be possible to determine. With non-linear functions it is possible to
achieve a bounded behaviour for costs associated with resources. For example, if a constraint,C, is to
be considered always to have greater importance than the makespan for the plan then a metric could be
defined as follows:

(:metric minimize (+ (is-violated C) (- 1 (/ 1 (+ 1 (total-time)))))).

This metric will always prefer a plan that satisfiesC, but will use makespan to break ties.

2.4 On the Expressiveness of PDDL3.0

The question of whether an extension of a planning language increases the expressive power of the
original language can be addressed by studying the compilability of the extended language into the
original one. As argued by Nebel and others [4, 54, 65], a compilation scheme should preserve solution
existence, and it is theoretically important if it does not increase the size of the problem description
more than polynomially or the size of the smallest solution by more than a constant: if a compilation
scheme satisfying these conditions exists, then, from a theoretical point of view, we can say that the new
language constructs do not add expressive power, and hence are merely “syntactic sugar”. Of course,
they might nevertheless beuseful, by, for example, making it easier to model or solve certain kinds of
problems.

The question of whether the new constructs introduced inPDDL3.0 increase the (theoretical) expres-
siveness of the language is not trivial. Several methods forcompiling different forms of state trajectory
constraints and preferences have appeared in the literature [5, 20, 25, 45, 58]. Indeed, some planners par-
ticipating in the competition took this approach to handling the extended language. However, while such
compilations preserve the existence of plans in the traditional sense, i.e., finite sequences of actions, we
will show they do not, in factcan not, preserve existence of other forms of plans. Additionally,details
of the complexity of the different compilation schemes proposed (size of the input planning problem
description and of the output solution plans) have not been analysed.

This section contains some basic results about the compilability of PDDL3.0 state trajectory con-
straints and preferences. For non-temporal domains, wherethe actions are instantaneous and time cor-
responds to the happenings determined by the occurrence of actions in the plan, we show that this
fragment ofPDDL3.0 can be compiled intoPDDL2 with a polynomial increase in problem size and con-
stant increase in plan length. Thus, as argued earlier, we may claim that, for non-temporal domains,
these constructs do not add expressive power to thePDDL language. However, we also show that this,
and other, compilation schemes preserve only the existenceof finite, sequential plans, i.e., there exist
planning problems, with state trajectory constraints, that have, for example, plans with parallel actions
but no sequential plan. Hence, in this particular case, we can also say thatPDDL3.0 adds expressive
power toPDDL2. Regarding state trajectory constraints for temporal domains, we outline a possible
compilation scheme, which, however, increases the plan size linearly. In this case a compilation into
PDDL2 preserving plan size exactly seems impossible. Moreover,we show how preferences (soft goals
and soft state trajectory constraints) can be restated using numeric state variables (fluents) or in a more
restricted form using action costs. Finally, in the last part of this section, we discuss some practical
aspects of the usefulness of compilingPDDL3.0 constraints versus not compiling them.

2.4.1 Compiling State Trajectory Constraints for non-Temporal Domains

State trajectory constraints for a non-temporal domain canbe restated as formulae in Linear Temporal
Logic (LTL), which can be compiled into equivalent Büchi automata [18, 35]. SincePDDL3.0 con-
straints are normally evaluated over finite trajectories, the Büchi acceptance condition, that “an accept-
ing state is visited infinitely often”, reduces to the standard acceptance condition that the automaton is in

13

S0 S2

(notφ)φ

φ

S1

(notφ)
S0 S2

(not
φ) S1

φ

φ

(notφ)

(a)(always φ) (b) (sometime φ)

(notφ)

(notφ)φ

S2 S3 S4

φ
S0

S1
(not

φ)

φ

φ

(notφ)

S0

φ

φ

(and(notψ)(notφ))

(and(notψ)(notφ))
S1

S3

S2

(andψ(notφ))

(an
dψ

(no
tφ

))

(c) (at-most-once φ) (d) (sometime-before φ ψ)

S0 S2

S1

(or(n
otφ)

ψ)

ψ

(andφ(notψ))

(andφ(notψ))

(or(notφ)ψ)

(notψ)
St+1

St+2

φ

St

t states

S1

φ

φ

(n
ot
φ)

S0

(n
ot
φ) (notφ). . .(notφ)

(e)(sometime-after φ ψ) (f) (within t φ)

S0

St+1

S1

(n
ot
ψ). . .

St+2

St

ψ

(a
nd
φ(
no
tψ

))

(
a
n
d
φ
(
n
o
t
ψ
)
)(and

φ
(not

ψ
))

(notψ)

(or(notφ)ψ)

(or(notφ)ψ)

t states

(notψ)

ψ

S0

(not
φ)

S1

St+2

φ

(notφ)
. . .

St+1

φ

(not
φ
)

(not
φ)

φ

t+ 1 states

S2t+2

φ

φ

S2t+3

S2t+4

(notφ)

φ φ

(notφ) (notφ)(notφ)

φ . . .

(g) (always-within t φ ψ) (h) (hold-after t φ)

.

(notφ)

S2t1
. . .

φ

φ(not
φ
)

φ
St1 S2t1+1

φφ
St1+t2

φ
St1+t2+1

(notφ)

St1+t2+2

(notφ)

(notφ) (notφ)

S0

φ

St1+1

S1

(notφ)
(notφ)

φ

(not
φ)

φ

φ

t2 − t1 − 1 statest1 states

(i) (hold-during t1 t2 φ)

Figure 2: Automata corresponding to the basicPDDL3.0 state trajectory constraints.φ andψ are arbi-
trary PDDL formula.t, t1 andt2 are real values.

an accepting state at the end of the trajectory. A straightforward approach to compiling awayPDDL3.0
state trajectory constraints is thus to compile them into finite automata, and ensure that any valid plan
correctly simulates the automata. The compilation schemesused by participants in IPC5 [5, 25] are
variants of this idea.

The scheme we use is inspired by, and very similar to, the IPC5planners MIPS-XXL [25] and
HPLAN -P [5]. However, since our purpose is to study the expressiveness ofPDDL3.0, we use a different
encoding of automata, which enables us to derive explicit bounds on the growth in size of the compiled
problem and its solutions.

14

In general, the compilation of LTL formulae may produce exponentially larger automata. How-
ever, becausePDDL3.0 does not allow arbitrary nesting of modal operators, theautomata correspond-
ing to each of the basic plan constraints have fixed forms, which depend only on the modal operator:
Figure 2 shows the automata forPDDL3.0 modal operators for non-temporal domains. Thewithin,
always-within, hold-after andhold-during operators are special, in that the number of states
and transitions of the corresponding automata grow with theinteger parametert (resp.t1 andt2). These
automata can be reformulated as finite automata augmented with finite-range binary counters [39], of
size proportional tolog(t) (resp. log(t1) + log(t2 − t1 − 1)) and with a constant number of distinct
transitions. Below, we describe the compilation scheme only for automata without counters, since the
encoding of finite integer counters by propositions make action conditions and effects more complex.

Without loss of generality, we assume that the problem description contains two distinguished ac-
tions,start andfinish, that must appear first and last, respectively, in any valid plan.3 The effects
of thestart action assert the initial facts of the problem, while the precondition of thefinish action
includes the problem goal. To enforce a trajectory constraint, the planning problem is modified in such
a way that any valid plan simulates the execution of the corresponding automaton on the state sequence,
and ensures that it ends in an accepting state. LetA be an automaton: the state ofA is represented
by a predicate(state-A ?s), whose argument is drawn from a collection of additional constants.
Thestart action asserts(state-A s0), and the goal requiresA to be in an accepting state. Since
an automaton can have more than one accepting state, to avoidusing disjunction in the goal, we also
add a predicate(accepting-A), which is made true wheneverA is in an accepting state and is false
otherwise. To ensure that the automaton is correctly updated throughout the plan, each action in the
(original) planning problem and the specialfinish action is equipped with a set of conditional effects,
one for each (non-looping) transition inA,

(when (and (state-A si) ‘‘TRANS-LABEL’’) (and (not state-A si) (state-A sj)))

whereTRANS-LABEL is the formula labelling the transition from statesi to statesj of the automaton.
For transitions to an accepting (resp. non-accepting) state, we also add the extra effect(accepting-A)

(resp.(not (accepting-A))). Because the formula labels of transitions out of each state are mutu-
ally exclusive and exhaustive, exactly one of the conditional effects will take place whenever the action
is performed. As an example, consider the state trajectory constraint(sometime (at Plane NY)) in
the well-knownZenotravel domain [50, 55]. To simulate the corresponding automaton (an instance
of the one in Figure 2(b)), all actions in the domain are augmented with three conditional effects:

(when (and (state-A S0) (not (at Plane NY)))
(and (not (state-A S0)) (state-A S1) (not (accepting-A))))

(when (and (state-A S1) (at Plane NY))
(and (not (state-A S1)) (state-A S2) (accepting-A)))

(when (and (state-A S0) (at Plane NY))
(and (not (state-A S0)) (state-A S2) (accepting-A))).

In the compiled problem, the state of the automaton will be updated to reflect the planning world
state before the action takes place, i.e., the automaton will be “one step behind”. This is because the
automaton transitions simulated by the execution of a plan action are triggered by the world state where
the action is executed, not by the world state modified by the effects of the action.4 To ensure that the
complete state sequence is indeed accepted by the automaton, the updating conditional effects are added
also to the specialfinish action, and the condition that the automaton is in an accepting state placed
in the problem goal rather than the precondition of this action.

Note that the conditional effects updating the states of theautomata also make each action mutually
exclusive with every other action (according toPDDL2 definition of mutex actions [29]), and hence force
the plan to be sequential.

3This can be ensured by the addition of three dummy propositions,(init), (goal) and(active), such that(init), and
nothing else, holds in the initial state, and is required anddeleted bystart. (goal) is added byfinish and required to hold in
any goal state.(active) is added bystart, deleted byfinish, and is a precondition of every action exceptstart.

4In the context of ourZenotravel example, assume that(at Plane Boston) holds in the problem initial state; if(fly
Plane Boston NY) is the first plan action, this action updates the state of the automaton toS1 and not to the accepting stateS2.

15

Because modalities are not nested, the number of states and transitions in the automaton corre-
sponding to a single basic constraint is bounded by a constant (assuming automata corresponding to
constraints involving explicit time steps are reformulated with binary counters). Thus, the only place
where the constraint formula enters the automaton is in the transition labels, and therefore thePDDL

encoding of the automata outlined above grows only linearlywith the size of the formula. However,
the PDDL encoding of automata with counters also grows linearly withthe number of bits required to
represent the counters (i.e., logarithmically with the integer parameterst, resp.t1 andt2).

To extend the construction to universally quantified constraints, while keeping growth polynomial,
it is sufficient to make two observations: First, given a universally quantified basic constraint, the con-
struction can be “lifted”, i.e., the predicates representing the automaton state are parameterised by the
quantified variables and the updating conditional effects are universally quantified over the same set
of variables (this was noted also by Baier & McIlraith [5]). Second, given a conjunction of several
(possibly quantified) basic constraints, the updating conditional effects relating to different (possibly
parameterised) automata are non-interfering, and therefore can all be carried out in parallel, by adding
all the effects to each action (including the specialfinish action). In this way, all ground instances of
the automaton are simulated in parallel. (This lifting alsorequires a universally quantified initialisation
of the automata states, which can be encoded by a universallyquantified effect of the specialstart
action, and universally quantified goals for the compiled problem imposing that every automaton is in
an accepting state.)

Consider again ourZenotravel example, and the quantified constraint(forall (?x - aircraft)

(sometime (at ?x NY))). Then, actionfly is augmented by three quantified conditional effects

(forall (?x - aircraft)
(when (and (state-A ?x S0) (not (at ?x NY)))
(and (not (state-A ?x S0)) (state-A ?x S1) (not (accepting-A ?x)))))

(forall (?x - aircraft)
(when (and (state-A ?x S1) (at ?x NY))
(and (not (state-A ?x S1)) (state-A ?x S2) (accepting-A ?x))))

(forall (?x - aircraft)
(when (and (state-A ?x S0) (at ?x NY))
(and (not (state-A ?x S0)) (state-A ?x S2) (accepting-A ?x))))

In summary, the increase in the size of the compiled problem is at most proportional toC·log2(t)·M ·
N ·O, whereC is a constant (the number of transitions in the largest automaton corresponding to a basic
constraint),t the maximum integer parameter appearing in awithin, always-within, hold-during
or hold-after constraint,M the size of the (largest) formula appearing inside a basic constraint,N
the number of basic constraints (conjuncts) in the problem and O is the number of operators in the
domain. A shortest plan for the compiled problem is exactly 2actions longer than the length (number
of actions) of a shortest plan for the original problem. Thisincrease in length is due to the introduction
of the specialstart andfinish actions.

2.4.2 Two Non-Compilability Results

It is not difficult to see that the compilation scheme outlined in the preceding section preserves the
existence of plans, in the sense that if there exists a finite executable action sequence satisfying the
constraints (and goals) of the original planning problem, then there exists also such a valid plan for
the compiled problem. However, if we consider a slightly wider notion of plan, we find that there are
temporally extended goals expressible inPDDL3.0 that can not be stated in theSTRIPS/ADL fragment
of PDDL: one, perhaps not so interesting, example is goals that can be satisfied only by infinite plans,
but another, perhaps more relevant, example is goals that can only be satisfied by plans in which some
actions happen in parallel.

The first example, a goal requiring an infinite plan, is a well known example in LTL:23p∧23¬p,
which can be expressed inPDDL3.0 as

(and (sometime-after (p) (not (p))) (sometime-after (not (p)) (p))).

16

This constraint is satisfied by a state sequence where a statein whichp is true is always (eventually)
followed by a state wherep is false, and vice versa. Sincep can not be both true and false in the
same state, only an infinite sequence of states alternating betweenp and¬p can satisfy it. That a goal
requiring infinite plans can not be expressed inSTRIPS/ADL is obvious, since the goal can only refer to
the final state reached by the plan.

Non-temporal PDDL domains have the property that any linearisation of a valid parallel plan is
also a valid plan. This implies that if a problem has a solution plan, it also has a plan that is strictly
sequential. However, the same is not true for propositionalPDDL3.0: using state trajectory constraints,
it is possible to specify problems having a plan that involves parallel actions, but no sequential plan.
Intuitively, this is because constraints are evaluated over the sequence of “intermediate states” generated
by a plan, and a linearisation of a parallel plan can pass through some states that the parallel plan does
not. For a simple example, consider a planning problem with the following two actions:

(:action a1 :precondition (p1) :effect (and (not (p1)) (q1)))
(:action a2 :precondition (p2) :effect (and (not (p2)) (q2)))

where(p1) and(p2) are initially true and the goal is(and (q1) (q2)). Clearly, the two sequences
〈a1, a2〉 and〈a2, a1〉 are both valid plans, as is the plan that executesa1 anda2 in parallel. Now
consider the plan constraint

(always (or (and (p1) (p2)) (and (q1) (q2)))).

This constraint is violated by both the sequential plans forthe above problem, but is satisfied by the
parallel plan.

2.4.3 Compiling State Trajectory Constraints for TemporalDomains

In a temporal planning domain (a domain with durative actions), state trajectory constraints not involv-
ing explicit time points (i.e., those of typesometime, always, sometime-after,sometime-before
andat-most-once) can be compiled away using the scheme shown in the previous section with only a
minor modification: the collection of conditional effects must be added to both the start and end effects
of each action. As noted above, this prevents any pair of sucheffects from occurring at the exact same
time, which means that in the compiled problem, no pair of actions may start or end concurrently. Note
however, that it is only the endpoints of actions that need tobe separated (and only by the infinitesimal
amountǫ required byPDDL2.1 semantics); actions themselves may still overlap. Thus, the compilation
does not change minimal plan makespan by more thanO(ǫ).

Constraints of typewithin, hold-after andhold-during can be easily encoded inPDDL2.2
by usingtimed initial literals(TILs), representing predictable (deterministic) exogenous events [25, 31,
41], which in turn can be encoded inPDDL2.1 by the compilation scheme described in [41]. Intuitively,
within, hold-after andhold-during can be compiled into TILs because the exact absolute times
when the formula appearing inside these constraints must betrue is defined by their semantics inde-
pendently from the plan where they should hold. However, this does not hold for constraints of type
always-within, which require a more intricate encoding. Intuitively, thesources of this difficulty
are that in the encoding we have to verify conditions over continuous time, andPDDL does not admit
temporal constraints in action conditions.

In the following we outline a possible compilation scheme for always-within constraints in the
context of temporal domains.

Eachalways-within constraint is represented by a timed automaton (see Figure 3). As for non-
temporal domains, the automata execution is simulated by the execution of the plan, but in this case we
synchronise the execution with the happenings of the plan, instead of with the plan actions. Hence, in
the compilation of analways-within constraint, instead of augmenting the domain actions with con-
ditional effects representing the transitions of the timedautomaton, we add a new dummy action having
these conditional effects, and we force such an action to happen immediately after each happening of
the plan (this can be done by using the technique based on the “clip” actions introduced by Fox and
colleagues [28]). Moreover, for eachalways-within constraint with metric timet, we add another

17

S0

S2
S3

x > t

(notψ), x ≤ t

S1

(or(not φ)ψ)

ψ
,x

≤
t

x
:=

0

(
a
n
d
φ
(
n
o
t
ψ
)
)

,

(andφ (notψ)), x := 0

(o
r(
no
t
φ)
ψ)

Figure 3: Timed automaton for representing(always-within t φψ) constraints in temporal domains.

special action with durationt increasing a numerical fluenty (initialised to zero) by one at the beginning
of the action and decreasing it by one at its end, and we force the action to occur in the plan at each time
when an automaton transition resets the clock to zero. Essentially, this special action is used to deal
with the temporal constraints labelling the automaton transitions, which inPDDL cannot be explicitly
represented as action preconditions: in any state, the value of y is the number of clock resets that have
occurred in the lastt time units. Thus, ify > 0, the time elapsed since the last clock reset is less than or
equal tot (i.e. conditionx ≤ t labelling transitions of Figure 3 holds), while ify = 0, it is greater than
t (i.e. conditionx > t in Figure 3 holds).

It can be shown that the outlined compilation scheme increases the size of the problem description
polynomially. However, it does not preserve the number of plan actions exactly. Intuitively, a plan of
the compiled problem can reset the automaton clockO(H) times (up to once every two consecutive
happenings), whereH is the number of the plan happenings. Since in a plan withK actions we have
O(K) happenings, the number of additional actions in a solution plan of the compiled problem is
proportional toC · K, whereC is the number of state trajectory constraints in the original problem.
This increase could make constructing the plan computationally more expensive. On the other hand,
since actions may overlap in the compiled problems as well, their makespan in unaffected (except for
anO(ǫ) quantity, as noted above).

2.4.4 Compilation of Soft Goals and Constraints

PDDL3.0 preferences allow a plan metric to be expressed in terms of the satisfaction of soft goals, state
trajectory constraints and action preconditions. As described above, the impact of the violation of a
preference on the plan metric is specified by means of the expression(is-violated p), which eval-
uates to the number of violations of preferences with namep. Thus, a plan metric involving preferences
can be restated in terms of set of corresponding numeric fluents, by making sure these perform the same
function, i.e., counting the number of preference violations.

For each preference name,p, we introduce a fluent(is-violated-p), assigned zero in the initial
state. (We can assume without loss of generality that all preferences are named, since if some are
not, we can introduce a new name and assign it to all such anonymous preferences.) A preference
(preference p φ) appearing in an action precondition translates into the conditional effect

(when (not φ) (increase (is-violated-p) 1)),

which is added to the effects of the action. To evaluate preferences in the problem goal, we introduce
again a special actionfinish, constrained to appear last in any valid plan, and add the corresponding
conditional effects to this action. Note that if the problemcontains preferences over state trajectory
constraints, we need two distinctfinish actions, where the first performs the final update of automata
corresponding to trajectory constraints as described above and the second evaluates the preferences,
which in the compiled problem refer to the acceptance predicates of these automata. For preferences
appearing inside a universal quantifier, the correspondingconditional effects are also quantified. For
instance, let

18

(forall (?x - aircraft) (preference P1 (sometime (at ?x NY))))

be a quantified preference for ourZenotravel example; then, the special start action has the extra
numerical effect(assign (is-violated-P1) 0) and the second finishing action has the quantified
conditional effect

(forall (?x - aircraft)
(when (not (accepting-A ?x)) (increase (is-violated-P1) 1))

Finally, we note that if the impact of preference violation on the plan metric is restricted to be
linear (i.e., the metric is a sum of weighted preference expressions, plus possibly some other term),
preferences can be reduced toadditive action costs, by compiling the conditional effects into multiple
action instances (this was also noted by Benton & Kambhampati [7]). Although PDDL does not have
any special construct for expressing action costs, relyingon numeric variables to specify such a metric,
there is a growing number of planners that focus on optimising additive action costs (see e.g., [13, 30]),
which makes this an interesting special case.

2.4.5 Discussion: Some Practical Considerations

Even though the hard and soft constraints permitted byPDDL3.0 can be compiled away, i.e., expressed
in a reduced language such asPDDL2, there are potential advantages to introducing them anyway. From
a knowledge engineering point of view, the new language constructs may make it possible to formulate
some aspects of a domain or problem in a more natural, easily understandable, or modular way. From a
computational perspective, having trajectory constraints or soft goals explicitly identified may simplify
implementing more efficient strategies for dealing with them.

The compilation methods that have so far been described in the literature ([6, 25], as well as in this
paper) are all based on simulating automata that track the status of trajectory constraints. These methods
have obvious weaknesses, such as, for example, not dealing well with large numbers of constraints. As
an example, the following constraint, taken from domainStorage (described in Section 3), states that
any two crates stored in adjacent areas must be of a compatible nature:

(forall (?c1 ?c2 - crate ?s1 ?s2 - storearea)
(always (imply (and (on ?c1 ?s1) (on ?c2 ?s2)

(not (= ?c1 ?c2)) (connected ?s1 ?s2))
(compatible ?c1 ?c2))))

Using the compilation scheme outlined above, this constraint would be converted into a quantified
conditional effect attached to each action. For a problem with 5 crates and 10 areas (a medium-sized
benchmark problem in this domain), the corresponding ground problem would have actions with several
hundred conditional effects (even after effects with statically false conditions have been removed). That
is very likely to render it effectively unsolvable even by the best current classical planners. In fact, we
have confirmed that is the case for both FF and SGPLAN5 with constraints that are trivially satisfiable,
i.e., that are satisfied in the solution generated by the planner when ignoring the constraints [33].

However, a trajectory constraint of typealways can also be enforced by adding to the precondition
of any action that may possibly falsify it the regression of the constraint formula through the action. In
the case of the above constraint, that amounts to adding

(forall (?c2 - crate ?s2 - storearea)
(imply (and (connected ?s1 ?s2) (not (compatible ?c1 ?c2)))

(not (on ?c2 ?s2))))

to the precondition of thedrop action (as this is the only action that makes(on ?c1 ?s1) true). As
theconnected andcompatible predicates are static, the resulting addition to the preconditions of the
corresponding grounded actions would be only a conjunctionof literals (albeit a fairly large number of
them). It is likely that this would not significantly slow down a planner, at least when the constraint can
be trivially or “easily” satisfied.

19

SGPLAN5 is, so far, the only planner to handle problems withPDDL3.0 trajectory constraints in a
manner other than by compiling the constraints away. Among the IPC5 benchmark problems, it solves
some that have in excess of 2000 ground constraints, so clearly it does not suffer from the same kinds of
issues as current compilation methods. However, we have also observed that SGPLAN5’s mechanism
for dealing with trajectory constraints has its own problems. For example, SGPLAN5 solves no IPC5
benchmark problem in the Pipesworld domain with constraints (described in Section 3), and we have
observed that in some cases adding just a single (satisfiable) constraint to a problem causes SGPLAN5
to fail whenever that constraint forces the solution plan tobe different from the one SGPLAN5 finds for
the original problem (regardless of whether the problem hadother constraints or not).

Thus, it is clear that effective and general handling ofPDDL3.0 trajectory constraints is still an open
research question. Ultimately, the question of whether this is best done by compiling the constraints
away, and if so what the compilation scheme should look like,or if constraints can be better dealt with
in a more direct way, may depend both on the particular planner and characteristics of the constraint
formulas of interest.

3 The Benchmark Domains

The benchmark domains used in IPC5 were derived from a variety of sources: some are inspired by
(potential) applications of planning technology; some areencodings of benchmark problems used in
other areas of computer science and operations research; and some were created for the explicit purpose
of trying out the new language features offered byPDDL3.0. As in previous planning competitions,
domains were designed in several “versions”, each using a different subset ofPDDL3.0 features. In
most cases, however, these different versions encode radically different problems and should properly
be considered to be different domains, sharing only a commontheme. The name of each domain version
indicates the language category it belongs to:Propositionaldomains use only constructs of level 1 of
PDDL2 [29, 41];MetricTimedomains also use constructs of level 2 or 3 ofPDDL2.1;SimplePreferences
domains extend the propositional or metric-time variants with preferences over the problem goals;Qual-
itativePreferencesdomains include preferences over action preconditions andpreferences over state
trajectory constraints;MetricTimeConstraintsdomains extend the metric-time variant with strong state
trajectory constraints; and, finally,ComplexPreferencesdomains use the full power ofPDDL3.0. Note
that all domains are not represented in every language category.

In line with the aim to emphasise plan quality in the evaluation of competing planners, many of the
domains encode optimisation problems, in which it is significantly easier (in some cases completely
trivial) to find a plan that only satisfies the hard goals and constraints of a problem instance (indeed,
in some domains there are no hard goals!), and the true difficulty lies in finding a plan that also has
high quality. For the same reason, we also, for some domains,designed the problem instances very
carefully. Creating problems by simply assigning random values to costs/penalties runs a high risk of
resulting in problems that are simple, in the sense that optimal solutions lie at an extreme point where
one objective is ignored in favour of maximising satisfaction of another. This situation we wanted to
avoid. Moreover, for most domains, the problems instances were designed to have many solutions with
significantly different qualities and requiring the planner find a good compromise among the different
(possibly conflicting) terms in the objective function to optimise.

Three domains (Rovers STRIPS,PipesworldTankage-NontemporalandPipesworldTankage-
Temporal) were recycled from previous competitions, as a way to measure advancement in the field.
However, new versions of these domains, with preferences and constraints, were also created. In all, we
developed 32 new domains, or new versions of existing domains, and 978 problem instances. Most of
these were automatically generated.5

3.1 Openstacks

The Openstacks domains are all, to a greater or lesser degree, based on the “minimum maximum open
stacks” combinatorial optimisation problem, which can be stated as follows: A manufacturer has a

5The problem generation tools are available from the IPC5 websitehttp://ipc5.ing.unibs.it/.

20

product sequence: 2 3 4 5 1 | 1 2 3 5 4
order 1 ({1, 2}): X – – – X | X X
order 2 ({1, 3}): X – – X | X – X
order 3 ({2, 4}): X – X | X – – X
order 4 ({3, 5}): X – X | X X
order 5 ({4, 5}): X X | X X
open stacks: 2 4 5 4 2 | 2 3 3 3 2

Figure 4: Illustration of how the number of open stacks is calculated for two different production se-
quences. An “X” denotes that the order includes a request forthe corresponding product; a “–” that the
order is open at a point in the sequence, even though it does not include a request for the product made
at that point. For the first production sequence (2, 3, 4, 5, 1) the maximum number of simultaneously
open stacks is 5, while for the second sequence (1, 2, 3, 5, 4) it is 3, which is also the optimal value for
this problem instance.

number of orders, each for a combination of different products. Only one product can be made at a
time, but the total required quantity of that product is madeat that time. From the time that the first
product requested by an order is made to the time that all products included in the order have been made,
the order is said to be “open” and during this time it requiresa “stack” (a temporary storage space). The
problem is to order the making of the different products so that the maximum number of stacks that are
in use simultaneously,i.e., the number of orders that are in simultaneous production, is minimised.

Figure 4 illustrates the relationship between a set of orders, two different production sequences, and
the number of open stacks for a small example problem.

This and several related problems have been studied in operations research (see, e.g., Fink & Voss,
[27]). It is a pure optimisation problem: for any instance ofthe problem, every ordering of the making of
products is a solution, which at worst uses as many simultaneously open stacks as there are orders. The
problem is known to be NP-hard [49]. Recently, it was posed asa challenge problem for the constraint
programming community (see Smith & Gent, [61]).

3.1.1 Openstacks Propositional

The Openstacks Propositional domain is a direct encoding ofthe openstacks problem. There are two
different formulations of the domain. In theplain formulation, the encoding is done in such a way
that the length of a plan equals the maximum number of open stacks plus a problem-specific constant
(equal to twice the number of orders plus the number of products). Thus, minimising the number of
actions in the plan also minimises the objective function,i.e., the maximum number of open stacks.
However, because no plan quality metric can be specified in the propositional (STRIPS/ADL) fragment
of PDDL, a different formulation had to be used in the competition: in this, thesequencedformulation,
additional action preconditions and effects ensure that notwo actions can be executed in parallel, so that
minimising the number of parallel steps is equivalent to minimising the number of actions. The constant
offset between the number of steps and the maximum number of open stacks is larger in the sequenced
domain (equal to twice the number of orders plus twice the number of products).

As a result of the 2005 Constraint Modelling Challenge, a large library of instances of the openstacks
problem, as well as data on the performance of a number of different solution approaches, is available.
The instances used in IPC5 comprise 25 problems from this set, selected mainly for variety, plus five
extra instances of trivially small size.

3.1.2 Openstacks SimplePreferences

The Openstacks SimplePreferences (SP) domain models a problem similar to, yet radically different
from, the original openstacks problem. The main ingredients are the same: a set of products to be made,
a set of orders, each for some subset of products, and the constraint that an order is “open”, and requires
a “stack”, from the point where the first product requested bythe order is made to the point where the
last such product is made. The difference lies in the objective function: in this problem, the number of

21

stacks that may be used is fixed to a (instance-dependent) constant, and the constraint that all requested
products must be included in each order issoft, i.e., it does not have to be satisfied for a plan to be valid,
but the plan is given a penalty for each violation. The objective is to minimise the total penalty for
unsatisfied product requests. Put another way, given an infeasible (due to the limited number of stacks)
openstacks problem, the planner is asked to find the maximal (weighted) subproblem that is solvable.

Instances of the Openstacks SP domain were constructed fromstandard openstacks problems (the
same as selected for the propositional domain, except the five trivial and the five largest) by choosing
two additional parameters: (1) a penalty function for unsatisfied product requests and (2) a limit on the
number of stacks available. Two different models for the penalty associated with unsatisfied product
requests were used, each in roughly half the instances: in one, the objective is simply to minimise
the number of unsatisfied requests, while in the other, products requested by each order were weighted
according to an (arbitrarily chosen)order of importance. Most instances do not have a sufficient number
stacks to permit solutions with zero penalty, but a few (problems 15–18) unintentionally do.

3.1.3 Openstacks QualitativePreferences

The Openstacks QualitativePreferences (QP) domain combines the objective functions of the Open-
stacks Propositional and Openstacks SP problems in a weighted sum. That is, a solution may use any
number of stacks and may drop any set of product requests, butmust minimise the sum of a price per
stack used and the total penalty for unsatisfied requests.

Problem instances of this domain were constructed from instances of the Openstacks SP domain, by
simply assigning a price to stacks. The price per stack was set to the total penalty for unsatisfied product
requests divided by the optimal (or, in the case of problems 15–18, best known at the time) number of
stacks required to accommodate all requests, with the aim ofmaking the two extreme solutions roughly
equal in value.

3.1.4 Openstacks Time and MetricTime

The Openstacks Time and MetricTime (MT) domains again have the same elements as the original
openstacks problem but very different objective functions. In the Openstacks Time domain, the objective
is to minimise plan makespan. Making each product takes a different amount of time, but any number
of products can be made in parallel (as long as all orders requesting the products are simultaneously
open). In the Openstacks Time domain the maximum number of stacks in use is fixed, while in the
MT domain it is unlimited, and the objective function is a weighted combination of makespan and the
number of stacks used. There are no soft goals.

Problem instances were created from standard openstacks problems (again the same set of prob-
lems as used for the Openstacks SP and QP domains) by assigning (in part random) action durations,
attempting to ensure that the scheduling of the product-making actions dominates plan makespan. The
fixed number of stacks available in instances of the Openstacks Time domain was set close to the upper
bound (number of orders). For the MT domain, the price per stack was determined by comparing the
makespan of the best plans found with different fixed numbersof stacks, and choosing a value equal to
the average decrease in makespan per stack added, followingagain the principle of trying to make the
extreme points on the spectrum of trade-offs roughly equal in value.

3.2 Rovers

The Rovers domain, introduced in IPC3 [50], models the problem of planning for one or more au-
tonomous rovers performing planetary exploration in orderto obtain samples of rocks or soils from
certain waypoints, or having images of some objects. In IPC5, we reused the Strips and Numeric ver-
sions of this domain, as Propositional and MetricTime, respectively.6 We also created two new domains
that are, very loosely, based on the Rovers domain.

6The problem set for the Rovers MetricTime domain extends theIPC3 Rovers Time set with some very large instances.

22

#1 #2 #3 #4 #5
(#1)(sample wp2) 39.5 +23.7 ±0 −26.9 −39.5
(#2)(sample wp5) 38.4 ±0 +15.4 +23.7
(#3)(sample wp7) 116.2 ±0 ±0
(#4)(image obj7) 31.2 −26.9
(#5)(image obj8) 39.5

Figure 5: Example of goal cost relations for a (very) small Rovers problem. Entries on the diagonal
give, for each goal, the optimal cost of achieving that goal alone, while each off-diagonal entry(i, j)
shows thedifferencebetween the optimal cost of achieving both goals #i and #j and the sum of the costs
of achieving each of them alone. A negative value representsa synergy effect between goals #i and #j,
while values greater than zero indicate the goals are interfering.

3.2.1 Rovers MetricSimplePreferences

The Rovers MetricSimplePreferences (MSP) domain models anet benefit maximisationproblem, in
which the task of the planner is not to plan for all given goalsbut to select and plan for a subset of
goals so as to maximise the net benefit, defined as the sum of thevalues of goals achieved by the plan
minus the sum of the (independent and constant) costs of actions in the plan. In the domain used in the
competition, the net benefit maximisation objective was reformulated as a minimisation objective. Net
benefit maximisation and other cost-benefit trade-off problems have been studied in OR and scheduling,
and have also attracted interest among planning researchers recently [62, 22]

Instances of the Rovers MSP domain were created by a general method aimed at generating “in-
teresting” problems, having balanced costs and values for each subset of goals and thus non-obvious
optimal solutions. The steps involved are: (1) Generating (random) base problem instances, with (ran-
dom) actions costs and a relatively large number of potential goals. (2) Finding out the real cost of
achieving small sets of goals (single goals and pairs of goals), by optimally solving the corresponding
planning problems. (3) Calculating base values for each goal (and some pairs of goals), using the known
costs to estimate the kind and strength of interaction between goals. (4) Randomising goal values by
adding or subtracting a random percentage.

The calculation of goal base values aims to make the achievable net benefit of all goal sets roughly
equal: the base value of a single-atom goal that has no interactions with other goals equals the optimal
cost of achieving the goal. A goal that has onlysynergyrelations with other goals, meaning the cost of
achieving the set of goals together is less than the sum of thecost of achieving each of them individually,
has this base value reduced by half the average synergy effect, while for a goal that has only the opposite,
interference, relations with other goals, it is increased by the corresponding amount. Goals with mixed
relations are treated as goals with only synergies, but the conjunction of any pair of such goals that are
in an interference relation is given an additional value, equal to the interference effect.

As an example, Figure 5 shows the optimal cost of achieving each single goal and each pair of goals
in a small Rovers instance. The goal of obtaining a sample from waypointwp5 has only interference
relations with other goals: its base value is the cost of achieving the goal alone (38.4) plus half the
average interference effect (i.e.,((23.7+15.4+23.7)/3)/2). The goal to take an image of objectobj8
has synergy relations to two other goals (with an average synergy effect of33.2), but also an interference
relation, with the goal(sample wp5): the base value of this goal is the cost of achieving it alone
(39.5) minus half the average synergy effect. However, thegoal pair {(sample wp5),(image
obj8)} is given an extra base value of23.7 (the interference effect between the two). Final values for
goals (and goal pairs that have a base value) are obtained by adding or subtracting a random percentage
(in the range [-100%,+100%]) of the base value to it.

The set of instances of this domain forms three groups: in thefirst (problems 1 to 7), all goals have
only synergy relations to other goals; in the second (problems 8 to 13), goals have only interference
relations; and in the third (problems 14 to 20), there is a mixof the two kinds of goal relationships.7

7Because only actions that move the rovers have non-zero costin this version of the domain, it turned out that some goals in
some of the problems we generated could be achieved by zero cost plans, and therefore got a base value of zero. This problem
was fixed by assigning such goals a small value,1%–10% of the total goal value.

23

The method is not fool-proof: a final test run, using a simple optimal planner for net benefit prob-
lems, was made to filter out problems that were too easy or thatappeared too hard.

3.2.2 Rovers QualitativePreferences

The Rovers QP domain is also based on the IPC3 Rovers domain but, again, models a very different
problem. This domain was designed explicitly to test competing planners’ ability to trade off soft state
trajectory constraints against one another. Constraints in the Rovers QP domain are all soft,i.e., a plan
does not have to satisfy them, but is given a penalty for each unsatisfied constraint. Problems also
have regular hard goals (same as in the original Rovers domain). Plan constraints may contradict each
other, or the hard goals: an optimal solution in this domain is one that selects a jointly achievable set of
constraints with maximum value (the “value” of a constraintbeing the penalty avoided by satisfying it).

State trajectory constraints in the Rovers QP domain are artificial, in the sense that they do not
encode any real preferences on plans. As in the case of the Rovers MSP domain, constraints (and
their associated penalties) for the problem instances weregenerated by a general method, with the aim
of producing problems with non-obvious optimal solutions.Given a base problem, a set of candidate
constraints is found by mining a set of plans for the problem:candidates are constraints satisfied by at
least one plan, but not by all. The strategy for assigning penalties to constraints is again to calculate a
base value, in a manner intended to make the values of all maximal satisfiable sets of constraints roughly
equal, and determine final values by randomly adding or subtracting a percentage of the base value. The
joint satisfiability of sets of constraints is approximatedby looking at the set of plans.

The base problems and plans used to create instances of the Rovers QP domain were the instances
of the Rovers domain (STRIPSversion) used in IPC3 and the plans submitted by planners participating
in that competition.

3.3 Pathways

The Pathways domains are inspired by the field of molecular biology, specifically the study of biochem-
ical pathways. “A pathway is a sequence of chemical reactions in a biological organism. Such pathways
specify mechanisms that explain how cells carry out their major functions by means of molecules and
reactions that produce regular changes. Many diseases can be explained by defects in pathways, and
new treatments often involve finding drugs that correct those defects.” [64] The function of a pathway,
at an abstract level, can be modelled as a planning problem. Actions represent some of the different
chemical reactions that can appear in a pathway (association reactions, association reactions requiring
catalysts, and synthesis reactions). The problem goal is toconstruct a sequence of reactions that pro-
duces one or more substances. Goals are generally disjunctive (in the domain used in the competition,
however, these disjunctions were compiled away). The plan must also choose a limited number of sub-
stances to use as input for the sequence of reactions, i.e., some aspects of the initial state of the problem
are left to the planner. This feature was introduced mainly to make the problems non-trivial to solve.

The Pathways domains created for IPC5 are based on the pathways of the Mammalian Cell Cycle
Control as described in [47] and modelled in [16]. Figure 6 shows an example of a small part of the
network of reactions.

3.3.1 Pathways Propositional

The Pathways Propositional domain uses a simple qualitative encoding of chemical reactions, where
only the presence/absence of a substance is modelled and notthe quantity that is available. The goals
are conjunctions of binary disjunctions (compiled into actions with disjunctive preconditions).

As an example, consider the network of reactions depicted inFigure 6, and suppose we seek a
pathway producing eitherRAF-RAFK orMEK-{p1,p2} using at most one of the substancesRAF,RAFK
andMEK-RAF-{p1} as input. Without the restriction to using at most one input substance, finding a
solution to this problem would be a trivial task: simply triggering all possible (chains of) reactions of the
pathway generates all producible substances. However, selecting a limited number of input substances
that can generate the desired output is more challenging. Note that in the network shown in Figure 6,

24

MEK-RAF-{p1}RAF

MEK-{p1,p2}

MEK-{p1}

MEK-{p1}RAF-{p1}

MEKRAF-{p1}

RAF-RAFK

RAFK

Figure 6: An example of a small biochemical reaction network. Ellipses represent substances, squares
represent reactions, and edges indicate substances consumed/produced by them. The shaded nodes are
substances that can be chosen as inputs.

producingRAF-RAFK from a single input substance is not possible, so we are forced to satisfy the other
disjunct, synthesisingMEK-{p1,p2}. If, on the other hand, the number of input substances was not
limited, producingRAF-RAFK would be easier.

3.3.2 Pathways SimplePreferences

This domain has the same basic structure as the propositional version, with the difference that both goals
(products that must be synthesised by the pathway) and the initial state constraints (maximum number
of input reactants) are soft. The plan metric is a weighted sum of preference violations. Problems in
this domain do not admit solutions that satisfy all preferences; in particular, in order to synthesise the
desired products some input reactants must be used.

The penalties associated with preferences for desired outputs of the pathway were computed using
estimates of the minimum number of required initial reactants, with the aim of ensuring that the trade-off
between the two kinds of preferences is non-trivial (i.e., that preferences of one kind do not completely
dominate the cost function).

3.3.3 Pathways MetricTime and ComplexPreferences

The Pathways MetricTime domain models chemical reactions at a greater level of detail, with reactions
consuming and producing certain quantities of substances,and taking a certain amount of time. Goals
are expressed as sums of substance concentrations that mustbe generated by the reactions of the path-
way. The objective function is to minimise a linear combination of the number of input substances used
by the pathway and plan makespan.

The ComplexPreferences domain adds numerous preferences concerning the concentration of sub-
stances along the pathway and the order in which substances are produced. The metric is a combination
of penalties for violations of these preferences, the number of substances used and plan makespan.

3.4 Pipesworld Domains

The Pipesworld domain was introduced in IPC4 [42]. It modelsthe problem of transporting batches of
petroleum products in a network of pipelines, with or without restrictions on “tankage” (space in inter-
mediate storage tanks). In IPC5, the Tankage-Nontemporal (Strips) and Tankage-Temporal versions of
this domain were reused, and two new domain versions were created.

3.4.1 Pipesworld TimeConstraints

The Pipesworld TimeConstraints (TC) domain is based on the IPC4 Pipesworld Notankage-Temporal
domain. Like several other IPC5 domains, it adds hard deadlines for the achievement of subgoals.

25

In the context of the planning competition, the main difficulty in constructing problem instances with
hard deadlines is to ensure that those deadlines can in fact be met. One might expect that determining if
given deadlines are feasible should be within the capabilities of temporal planners. In practice, however,
most temporal planners cannot do this. In particular, none of the temporal planners participating in the
full PDDL3.0 subtrack of IPC5 could do so. Therefore, including unsolvable problems in the competition
set would not have served any purpose.

To ensure deadline goals were feasible, we made use of existing plans (specifically, solution plans
submitted by planners competing in IPC4), simply selectingfor each problem one solution plan, with
a preference for plans achieving goals quickly, and extracting deadlines from that plan. A similar ap-
proach was used by for the construction of some problems withtime-windows for IPC4 [42]. In addition
to deadlines for the achievement of goal atoms (encoded using within constraints), problems in this
domain also have (a fairly large number of) conditional deadlines, modelled byalways-within
constraints. In retrospect, this was perhaps somewhat excessive, since most of the problems with only
subgoal deadlines are already too hard for the competing planners.

3.4.2 Pipesworld ComplexPreferences

The Pipesworld ComplexPreferences domain is very similar to Pipesworld TC, with the difference that
in this domain, deadlines are soft, i.e., preferences instead of hard constraints. Deadlines are specified
only for goal atoms, but each goal can have several (increasing) deadlines with different (increasing)
penalties for missing them.

The method for selecting deadline goals and penalty values for instances of Pipesworld CP has
similarities to those used for the Rovers MSP and Rovers QP domains. Given a base instance of the
Pipesworld (Notankage-Temporal) domain, upper and lower bounds on the time required to reach each
subset of goal atoms were derived: upper bounds from a collection of valid solution plans for the
problem instance (the plans found by competitors in IPC4) and lower bounds using various admissible
makespan heuristics. The set of distinct values appearing as lower or upper bounds define a set of
“interesting” time points.8 Each goal atomp and interesting time pointt, such thatt is not less than the
lower bound on the time required to achievep, defines a potential deadline goal,(within t p), of
which a random subset was selected. The base value of a selected deadline goal is 1, plus 1 for every
other selected deadline goal such that the pair of them is known to be unachievable. Final penalty values
were chosen by randomly adding or subtracting a percentage of the base value.

3.5 Storage

The Storage domains model a transportation problem involving a kind of spatial reasoning, similar to
that found in some kinds of puzzle domains (e.g., Sokoban or the (n2 − 1)-Puzzle). The goal is to
unload crates from one or more containers and deposit them instorage spaces (“depots”) using hoists.
Space inside each depot is divided into “areas”: hoists can only move between adjacent areas, and can
only enter and leave the depot to/from certain areas. Crates, once deposited in an area, block further
movement through the area. Thus, in a plan to store more than one crate in a depot, leaving the first
crate just inside the door is not going to work. Movement outside depots (in the “loading area”) is
unrestricted.

Figure 7 shows a small example of Storage instance. Note thataccess to the depot is only through
areaD32, and that thus, depositing a crate there prevents moving other crates into the depot. Likewise,
after putting a crate in areaD22, only the area closest to the door will be reachable. Thus, since the goal
in this example is to stow four crates, and there is only one depot to store them in, the first two must
be placed in areasD11, D12, orD21. This situation can be particularly problematic for delete-relaxed
plan heuristics [11] : in the delete relaxation, the optimal(and also the easiest) solution is to store all
crates in areaD32, which is clearly not very indicative of the real plan.

8Two time values are not considered distinct if they differ byless than a given tolerance,τ . This filtering is necessary because
upper bounds are derived from plans, which tend to have action start times shifted by (often wildly different) epsilon values.

26

D22

D12D11

D21

D32

D
E
P
O
T
1

C
O
N
T
A
I
N
E
R
1

CRATE1

CRATE2

CRATE3

CRATE4
HOIST1

LOADAREA

Figure 7: Example of a small Storage problem.

The different Storage domain versions add action durations, preferences and trajectory constraints.
Altogether, they involve almost all the new features ofPDDL3.0. There is no numeric version of this
domain.

3.5.1 Storage Propositional and Time

The Storage Propositional domain encodes the basic problem, as described above. In the Storage Time
domain actions have non-unit duration and the objective is to minimise plan makespan, but otherwise it
is identical to the Propositional version.

3.5.2 Storage SimplePreferences and QualitativePreferences

The Storage SimplePreferences domain differs from the Propositional version in that goals are soft.
Additionally, in this domain some crates are incompatible with each other, and preferences specify that
only compatible crates are stored in the same depot or, failing that, that incompatible crates stored in
the same depot are located at non-adjacent areas. There are also preferences for keeping certain areas
clear, and for having the hoists located in depots differentfrom those where crates are stored at the end
of the plan.

The QualitativePreferences version extends Storage SP with preferences over trajectory constraints,
which concern the use of available hoists for moving crates and the order in which crates are stored in
the depots.

In both domains, plan quality is measured by the sum of the weighted preference violations. In
general, preferences may contradict each other, so that there is no plan satisfying all of them, forcing
the planner to make a trade-off.

3.5.3 Storage TimeConstraints

This domain extends Storage Time with trajectory constraints, imposing that a crate can be moved at
most once and that every hoist is used at least once, constraints on the order in which certain crates are
stored, deadlines for storing crates, and a maximum time that a hoist can stay outside a depot. Besides
the goal of storing all crates, there are end-state constraints imposing that incompatible crates are not
stored in adjacent areas and that all hoists are inside a depot.

There are three groups of instances, using different modal operators for state trajectory constraints:
ten instances contain only constraints of typealways andsometime; ten instances contain these two
plussometime-before andwithin; and ten instances further extended with constraints of type
at-most-once andalways-within.

Plan quality is measured by makespan. Note, however, that, due to the additional constraints, the
solution that is optimal for corresponding Storage Time instances may not be valid.

3.5.4 Storage ComplexPreferences

This domain extends Storage Time with preferences over the goal state and over state trajectory con-
straints. Trajectory constraints are similar to those found in the TimeConstraints version, but in this
version there are many more (soft) constraints, which frequently contradict each other so that there

27

is no plan satisfying all preferences. The plan metric is a weighted sum of preference violations.
However, since some constraints impose deadlines or conditional deadlines (using thewithin and
always-withinmodal operators), time also plays a part in determining planquality.

3.6 TPP (The Travelling Purchaser Problem)

The TPP domains are inspired by the Travelling Purchaser Problem, which is a known generalisation
of the Travelling Salesman Problem. The problem can be defined as follows: We have a set of products
and for each product a known demand. We also have a set of markets, each of which can provide a
known limited amount of each product at a known price. The purchaser must select a subset of markets
such that the given demand for each product can be purchased,and construct a tour which starts and
finishes at a distinguished location (called the depot) and visits all the selected markets. The objective is
to minimise a combination of the travel cost (sum of known costs for each leg of the tour) and purchase
cost (sum over all products and markets of the quantity of theproduct purchased at the market times the
price at which it is offered).

The problem is NP-hard and arises in several applications, mainly in routing and scheduling con-
texts. Computing optimal or near optimal solutions for the TPP is a topic of active research in operations
research (see, e.g., [57]).

3.6.1 TPP Metric

The TPP Metric domain encodes the original Travelling Purchaser Problem. There are two different
purchasing actions,buy-all andbuy-allneeded: the first buys at a certain market the whole
amount of a product sold at that market, while the second buysat a market the amount of a product that
is needed to satisfy the remaining demand.9 Travel between any two locations (markets and the depot)
incurs a travel cost. Travel costs are symmetric.

Figure 8 shows an example of a small TPP instance with two markets and three types of goods; the
available amount and price for each type of good is shown in the table next to each of the markets, and
the travel cost on the edges of the graph. The purchaser (herecalledtruck) is at the depot. The goal
in this instance is to acquire 10 units ofgoods1, 100 units ofgoods2 and 10 units ofgoods3, and
return the truck to the depot. The optimal plan for this instance is a tour passing both markets, buying
goods1 andgoods3 at market1 andgoods2 at market2. Compared to the simplest plan, i.e.,
the one with the fewest actions, this saves 780 units of currency. Thus, it is likely that a planner that
considers only the distance to the goal and not the plan metric will come up with quite a poor plan.

3.6.2 TPP Propositional

This domain simplifies the original TPP by discretising the amounts of goods into “levels” and assuming
prices are the same for all products at all markets. Travel costs are coarsely approximated by making the
map of connections between locations a less than complete graph. The goal is still to acquire a certain
total amount of (some subset of) the different goods.

Since this is a propositional domain, it has the default objective of minimising the number of parallel
steps. Because of this, most of the instances of this domain have more than one depot and more than one
purchaser (“truck”), which allows the number of plan steps to be reduced by parallelising operations.

3.6.3 TPP SimplePreferences

This domain is similar to the Propositional domain version,with the difference that goals are all soft
(i.e., preferences). Besides a general preference for maximising the amount of goods acquired, there are
also preferences over the relative amounts of some kinds of goods that is acquired. For example,

9This encoding avoids the need for a purchase action with a numeric argument (the amount to purchase), which is not permitted
in PDDL (for reasons detailed in [29]). It does, however, introducea constraint that is not present in the original problem,viz.,
that the market from which a fraction of the available good ispurchased must be visited last. This additional coupling between
the problems of optimising purchase and travel costs means that there are instances of the TPP for which the optimal solution can
not be represented by any plan.

28

DEPOTTRUCK

MARKET1 MARKET2

PriceAmount

200 2

PriceAmount

14

20

5

8

100 10

21

2

3

GoodsGoods

50

40

30

Figure 8: Example of a simple TPP world.

(preference p3A (imply (stored goods2 l1) (stored goods1 l2)))

indicates that when 1 unit ofgoods2 is purchased, 2 units ofgoods1 should be. These preferences
may conflict with the general preference for acquiring as much as possible, since the total amounts
available of different kinds of goods may be different. For example, if there is only one unit available
of bothgoods1 andgoods2, buying the one unit ofgoods2 leads to a violation of the preference
above (while not buying it violates the general preference for buying everything). This forces planners
to trade-off the satisfaction of the two kinds of preferences.

The plan quality metric is composed solely of weighted preference violations. The relative weights
of preferences were set so that plans storing certain levelsof goods would be better than the empty
plan. There are also some preferences for “sensible plans”,e.g., a truck not leaving a market without
having loaded purchased goods, or not unloading goods from the truck by the end of the plan. These
preferences are never in conflict with preferences of the other kinds and therefore do not affect the best
achievable plan quality. To some extent, they are a substitute for action costs, which can not be modelled
in this PDDL fragment.

3.6.4 TPP QualitativePreferences

This domain version extends the SP version with preferencesover trajectory constraints. These include
constraints about which truck to use for different kinds of goods and constraints imposing the use of
every truck. Plan quality is measured by weighted violations of the soft goals, soft constraints and soft
action preconditions. Similarly to the SP version, instances of this domain generally do not admit a
solution satisfying all the preferences.

3.6.5 TPP MetricTime

This domain version extends the Metric version with action durations. It has explicit actions for load-
ing and unloading goods (not present in the Metric version),whose duration depend on the amount
loaded/unloaded. The objective function is a linear combination of plan makespan and the sum of pur-
chase and travel costs. Similar to the propositional version, instances can have more than one truck,
making it possible to reduce makespan by parallelising operations.

This domain also has an additional twist, in that the action buying the entire quantity of a product
sold at a market gets a (known) “rebate rate”, i.e. a lower price. This rate, like the ordinary price, may
vary between markets, and some markets may not offer it at all.

3.6.6 TPP MetricTimeConstraints

The TPP MetricTimeConstraints (MTC) extends the MT versionwith several hard constraints. Domain-
wide constraints impose that in the final state, all purchased goods are stored in a depot (i.e., not left
lying in the market or in a truck), that every market can be visited by at most one truck at the same
time, and that every truck is used (loaded) at some point in the plan. Moreover, instances of the domain
have additional constraints concerning the relative amounts of different types of goods stored in a depot,
the number of times a truck can visit a market, the order in which goods should be stored, the order in
which some type of goods should be stored and another bought,and deadlines for delivering goods once
they have been loaded in a truck. Plan quality is a linear combination of makespan and the total cost of
travelling and purchasing.

29

(LOAD PACKAGE1 TRUCK1 A1 L1)

(DRIVE TRUCK1 L1 L2)

(LOAD PACKAGE2 TRUCK1 A1 L1)

(DELIVER PACKAGE2 L2)

(UNLOAD PACKAGE2 TRUCK1 A1 L2)

(UNLOAD PACKAGE1 TRUCK1 A1 L2)

(DELIVER PACKAGE1 L2)

0 1 1
0

2
1

0
3

2 1
0

4
1

0
5

1
0

6

Optimal plan
L1 L2

PACKAGE1

PACKAGE2

A1 A2 TRUCK1

Trucks World

(LOAD PACKAGE1 TRUCK1 A1 L1)

(DRIVE TRUCK1 L1 L2)

(UNLOAD PACKAGE1 TRUCK1 A1 L2)

(DELIVER PACKAGE1 L2)

(DRIVE TRUCK1 L2 L1)

(LOAD PACKAGE2 TRUCK1 A1 L1)

(DRIVE TRUCK1 L1 L2)

(UNLOAD PACKAGE2 TRUCK1 A1 L2)

(DELIVER PACKAGE2 L2)

0 1 1
0

1
1

0
2

1
0

3

2
0

4
2

0
3

3
0

4
3

0
5

3
0

6

FF plan

Figure 9: Gantt charts of the optimal plan and the plan computed by FF for movingpackage1 and
package2 to L2 by truck1 from the sketched initial world state.

There are three groups of instances, using different modal operators for state trajectory constraints:
ten instances contain only constraints of typealways andsometime; ten instances contain these two
plusat-most-once andsometime-before; and ten instances further extended with constraints
of typealways-within.

3.6.7 TPP ComplexPreferences

This domain extends the MT version with various preferencesboth over the final state and over state
trajectory constraints. Trajectory constraints are similar to those in the MTC domain version, and the
plan metric is a weighted sum of preference violations. However, this domain also has the same hard
goals as the MT version, i.e., that the requested amount of each type of good is stored at the end of the
plan.

3.7 Trucks

The Trucks domains are all (single-vehicle-type) transportation domains with two additional constraints.
The first is that the cargo space in each truck is limited and divided into areas, similarly to the space
inside a depot in the Storage domain, and a package can be loaded into or unloaded from an area of a
truck only if all areas between this area and the truck door are unoccupied. Inother words, the storage
space in a truck functions like a stack: last in, first out. Thesecond constraint is that packages must be
delivered by a deadline.

3.7.1 Trucks TimeConstraints and Time

The TimeConstraints version of the Trucks domain is the one in which the additional constraints are
most naturally expressed. The goal is to have packages at their destination by certain deadlines. Solution
quality is measured by plan makespan. However, the most difficult aspect of the problem is meeting
the deadlines, which were determined so that a valid plan must exploit truck capacity well (though not
necessarily fully). The durations of actions that move trucks are generally much greater than those of
other actions (such as loading, unloading and delivering),so that efficient routing is a primary concern.

For example, consider the following simple instance of the domain: There are 2 objects,package1
andpackage2, that need to be transported from their initial locationL1 toL2 using one truck with two
load areasA1 andA2, each of which can carry one package. The travel time betweenthe two locations
is 100 time units, whereas loading and unloading takes 1 timeunit. The optimal plan for this problem
is depicted in Figure 9. First both packages are loaded on thetruck at locationL1, then the truck moves

30

to locationL2 where the packages are unloaded and delivered. The bottom chart in Figure 9 depicts
the plan that is generated by first running FF on the propositional version of the domain (obtained by
removing action durations) and then scheduling the actions, taking into account their actual durations.
Note that this plan is suboptimal. This can be attributed to the fact that the relaxed plan heuristic used
by FF does not distinguish between the usage of the two load areas, and (accidentally) generates a plan
where the first package is loaded in the area closer to the door, thus blocking the use of the inner load
area. If there is the deadline thatpackage1 must be delivered to locationL2 by time 200, then the
upper chart in Figure 9 represents the only valid plan, and planning can become more difficult.

In this domain version, deadlines were specified bywithin constraints. However, we also created
an equivalent version in which the constraints are compiledinto timed initial literals.

The Trucks Time domain is the same as the TC version but without deadlines for package deliveries.

3.7.2 Trucks ComplexPreferences Domain

The Trucks ComplexPreferences domain has the same basic structure as the TC version, but the deadline
constraints are soft, i.e., modelled as preferences. (Eventually delivering all packages is still a hard goal,
though.) In addition, there are preferences over other state trajectory constraints, imposing a partial
consistent ordering on the delivery of packages, constraints about the use of storage areas in trucks, and
constraints imposing that a package can be loaded at most once.

Plan quality is measured by the sum of weighted preference violations. In general, preferences
concerning delivering packages within deadlines are the highest weighted, but preferences about which
load areas inside trucks are used and how are also important.

For all instances of this domain, there exists no plan which satisfies all preferences. In the example
shown in Figure 9, the following preference

(forall (?p - package ?t - truck) (preference p1A (always
(forall (?a - truckarea) (imply (in ?p ?t ?a) (closer ?a a2))))))

indicates the desire that, if a package is in a truck, it is on an area nearer to the truck door than the loading
areaa2 (i.e., in the example of Figure 9 on the nearest areaa1). On the other hand, the preferences

(preference p2A (within 120 (delivered package1 l2)))
(preference p2B (within 150 (delivered package2 l2)))

express the desire that two particular packages are delivered within 120 and 150 time units, respectively.
In order to satisfy the second set of preferences, these packages must be loaded together into the same
truck, and hence the previous preference will be violated. Which option leads to a higher quality plan
depends on the precise weights associated with the preferences.

3.7.3 Trucks Propositional

The Trucks Propositional domain differs from the TC versionmainly in that time is modelled as a
discrete resource (with a fixed number of levels). Only actions driving trucks consume time, and, due
to the encoding, such actions cannot be executed concurrently.

The deadlines for package delivery mean instances of the domain tend to have many deadend states,
i.e., states from which some undelivered packages cannot bedelivered in time. We have observed that
this causes the enforced hill-climbing strategy of FF to fail in many problem instances.

3.7.4 Trucks SimplePreferences and QualitativePreferences

The Trucks SimplePreferences domain has the same basic structure as the propositional version, but
has soft rather than hard deadlines. For each package, thereis a hard goal to deliver the package,
and a sequence of increasing soft deadlines with increasingpenalties for violating them (similar to the
Pipesworld CP domain). For example, suppose the deadline for deliveringpackage1 is 3. The set of
preferences

31

(preference p1B (exists (?t - time)
(and (delivered package1 l1 ?t) (less-or-equal ?t t4))))

(preference p2B (exists (?t - time)
(and (delivered package1 l1 ?t) (less-or-equal ?t t5))))

(preference p3B (exists (?t - time)
(and (delivered package1 l1 ?t) (less-or-equal ?t t6))))

expresses increasing penalties for late delivery ofpackage1 (up to the limit three penalty units). The
plan metric in this domain is the number of violated preferences, so delays, i.e., the difference between
required and actual delivery time for each package, should be minimised. This encodes a simplified
form of the “sum tardiness” optimisation criterion, frequently used in scheduling.

The QualitativePreferences domain version extends the SP version with additional preferences over
state trajectory constraints, similar to those used for theCP version. Violation of these preferences is
combined with the soft deadlines in the plan quality metric.

4 Experimental Analysis of the Performance of the IPC5 Planners

In this section, after a very brief presentation of the planners that entered the deterministic part of IPC5,
we experimentally investigate their performance in detail. We conducted an extensive analysis using the
data from the competition, as well as additional results obtained by further experiments. The analysis
has two main related aims: comparing the relative performance of the IPC5 planners, and studying their
effectiveness more generally.

For the first aim, we analyse the data from the competition in different ways according to the
domain categories involving different fragments ofPDDL3 (Propositional, MetricTime, SimplePref-
erences, QualitativePreferences, ComplexPreferences, MetricTimeConstraints). First we consider the
overall problem solving success ratio and the number of problems solved by each planner with respect
to an increasing CPU-time limit. Then, for each domain variant, we give scatterplots showing a general
comparison of each planner w.r.t. the overall best performing planner(s) using the benchmarks domains
altogether. (The detailed plots of the results for each different domain are available from the IPC5 web-
site.) The planners are compared in terms of CPU time required for generating a valid plan and quality
of the computed plan (measured using the specified plan metric expression).

To get a better estimate of the significance of differences inperformance observed among the com-
pared planners, we also make use of a statistical test, the Wilcoxon sign-rank test [67].10 This test
applies to a set of paired observations (a sample from a larger population), and tells us if it is plausible
to assume that there is no correlation between the pairwise observed quantities. In our case, these paired
observations are, e.g., the runtimes of two planners on the same problem instance, and “no correlation”
between them means it is equally likely that we will see one planner solving a problem faster than the
other as it is that we will see the opposite on a random sample of problems. The sample is our set of
problem instances for some IPC5 domain category. Obviously, instances in each of the IPC5 problem
sets are not drawn uniformly at random from the set of all problems in the corresponding domain: al-
though for many domains there was an element of randomness inthe problem generation process, many
parameters, for example, problem size, were also selected,systematically within some fixed range, by
us. However, it is not inaccurate to say that our problem setsare random samples, albeit drawn accord-
ing to someunknown distribution(by which it is much more likely to draw problems that we consider
reasonable and interesting or representative of application problems).11 In particular, the construction
and selection of problems was done without knowledge of how the competing planners would behave
on them: thus, we can at least say that the sample distribution is not (intentionally) skewed to favour
or disfavour any planner. The Wilcoxon test is appropriate because it does not require us to know the
sample distribution, and makes no assumptions about this distribution. That is, we have no way to know
a priori how hard a planning problem is, and hence we have no distribution of the performance of the
competing planners for these problems. As a consequence, itis critical that we use a non-parameterised

10This test was also used by the organisers of IPC3 to analyse the results of that competition [50].
11For most of the domains, the criteria we used for selecting the benchmark problems are coded in the fully-automated problem

generation tools that are available from the IPC5 website.

32

Planner Planning Capability Plan Quality Measure
D N SG C SC Propositional Others

Optimal
CPT2

√
− − − − #Steps Makespan

FDP − − − − − #Actions −
IPPLAN-1SC − − − − − #Steps −
MAX PLAN − − − − − #Steps −
MIPS-BDD − − − − − #Actions −
SATPLAN − − − − − #Steps −
Satisficing
DOWNWARD04SA − − − − − #Actions −
IPPLAN-G1SC − − − − − #Actions −
HPLAN -P − −

√
−

√
− Problem metric

MIPS-BDD − −
√

−
√

− Problem metric
MIPS-XXL

√ √ √ √ √
#Actions Problem metric

SGPLAN 5
√ √ √ √ √

#Actions Problem metric
YOCHANPS

√
−

√
− − #Actions Problem metric

Table 1: Summary of the capabilities (columns 2–6) and measures of plan quality (columns 7–8) of
planners participating in IPC5. “D” means durative actions, “N” numeric fluents, “SG” soft goals (i.e.,
preferences over atoms in the goal state), “C” trajectory constraints and “SC” soft trajectory constraints.
The plan quality measures are those indicated by the IPC5 teams for their planners.

test. When the statistical test indicates a significant difference, this means that it is quite likely that we
would have seen a similar result if we had taken a different sample according to the same distribution. In
our context, this means that when we find that, say, planner A is faster than planner B in some domain
category, then it is highly likely that if we were to generatemore problems in this domain category
– following the same construction method and selection criteria as we did when generating the IPC5
problem set for the domains in this category – planner A will be faster than planner B on most of those
problems too.

For the second general aim of our experimental investigation, we compare the IPC5 planners with
the best performing planners of the previous competition (IPC4). Moreover, for a selection of the
benchmark problems, we compare the quality of the solutionsproduced by the IPC5 planners with
respect to (a) the corresponding optimal solutions (when wecould obtain such solutions), (b) the best
sub-optimal solutions that we obtained by running other planners that did not enter IPC5 or other “ad
hoc” methods, or (c) lower and upper bounds on the quality of the optimal solutions. Finally, for a
selection ofPDDL3 domains involving preferences, we evaluate the behaviourof the IPC5 planners
with and without the preferences in the test problems.

All compared planners were run on the same machine. The CPU-time limit was 30 minutes and for
each process at most 1 Gbytes of RAM was allowed.

4.1 The IPC5 planners

Participating in IPC5 were six optimal planners: CPT2, FDP,IPPLAN-1SC, MAX PLAN , MIPS-
BDD and SATPLAN; and seven satisficing planners: DOWNWARD04SA, IPPLAN-G1SC, HPLAN -
P, MIPS-BDD, MIPS-XXL, SGPLAN 5 and YOCHANPS.

Table 1 briefly summarises the capabilities of the competitors. As can be seen, SGPLAN 5 and
MIPS-XXL are the only planners supporting all language features used across the competition do-
mains. HPLAN -P and MIPS-BDD support soft goals and trajectory constraints, YOCHANPS soft
goals and durative actions, and CPT2 supports durative actions, while the remaining competitors are
limited to the propositional subtrack only.

The table also shows the plan quality measure optimised by each of the competitors. Most of the
optimal planners are optimal only w.r.t. the parallel plan length, i.e., number of steps, but two of them,
FDP and MIPS-BDD, optimise the number of actions in the plan and one of them, CPT2, is able to
optimise makespan in problems with durative actions (whichreduces to parallel length in the case of
plain propositional problems). Among the satisficing planners, some try to find plans of good quality

33

according to the metric function specified in the problem definition, while some always aim to minimise
the number of actions in the plan, and some may not consider plan quality at all, focusing only on finding
a plan quickly. For the purpose of evaluating plans found by these planners, for propositional domains
we measure plan quality in terms of number of actions (because, for these domains, all the satisficing
planners use this criterion), while for the other domains wefollowed the principle of always evaluating
them according to the problem metric.

In the rest of this section, we give brief descriptions of each of the competing planners. More details
can be found in the short papers by the planners’ authors thatwere collected in the IPC5 booklet [13].

CPT2 (Vincent Vidal & Sebastien Tabary)

CPT2 is the new version of the CPT planner that participated in IPC4, which combines a partial-order
causal-link branching scheme with a powerful pruning mechanism based on constraint propagation.
The planner handles durative actions and is optimal w.r.t. makespan. In the new version, the constraint
formulation has been extended with several new pruning rules and the underlying CP engine has been
replaced with a new, more efficient, implementation.

FDP (Stephane Grandcolas & Cyril Pain-Barre)

Like CPT2, FDP is also based on CP mechanisms, but designed for optimal sequential planning instead
of temporal planning. FDP uses a planning graph-like structure to represent partial plans, a number of
filtering rules to remove inconsistent possibilities from this structure, and a branching rule based on the
deletion/preservation of each atom at each step to decompose the problem. By incrementally extending
the size of the plan structure, FDP ensures that the plans it finds are optimal w.r.t. the number of actions.

IPPLAN (Menkes van den Briel, Subbarao Kambhampati & ThomasVossen)

IPPLAN reformulates the planning problem as an integer programming (IP) problem and solves it
using the CPLEX solver, combining and extending ideas from several previous IP encodings. It supports
different IP formulations, some of which ensure optimalityw.r.t. the parallel length in the plan while
others don’t. Thus, IPPLAN participated in two versions, one as an optimal (IPPLAN-1SC) and one as
a satisficing planner (IPPLAN-G1SC). IPPLAN uses theSTRIPS-to-SAS translator component from
the FAST DOWNWARD planner [40] to convert problems fromPDDL to a multi-valued state variable
representation.

MAXPLAN (Zhao Xing, Yixin Chen & Weixiong Zhang)

MAX PLAN , similarly to SATPLAN, converts the planning problem into aseries of propositional satis-
fiability problems and relies on a SAT solver to answer these.Like SATPLAN, MAX PLAN finds plans
that are optimal w.r.t. the parallel length. However, MAX PLAN differs from SATPLAN in several
important respects: The search for a shortest plan starts from an upper bound on the length and works
downward until the last solution has been proven optimal, and the encoding into SAT incorporates in-
formation learned while solving previous SAT problems, as well as additional mutex constraints. The
SAT solver is also modified to take advantage of the special structure of SAT problems that result from
the encoding.

MIPS-BDD (Stefan Edelkamp)

MIPS-BDD is based on symbolic exploration of the state space, using BDDs to compactly represent
sets of states. It handlesPDDL3.0 trajectory constraints, which are compiled into Büchi automata and
preferences. In propositional problems, it finds plans of minimal length (i.e., optimal w.r.t. the number
of actions). In problems with preferences, the planner still searches for plans of increasing length
and records the best (w.r.t. the problem metric) plan found so far, thus ensuring that when the search
space has been completely exhausted, the value of the current best plan is optimal. In the competition,
however, for problems with preferences, MIPS-BDD outputs the best plan found within the available
CPU time, and therefore did not guarantee optimality.

34

SATPLAN (Henry Kautz, Bart Selman & Jörg Hoffmann)

The 2006 version of SATPLAN is an updated version of the SAT-based planner that participated in
IPC4. It is optimal w.r.t. the parallel plan length. The maindifferences from the previous version are
the use of a different SAT encoding (using variables for bothactions and fluents) and the use of limited
mutex propagation on the planning graph that forms the basisof the encoding.

DOWNWARD 04SA (Malte Helmert)

DOWNWARD04SA is almost identical to the FAST DOWNWARD planner that participated in IPC4. It
translates thePDDL problem specification into a multi-valued state variable representation (“SAS+”)
and searches for a plan using a heuristic derived from the causal graph constructed from the SAS+
representation. The main improvement compared to the IPC4 version of the planner is the addition
of safe abstraction, a form of problem simplification that allows the planner to solve certain kinds of
simple problems without search.

MIPS-XXL (Stefan Edelkamp, Shahid Jabbar & Mohammed Nazih)

MIPS-XXL uses a combination of several heuristic search methods, including an extension of METRIC-
FF’s search and a best-first search using external memory (disk). The planner handlesPDDL3.0 trajec-
tory constraints and preferences, by compiling them into Büchi automata and numerical fluents, respec-
tively, as well as problems with durative actions and timed initial literals. Similarly to MIPS-BDD, the
planner is “optimal in the limit”, i.e., after exploring thecomplete state space, but was in the competition
configured to output the best plan found within the availableCPU time, with no guarantee of optimality.

SGPLAN 5 (Chih-Wei Hsu, Benjamin W. Wah, Ruoyun Huang & Yixin Chen)

SGPLAN 5 is the new version of the SGPLAN planner that also participated in IPC4. Features in the
new version include a new heuristic, similar to the causal graph heuristic used by FAST DOWNWARD,
for planning at the subgoal level, and extensions to handle all the new features ofPDDL3.0. Like several
other planners, for problems with preferences SGPLAN 5 employs a strategy of iteratively searching for
better plans after the first plan has been found. Unlike othercompeting planners, however, trajectory
constraints are not compiled away but handled directly by the search.

HPLAN -P (Jorge Baier, Jeremy Hussell, Fahiem Bacchus & Sheila McIllraith)

HPLAN -P is a heuristic search planner for problems with preferences, built on top of the TLPLAN

system. It also handles a subclass of trajectory constraints, by compiling these into parameterised finite
state automata. The heuristic guiding the search combines estimates of the cost of reaching the goals,
the cost of satisfying preferences, and different estimates of the final plan metric value.

YOCHAN PS (J. Benton & Subbarao Kambhampati)

The YOCHANPS planner translatesPDDL3.0 problems with preferences into so callednet benefit(partial
satisfaction) problems, and solves them using the SAPAPS planner [23]. The main difference between
problems as expressed inPDDL3.0 and net benefit problems is that while in the former, the objective is
to minimise a penalty for violated (goal and precondition) preferences, in the latter the objective is to
maximise the utility of achieved goals and minimise the costof actions in the plan. SAPAPS solves net
benefit planning problems by heuristic search, using an inadmissible heuristic based on cost propagation
over a planning graph.

4.2 Summary of the Main Results

Our experimental analysis contains many results. At a general level, we can derive at least the following
eleven interesting observations. With respect to therelative performanceof theoptimal propositional
IPC5 planners, we note that:

35

1. In terms of the number of problems solved within the competition CPU-time limit, consider-
ing the entire propositional problem set, MAX PLAN and SATPLAN perform similarly (although
SATPLAN is, in general, better with respect to lower CPU-time limits) and both are significantly
better that the other competing optimal planners. However,there is at least one domain in which
both these planners are outperformed by some other IPC5 planner.

With respect to therelative speedof thesatisficingIPC5 planners, we note that:

2. For every domain category, SGPLAN 5 performs significantly better than the other IPC5 planners
both in terms of CPU time and number of problems solved withinany CPU-time limit up to 30
minutes.

With respect to theplan qualityof thesatisficingIPC5 planners, we note that:

3. In the propositional domain category, SGPLAN 5 produces better quality plans than the other
compared planners, except IPPLAN-G1SC, which, however, solves far fewer problems.

4. In the metric-temporal domain category, YOCHANPS performs better than the other compared
planners but solves far fewer problems than SGPLAN 5.

5. Across the simple and complex preferences domain categories, with respect to plan quality, SG-
PLAN 5 performs generally better than the other IPC5 planners, except for MIPS-BDD in the
simple preferences domain category, which, however, solves far fewer problems. For the quali-
tative preferences category, SGPLAN 5 performs better than HPLAN -P and similarly to the other
planners.

6. In domains with strong state trajectory constraints, MIPS-XXL is slightly better than SGPLAN 5
in terms of plan quality (these two are the only planners competing in this domain category).
However, the performance of both planners, in terms of the total number of problems solved in
this domain category, is quite poor. Domains of this kind clearly present an open challenge for
future research.

Finally, concerning the performance of the IPC5 planners ingeneral, we note that:

7. A comparison of the IPC5 optimal propositional planners with the winner of the propositional op-
timal track at IPC4 (the 2004 version of SATPLAN) shows that the 2006 version of SATPLAN
is significantly faster than the previous winner, while the performance of MAX PLAN and CPT2 is
similar to that of the IPC4 winner. Moreover, CPT2, the only optimal temporal planner of IPC5,
performs significantly better than the winner of the optimaltemporal track of IPC4 (CPT).

8. A comparison of SGPLAN 5 with the winners of the satisficing propositional and metric-temporal
tracks at IPC4 (FAST DOWNWARD [40] and SGPLAN 4 [17], respectively), shows that SGPLAN 5
performs better with respect to both CPU time and plan quality.

9. A study of plan quality for a subset of propositional domains and problems shows that the solu-
tions computed for these problems by the IPC5 satisficing planners are in general very good.12

10. A study of the quality of plans found by IPC5 satisficing planners for a large subset of metric-
temporal domains indicates that these are generally of rather poor quality.

11. A study of the quality of plans found by the IPC5 satisficing planners for a subset of problems
with preferences shows that (a) the planners are, in general, doing significantly better than “blind
luck”, i.e., than the expected value of plans found while disregarding the preferences, but also
that (b) the planners often find plans of rather poor quality,compared to what is known to be
achievable.

12The subset of domains and problems considered for this analysis and for the analysis described in the next two items are
those for which we were able to compute optimal solutions or lower/upper bounds on the optimal solutions.

36

Problems CPT2 FDP IPPLAN-1SC MAX PLAN MIPS-BDD SATPLAN
Solved/attempted 53 / 210 46 / 240 23 / 140 84 / 240 54 / 240 83 / 210
Success ratio 23.1% 19.1% 16.4% 35.0% 22.5% 39.5%

Table 2: Number of solved/attempted benchmark problems in the propositional IPC5 domains and
success ratio for CPT2, FDP, IPPLAN-1SC, MAX PLAN , MIPS-BDD and SATPLAN.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 100 1000 10000 100000 1e+06

CPU-time limit (milliseconds)

Propositional DomainsNumber of solved problems

CPT2
FDP
IPPLAN-1SC
MaxPlan
MIPS-BDD
SATPLAN

Figure 10: Number of problems solved by the IPC5 optimal planners with respect to an increasing
CPU-time limit (logarithmic scale) for propositional domains.

4.3 Relative Performance of the Optimal Planners

Since the IPC5 optimal planners, CPT2, FDP, IPPLAN-1SC, MAX PLAN , MIPS-BDD and SAT-
PLAN, produce optimal quality solutions, we compare them only in terms of number of solved prob-
lems and CPU time.13 Although these planners are optimal with respect to two different measures,
number of actions and number of parallel steps, here we disregard this difference and treat them all
equally. All the IPC5 optimal planners attempted the (seven) propositional versions of the benchmark
domains, while only one planner, CPT2, attempted the temporal version. For this reason we focus the
analysis in this section on only propositional domains.

Number of solved problems

Table 2 shows the number of (propositional) benchmark problems attempted and solved by the IPC5
optimal planners, as well as their corresponding overall success ratio. We consider a problem non-
attempted by a planner if the domain variant to which it belongs was not attempted by the planner; we
consider a domain variant non-attempted by a planner if it contains no problem that was solved by the
planner within the CPU-time limit of the competition (30 minutes). MAX PLAN solves more problems
than any other compared planner, although the gap with respect to SATPLAN consists of only one
problem, while SATPLAN is the planner with the best success ratio among those compared.

In Figure 10, the optimal planners are compared in terms of number of solved problems within a
CPU-time limit ranging from 10 milliseconds to 30 minutes. When the CPU-time limit is very low
(about half of a second), CPT2 solves more problems than any other competitor; for CPU-time limits
higher than half a second SATPLAN solves more problems than the other optimal planners, except
for the highest considered CPU time where MAX PLAN solves one problem more than SATPLAN,
and both these two planners solve many more problems than every other compared planner. Note that
although the number of problems solved by MAX PLAN increases significantly for CPU-time limits near
the competition limit, we experimentally observed that with 30 additional CPU minutes this planner
solves only two additional problems.

13During the evaluation of the competition results we realised that for a few problems MAX PLAN produced sub-optimal
solutions. This was most probably due to an implementation bug. In the evaluation of an IPC5 optimal planner, each problem
with a known sub-optimal solution is considered unsolved.

37

CPU-time of CPT2, IPPLAN-1SC, FDP, MAX PLAN , MIPS-BDD versus SATPLAN

 10

 100

 1000

 10000

 1e+05

 1e+06
 U

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

CPT2

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

IPPLAN-1SC

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

FDP

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MaxPlan

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-BDD

CPU-time of CPT2, IPPLAN-1SC, FDP, MAX PLAN , MIPS-BDD versus MAX PLAN

 10

 100

 1000

 10000

 1e+05

 1e+06
 U

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

CPT2

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

IPPLAN-1SC

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

FDP

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

SATPLAN

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-BDD

Figure 11: Performance of the optimal planners with respectto SATPLAN (plots on the top) and
MAX PLAN (plots on the bottom) in terms of CPU time for propositional domains. In the plots on the
top (bottom) of the figure, on thex-axis there are the CPU milliseconds of SATPLAN (MAX PLAN).

CPU-time performance relative to SATPLAN and MAXPLAN

In order to give a compact graphical representation of the overall performance of the IPC5 planners, we
use scatterplots comparing the performance results of pairs of planners. For analysing the relative CPU
time of the optimal planners, as well as of the satisficing planners in the next sections, we consider all
the problemsattemptedby both the compared plannersandsolved by at least one of them.

The two sets of scatterplots in Figure 11 compare SATPLAN (plots on the top of the figure) and
MAX PLAN (plots on the bottom), respectively, with the other IPC5 optimal planners. On thex-axis
there is the performance of the reference planner (either SATPLAN or MAX PLAN), on they-axis the
performance of the other compared planner. For instance, consider the plot concerning the performance
of CPT2 versus SATPLAN, each cross symbol indicates the CPU time used by CPT2 to solve a
particular test problem (y-value) w.r.t. the time used by SATPLAN (x-value). When a cross appears
above (under) the main diagonal of a scatterplot, CPT2 is slower (faster) than the reference planner; the
distance of the cross from the main diagonal indicates the performance gap (the greater the distance,
the greater the gap). The scatterplots have additional parallel lines dividing the picture into sectors.
A cross under the line labelled “1oF” (over the line labelled“1oS”) corresponds to a problem where
CPT2 is at least one order of magnitude faster (slower) than the reference planner. Similarly, the lines
labelled “2oF” (“2oS”) and “3oF” (“3oS”) identify sectors of scatterplots corresponding to problems
where the compared planner is at least two and three, respectively, orders of magnitude faster (slower)
than the reference planner. Crosses with “U” on they-axis correspond to problems solved by CPT2
and unsolved by the reference planner; crosses with the “U” value on thex-axis correspond to problems
solved by the reference planner and unsolved by CPT2.

In general, as is consistent with the analysis of Figure 10, the crosses with the “unsolved value” on
they-coordinate are much more dense than the crosses with the “unsolved value” on thex-coordinate,
indicating that the reference planners solve more problemsthan the other compared planners.

In the plots on the top of Figure 11 most of the crosses are above the main diagonal, indicating that
SATPLAN is generally faster than the other compared planners. The plots on the bottom part of the

38

SATPLAN CPT2MAX PLAN MIPS-BDD IPPLAN-1SC

FDP

Figure 12: Partial order of the performance of the optimal IPC5 planners in terms of CPU time according
to the Wilcoxon test for the propositional domains. A solid arrow indicates that a planner performs better
than the other planner (or cluster of planners) with confidence level 99.9%; a dashed arrow indicates
that a planner performs better with confidence level 98.1%.

figure give a less clear indication for MAX PLAN , since there are many crosses above the diagonal but
also many below it.

The scatterplots of Figure 11 give a general visual indication of the relative performance of the
compared planners considering all test problems, where in some cases the crosses corresponding to
different problems cannot be distinguished because they appear overlapped. In order to have a somewhat
more specific indication, we counted the number of crosses ineach region of each plot. For the sake of
brevity, here we omit these numerical data, which are available in [33], but, when useful, we present a
qualitative assessment of the compared planners based on such data. According to this analysis, with
respect to FDP, IPPLAN-1SC and MIPS-BDD, MAX PLAN is more often faster than slower, and the
number of problems for which it is much faster is greater thanthe number of problems for which it is
also much slower. On the other hand, CPT2 is often faster but solves fewer problems than MAX PLAN

(see Table 2).

Statistical analysis

Figure 12 shows the results of the Wilcoxon sign-rank test comparing every possible combination of
pairs of optimal IPC5 planners. We consider all the test problems attempted by both the compared
planners and that are solved by at least one of them.

The data for carrying out the Wilcoxon test are derived as follows. For each planning problem we
compute the difference between the CPU times of the two planners being compared. When a planner
does not solve a problem, the corresponding CPU time is twicethe competition CPU-time limit (i.e.,
60 minutes).14 This defines the samples of the test for the CPU-time analysis. The absolute values of
these differences are then ranked by increasing numbers, starting from the lowest value. (The lowest
value is ranked 1, the next lowest value is ranked 2, and so on.) Then we sum the ranks of the positive
differences, and we sum the ranks of the negative differences. If the performance of the two compared
planners is not significantly different, then the number of the positive differences is approximately equal
to the number of the negative differences, and the sum of the ranks in the set of the positive differences
is approximately equal to the sum of the ranks in the other set. Intuitively, the test considers a weighted
sum of the number of times one planner performs better than the other. The sum is weighted because
the test uses the performance gap to assign a rank to each performance difference.

The Wilcoxon test is characterised by a probability value, which represents the level of significance
of the performance gap. In our analysis we use a default confidence level equal to 99.9%; hence, if
the probability-value is greater than 0.001, then we refusethe hypothesis that the performance of the
compared planners is statistically similar, and accept thealternative hypothesis that their performance
is statistically different. Otherwise, there is no statistically significant evidence that they perform differ-
ently; so we consider that, on the evidence we have, they perform pretty much similarly. For the sake of
conciseness, this paper contains only a general description of the statistical results; the interested reader
can find more details in [33].

14This is the minimum value such that the performance gap for a problem solved by one planner and unsolved by the other
compared planner is bigger than the performance gap for any problem solved by both the compared planners. An alternative
choice would have been (1) using the competition limit, which, however, would have given less importance to the planner ability
of solving a problem within the CPU-time limit, or (2) considering only the problems solved by both the planners, which insome
cases could have significantly reduced the data for performing statistical test.

39

Category P DOW.04SA IPPG. MIPSB. MIPSX. SGPLAN5 HPLAN . YOCH.
P 240 180 / 240 51 / 240 − 68 / 240 217 / 240 − 75 / 160
D 130 − − − 39 / 130 110 / 130 − 58 / 80
N 40 − − − 8 / 40 40 / 40 − −
N+D 130 − − − 23 / 130 119 / 130 − 12 / 40
SG 110 − − 29 / 110 43 / 110 110 / 110 − 34 / 90
N+SG 20 − − − 6 / 20 20 / 20 − 20 / 20
D+C 50 − − − 8 / 50 29 / 50 − −
N+D+C 50 − − − 6 / 50 18 / 30 − −
SC 100 − − 16 / 80 12 / 80 100 / 100 70 / 100 −
N+D+SC 108 − − − 22 / 88 105 / 108 − −
Total 978 180 / 240 51 / 240 45 / 190 235 / 938 868 / 958 70 / 100 199 / 390
Success % 75.0% 21.3% 23.7% 25.1% 90.6% 70.0% 51.0%

Table 3: Total number of IPC5 benchmark problems (column “P”) and number of problems
solved/attempted by DOWNWARD04sa, IPPLAN-G1SC, MIPS-BDD, MIPS-XXL, SGPLAN5,
HPLAN -P and YOCHANPS (3rd–9th columns) for different domain versions (the names of the plan-
ners are abbreviated). “D” indicates domains with durativeactions, “N” with numeric fluents, “SG”
with soft goals, “C” with strong constraints on state trajectories, and “SC” with soft constraints on state
trajectories. “–” indicates that the corresponding domains were not attempted by the planner.

Figure 12 contains a graphical summary of the Wilcoxon results about the relative performance of
the optimal planners in terms of CPU time. A solid arrow from aplanner A to a planner (or a cluster
of planners) B indicates that the performance of A is statistically different from the performance of
(every planner in) B, and that A performs better than (every planner in) B. A dashed arrow from A
to B indicates that A is better than (every planner in) B a significant number of times, but there is no
significant Wilcoxon relationship between A and (any planner in) B with a confidence level equal to
99.9%; on the other hand, the relationship does hold with a confidence level slightly less than 99.9%,
which will be indicated in every statistical comparison (e.g., for the analysis in Figure 12 it is 98.1%).
When there is no arrow connecting two (clusters of) planners, we consider these (clusters of) planners
having a similar performance.

According to the results of the Wilcoxon test, in terms of CPUtime SATPLAN performs statis-
tically better than MAX PLAN , CPT2, FDP, MIPS-BDD and IPPLAN-1SC, while MAX PLAN per-
forms better than FDP, IPPLAN-1SC and MIPS-BDD. MAX PLAN also performs better than CPT2,
although with a confidence level equal to 98.1%. Note that this result is not inconsistent with the results
in the scatterplot of Figure 11 indicating that CPT2 is generally faster than MAX PLAN for the prob-
lems solved bybothplanners. This is because for the Wilcoxon test we also consider the problems that
are unsolved by one of the two compared planners (using twicethe CPU-time limit for each unsolved
problem). Hence, when the number of the problems solved by two compared planners is significantly
different, like for MAX PLAN and CPT2 (see Table 2), the result of the Wilcoxon test can be different
from the observations that we can make from the corresponding scatterplot. In fact, if we consider only
the subset of the problems solved by both these planners, theresults of the Wilcoxon test is that CPT2
performs statistically better than MAX PLAN .

4.4 Relative Performance of the Satisficing Planners

We compare the performance of the IPC5 satisficing planners in terms of number of solved problems,
CPU time and plan quality. Table 3 shows the number of problems solved/attempted by the compared
planners for the different versions of the benchmark domains, as well as their overall success ratio. As
previously noted, the only planners that support all the planning capabilities used in the competition
are MIPS-XXL and SGPLAN 5, but with a very different performance. In particular, foreach domain
version, SGPLAN 5 solves a much higher number of problems than any other satisficing planner, and
the success ratio of this planner is the highest among the compared planners.

In the rest of this section, we evaluate the performance of the satisficing planners for different
domain categories.

40

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 10 100 1000 10000 100000 1e+06

CPU-time (milliseconds)

Propositional DomainsNumber of solved problems

Downward04sa
IPPLAN-G1SC
MIPS-XXL
SGPlan5
YochanPS

Figure 13: Number of IPC5 propositional benchmark problemssolved by the IPC5 satisficing planners
with respect to an increasing CPU-time limit (logarithmic scale).

4.4.1 Propositional Domains

Five of the IPC5 satisficing planners attempted the (seven) propositional versions of the benchmark do-
mains: DOWNWARD04SA, IPPLAN-G1SC, MIPS-XXL, SGPLAN 5 and YOCHANPS. In this section
we analyse the relative performance of these planners in more detail.

Number of solved problems

Figure 13 shows the number of (propositional) benchmark problems solved by the IPC5 satisficing
planners within an increasing CPU-time limit, which rangesfrom 10 milliseconds to 30 minutes. Re-
gardless of the CPU-time limit, SGPLAN 5 solves more problems than the other compared planners. For
CPU-time limits greater than about one second, DOWNWARD04SA solves many more problems than
IPPLAN-G1SC, MIPS-XXL and YOCHANPS, and for CPU-limits between 10 and 100 seconds it
performs almost as well as SGPLAN 5.

CPU time and plan quality relative to SGPLAN5

Figure 14 gives a compact representation of the overall performance of the IPC5 satisficing planners
w.r.t. SGPLAN 5 in terms of CPU time and plan quality for all the propositional benchmark prob-
lems. Concerning CPU time, in general, SGPLAN 5 solves a problem more quickly than any other
compared planner, and often the performance gap is at least one order of magnitude in favour of
this planner. SGPLAN 5 is almost always faster than IPPLAN-G1SC and MIPS-XXL. Compared
to DOWNWARD04SA and YOCHANPS, for several problems SGPLAN 5 is slower. However, the num-
ber of problems for which SGPLAN 5 is faster is much higher than the number of problems for which it
is slower, especially for performance gaps larger than one order of magnitude (the interested reader can
find an exact count in [33]).

The plots on the bottom part of Figure 14 compare the performance of the IPC5 satisficing planners
for propositional problems in terms of plan quality with respect to the performance of SGPLAN 5. For
this analysis, as well as for the following plan quality comparisons, we consider all the benchmark
problems solved byboth the compared planners. In each of these plots, a cross above (below) the
main diagonal corresponds to a problem for which the plan computed by the compared IPC5 planner
is worse (better) than the plan computed by SGPLAN 5 for the same problem. The crosses above the
diagonal labelled “2tW” (below the diagonal labelled “2tB”) correspond to problems for which the plans
computed by the compared IPC5 planner are at least two times worse (better) than the ones computed
by SGPLAN 5 for the corresponding problems. The plans computed by SGPLAN 5 are generally better
than those computed by DOWNWARD04SA, since most of the crosses in the corresponding plot appear
above the main diagonal. However, the plan quality plots in Figure 14 do not give a very clear indication
for the other pairs of compared planners. The numerical datain each plot help to better understand their
relative performance: the number of problems for which SGPLAN 5 computes plans with quality better

41

CPU-time of DOWNWARD04SA, IPPLAN-G1SC, MIPS-XXL and YOCHANPS versus SGPLAN 5

 10

 100

 1000

 10000

 1e+05

 1e+06
 U

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

Downward04sa

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

IPPLAN-G1SC

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-XXL

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

YochanPS

Number of actions of DOWNWARD04SA, IPPLAN-G1SC, MIPS-XXL and YOCHANPS versus SGPLAN 5

 1

 10

 100

 1000

 2
tW

 W

 B

 2
tB

 B: 33 +
 2tB: 0 +

 2tW: 17 +
 W: 125 +

 1 10 100

Downward04sa

 2
tW

 W

 B

 2
tB

 B: 17 +
 2tB: 0 +

 2tW: 0 +
 W: 7 +

 1 10 100

IPPLAN-G1SC

 2
tW

 W

 B

 2
tB

 B: 10 +
 2tB: 0 +

 2tW: 0 +
 W: 36 +

 1 10 100

MIPS-XXL

 2
tW

 W

 B

 2
tB

 B: 10 +
 2tB: 0 +

 2tW: 0 +
 W: 43 +

 1 10 100 1000

YochanPS

Figure 14: Performance of the IPC5 satisficing planners for propositional domains w.r.t. SGPLAN5 in
terms of CPU time (plots on the top) and plan quality (plots onthe bottom) for propositional domains.
In the plots on the top (bottom) part of the figure, on thex-axis there is the CPU time (number of
actions) of SGPLAN 5; on they-axis there is the CPU time (number of actions) of DOWNWARD04SA,
IPPLAN-G1SC, MIPS-XXL and YOCHANPS, respectively.

YOCHANPSDOW.04SASGPLAN5 MIPS-XXL IPPLAN-G1SC

CPU-time analysis
Plan quality analysis

SGPLAN5

YOCHANPSIPPLAN-G1SC

MIPS-XXL

DOW04.SA

Figure 15: Partial order of the performance of the IPC5 satisficing planners in terms of CPU time and
plan quality according to the Wilcoxon test for the IPC5 propositional domains. Dashed arrows indicate
that the corresponding performance relationships hold with confidence level 97.9%.

than the plans generated by MIPS-XXL and YOCHANPS (crosses in the “W” and “2tW” sectors) is
greater than the number of problems for which it computes worse plans (crosses in the “B” and “2tB”
sectors). On the other hand, IPPLAN-G1SC produces better quality plans more often than SGPLAN 5.

Statistical analysis

Like for the optimal planners, we use the Wilcoxon test to understand whether the performance gaps
between two IPC5 satisficing planners are significant. For these planners, we test not only the difference
in CPU time but also the difference in the quality of the plansthey find. The test procedure for plan
quality is essentially the same as the one previously described (in Section 4.3), but with two main
differences: First, we normalise the difference by dividing it with the value of the better plan (so that,
for example, if the value of the plan found by planner A is 200 and the value of the plan found by
planner B is 220, the difference is 10%, in favour of planner A, if the objective is to minimise). Second,
we limit the comparison to the set of problems solved by both planners.

Both these modifications stem from the same cause, which is that the magnitude of the value of a
good plan may vary greatly between domains, or even between problems in the same domain (unlike

42

CPU time, which is measured on the same scale for every problem). This is particularly acute inPDDL2
(metric-temporal) andPDDL3.0 problems. For example, in theOpenstacks Time domain quality is
measured by plan makespan, with values of good plans rangingin the hundreds, while inOpenstacks
MetricTime the measure of quality is a sum of makespan and cost, and good plans have values of several
thousands for larger instances. But it happens also for somepropositional domains, even though the
measure of quality is plan length for all of them. For example, the longest plan found for any instance
in theStorage Propositional domain contains 80 actions, while in theOpenstacks Propositional
domain, more than half the instances have minimal plan lengths greater than that, and several containing
over 450 actions.

Since the Wilcoxon test uses a ranking of the differences between values in each sample pair, if we
compared the absolute plan quality values directly, without normalisation, such differences in the mag-
nitude of values between domains could result in an unintended bias, with small relative differences in
a domain with large values weighted as more important that larger relative differences in a domain with
small values.15 Normalisation helps to avoid this problem. However, the fairly simple normalisation
scheme we apply is not perfect, as, for example, it does not take into account the amount of difference
in plan quality that is possible (i.e., the difference between the optimal and worst possible plans), which
may also be subject to variation between domains. Results should be interpreted in light of this.

Figure 15 gives a graphical summary of the Wilcoxon results about the relative performance of the
IPC5 satisficing planners for the benchmark propositional problems of the competition. In terms of CPU
time, SGPLAN 5 performs statistically better than any other compared planner. In terms of plan quality,
IPPLAN-G1SC performs better than DOWNWARD04SA and YOCHANPS, and it also performs better
than MIPS-XXL and SGPLAN 5 but with confidence level 97.9%.

4.4.2 Metric-Temporal Domains

The IPC5 metric-temporal domain versions consist of nine domains: one version ofTPP involving nu-
merical fluents but without action durations; a version for each ofOpenstacks, Storage, Trucks
andPipesworld involving action durations, but without numerical fluents;and a versions for each of
TPP, Openstacks, Pathways andRovers involving both action durations and numerical fluents.
The IPC5 satisficing planners that attempted the benchmark problems in these domains are MIPS-XXL,
SGPLAN 5 and YOCHANPS.

Number of solved problems

Figure 16 shows the number of metric-temporal benchmark problems solved by the IPC5 satisficing
planners within a CPU-time limit ranging from 10 milliseconds to 30 minutes. For every CPU-time limit
that we considered, SGPLAN 5 always solves many more problems than the other compared planners;
while, in terms of solved problems, the performance of MIPS-XXL and YOCHANPS is similar. Re-
markably, within 30 minutes SGPLAN 5 solves 269 of the 300 benchmark problems, while YOCHANPS
and MIPS-XXL only a much smaller percentage of them.

CPU time and plan quality relative to SGPLAN5

The scatterplots on the left side of Figure 17 give a compact graphical representation of the performance
of MIPS-XXL and YOCHANPS w.r.t. SGPLAN 5 in terms of CPU time for all metric-temporal bench-
mark problems. Since in each plot every cross appears above the main diagonal of the plot, it is easy to
see that SGPLAN 5 outperforms MIPS-XXL and YOCHANPS in terms of CPU time.

In the scatterplots on the right side of Figure 17, comparingthe performance of MIPS-XXL and
YOCHANPS relative to SGPLAN 5 in terms of plan quality, many crosses are above the main diagonal,
but there are also many of them that are below it. As indicatedby the numerical data in these plots,
which count the number of crosses in the different sectors, in terms of plan quality SGPLAN 5 is not
the best IPC5 satisficing planner that attempted the metric-temporal problems. The plans computed

15We have observed that this does indeed happen, and does influence the results of some statistical tests, though not in a large
number of cases.

43

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 275

 10 100 1000 10000 100000 1e+06

CPU-time (milliseconds)

Metric-time DomainsNumber of solved problems

MIPS-XXL
SGPlan5
YochanPS

Figure 16: Number of problems solved by the IPC5 satisficing planners with respect to an increasing
CPU-time limit (logarithmic scale) for metric-time domains.

CPU-time of MIPS-XXL and YOCHANPS vs SGPLAN 5 Plan metric value of MIPS-XXL and YOCHANPS vs SGPLAN 5

 10

 100

 1000

 10000

 1e+05

 1e+06
 U

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-XXL

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

YochanPS
 1

 10

 100

 1000

 10000

 1e+05

 2
tW

 W

 B

 2
tB

 B: 26 +
 2tB: 4 +

 2tW: 0 +
 W: 44 +

 1 10 100 1000 10000

MIPS-XXL

 2
tW

 W

 B

 2
tB

 B: 43 +
 2tB: 27 +

 2tW: 7 +
 W: 27 +

 1 10 100 1000 10000 1e+05

YochanPS

Figure 17: Performance of MIPS-XXL and YOCHANPS with respect to SGPLAN5 in terms of CPU
time (left plots) and plan quality (right plots) for metric-time domains. In the plots on the left (right), on
thex-axis there is the CPU time (number of actions) of SGPLAN 5; on they-axis there is the CPU time
(number of actions) of MIPS-XXL and YOCHANPS.

by SGPLAN 5 are more often better than worse with respect to the plans generated by MIPS-XXL.
However, there is no SGPLAN 5 plan that is at least two times better than the corresponding MIPS-
XXL plan, while MIPS-XXL computes some plans that are significantly better than those computed
by SGPLAN 5. Moreover, in terms of plan quality, YOCHANPS tends to perform better than SGPLAN 5:
the plans generated by YOCHANPS are more often better than worse, and there is a large number of
plans that are at least two times better.

Interestingly, YOCHANPS produces plans of very good quality (both compared to the other two
planners and to known upper and lower bounds) for problems intheOpenstacksTime domain (which
correspond to the crosses inside the dashed region in the right side scatterplot of Figure 17). This is a
pure makespan optimisation domain. All three planners use some form of post-scheduling of plans to
improve makespan, but it appears that the schedulers used bySGPLAN 5 and MIPS-XXL produce very
poor results in this domain: by recovering the partial orderof SGPLAN 5’s and MIPS-XXL’s plans
and rescheduling them optimally (using the simple criticalpath algorithm), we were able to improve
the makespan of these plans significantly. However, the rescheduled plans are still worse than those
produced by YOCHANPS, indicating that this planner is not only doing a better job of scheduling the
sequential plan it finds, but that it is also better at finding plans that can be scheduled with low makespan,
at least in this domain.

Statistical analysis

The qualitative results of the Wilcoxon test comparing the performance of the IPC5 satisficing planners
for the metric-temporal benchmark problems are given in Figure 18 (further details are available in
[33]). This analysis confirms that the performance gap between SGPLAN 5 and the other compared

44

YOCHANPS MIPS-XXLSGPLAN5

CPU-time analysis

MIPS-XXLYOCHANPS
SGPLAN5

Plan quality analysis

Figure 18: Partial order of the performance of MIPS-XXL, SGPLAN 5 and YOCHANPS in terms of
CPU time and plan metric value according to the Wilcoxon testfor the IPC5 benchmark metric-temporal
problems.

planners is significant in terms of CPU time and is in favour ofSGPLAN 5. While in terms of plan
quality, YOCHANPS performs statistically better than the other compared planners.

4.4.3 Domains with SimplePreferences

The IPC5 SimplePreference domain category contains six domains: a version of each ofTPP,Openstacks,
Pathways, Storage andTrucks, all of which are propositional, and one version ofRovers,
which also uses numeric fluents and effects (however, these are used only in a very simple manner to
encode action costs). The IPC5 planners that attempted thiscategory of benchmark domains are: MIPS-
BDD, MIPS-XXL, SGPLAN 5 and YOCHANPS. For most of these problems, computing a valid plan is
very simple: 90 problems over 130 have only soft goals, and hence the empty plan is a solution for each
of them. On the other hand, for these problems computing a plan with good quality is not a trivial task.

Number of solved problems

Figure 19 shows the number of problems solved by MIPS-BDD, MIPS-XXL, SGPLAN 5 and YOCHANPS
within a CPU-time limit ranging from 10 milliseconds to 30 minutes. For every CPU-time limit con-
sidered in this analysis, SGPLAN 5 solves many more problems than the other compared planners, and
within 30 CPU minutes it solves all problems. For CPU-time limits between about 1 second and 30
minutes, YOCHANPS solves more problems than MIPS-XXL and MIPS-BDD, while for lower limits
these three planners perform similarly.16

Within the highest CPU-time limit considered (30 minutes),SGPLAN 5 solves all the 130 bench-
mark problems of the SimplePreferences domain versions, while the number of problems solved by
YOCHANPS, MIPS-XXL and MIPS-BDD is much lower. This is somewhat surprising, because the
empty plan is a valid plan for 90 of these benchmark problems.Note that SGPLAN 5 computes only one
empty plan, YOCHANPS two, MIPS-BDD five, and MIPS-XXL nine.

CPU time and plan quality relative to SGPLAN5

Figure 20 gives a representation of the overall performanceof MIPS-BDD, MIPS-XXL and YOCHANPS
w.r.t. SGPLAN 5 in terms of CPU time and plan quality for all IPC5 benchmark problems in the Sim-
plePreferences domain versions. The distribution of the crosses in the plots on the top part of the figure
show that SGPLAN 5 is generally faster than the compared planners. Moreover,the plots on the bottom
part of the figure indicate that SGPLAN 5 performs better than MIPS-XXL and YOCHANPS in terms
of plan quality as well. However, the comparison of the plansgenerated by SGPLAN 5 and MIPS-
BDD does not clearly indicate that one planner performs better than the other in terms of plan quality.
The number of problems for which SGPLAN 5 computes plans that are better than those generated by
MIPS-BDD is slightly greater than the number of problems forwhich it computes worse plans, but
there is no problem for which SGPLAN 5 computes a significantly better plan.

16It is worth noting that MIPS-XXL solves several problems using a CPU-time limit near the limit of the competition. The
reason is not fully clear, but we think it is due to the plan optimisation phase of the planner, which exploits the entire available
CPU time and, probably because of an implementation bug, terminates slightly after the competition CPU-time limit. However,
in our analysis we do not consider such plans because the CPU-time limit of IPC5 was 30 minutes, and we don’t have data
concerning plans produced by the other compared planners using additional CPU time.

45

 0

 20

 40

 60

 80

 100

 120

 140

 10 100 1000 10000 100000 1e+06

CPU-time (milliseconds)

SimplePreference DomainsNumber of solved problems

MIPS-BDD
MIPS-XXL
SGPlan5
YochanPS

Figure 19: Number of problems solved by the IPC5 satisficing planners with respect to a given CPU-
time limit (logarithmic scale) for the IPC5 benchmark SimplePreferences problems.

CPU-time of MIPS-BDD, MIPS-XXL and YOCHANPS versus SGPLAN 5

 10

 100

 1000

 10000

 1e+05

 1e+06
 U

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-BDD

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-XXL

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

YochanPS

Plan metric value of MIPS-BDD, MIPS-XXL and YOCHANPS versus SGPLAN 5

 1

 10

 100

 1000

 10000

 2
tW

 W

 B

 2
tB

 B: 7 +
 2tB: 2 +

 2tW: 0 +
 W: 12 +

 1 10 100 1000

MIPS-BDD
 1

 2
tW

 W

 B

 2
tB

 B: 6 +
 2tB: 1 +

 2tW: 19 +
 W: 35 +

 1 10 100 1000

MIPS-XXL
 1

 2
tW

 W

 B

 2
tB

 B: 8 +
 2tB: 1 +

 2tW: 12 +
 W: 39 +

 1 10 100 1000 10000

YochanPS

Figure 20: Performance of MIPS-BDD, MIPS-XXL and YOCHANPS with respect to SGPLAN5 in
terms of CPU time (top plots) and plan quality (bottom plots)for the IPC5 benchmark SimplePrefer-
ences problems. In the plots on the top (bottom) part of the figure, on thex-axis there is the CPU time
(plan metric value) of SGPLAN 5; on they-axis there is the CPU time (plan metric value) of MIPS-
BDD, MIPS-XXL and YOCHANPS.

Statistical analysis

The results of the Wilcoxon test comparing the performance of the IPC5 satisficing planners for the
benchmark SimplePreferences problems (Figure 21) confirm the general picture indicated by the previ-
ous analysis in Figure 20: SGPLAN 5 performs statistically better than YOCHANPS and MIPS-XXL in
terms of CPU time and plan quality, while it performs better than MIPS-BDD in terms of CPU time,
and similarly to MIPS-BDD in terms of plan quality.

46

MIPS-XXL

CPU-time analysis

YOCHANPSSGPLAN5

MIPS-BDD
MIPS-BDD

SGPLAN5

Plan quality analysis

MIPS-XXL YOCHANPS

Figure 21: Partial order of the performance of MIPS-BDD, MIPS-XXL, SGPLAN 5 and YOCHANPS
according to the Wilcoxon test for the IPC5 SimplePreferences problems. A dashed arrow indicates that
the performance relationship holds with confidence level 96.9%.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 100 1000 10000 100000 1e+06

CPU-time (milliseconds)

QualitativePreference DomainsNumber of solved problems

MIPS-BDD
MIPS-XXL
HPlan-P
SGPlan5

Figure 22: Number of problems solved by the IPC5 satisficing planners with respect to an increasing
CPU-time limit (logarithmic scale) for the IPC5 problems inthe QualitativePreferences domains.

4.4.4 Domains with QualitativePreferences

The results of this experimental comparison concern the QualitativePreferences versions of five bench-
mark domains (TPP, Openstacks, Rovers, Storage andTrucks), which are propositional do-
mains extended with soft state trajectory constraints as well as soft goals. Similar to the problems of the
SimplePreferences versions of our benchmark domains, for many problems with qualitative preferences
finding a valid plan is a simple task (in particular, 40 of the 100 benchmark problems that we used have
no hard goal, and hence the empty plan is a valid plan for them), but computing a good quality plan can
be much more difficult.

The IPC5 planners supportingPDDL3 qualitative preferences that we compare in this section are
MIPS-BDD, MIPS-XXL, HPLAN -P and SGPLAN 5.

Number of Solved Problems

Figure 22 shows the number of problems with preferences overaction preconditions and state trajectory
constraints that are solved by the compared planners withinan increasing CPU-time limit ranging from
10 milliseconds to 30 minutes. Overall, for every CPU-time limit considered, SGPLAN 5 solves more
problems than the other planners; for CPU-time limits higher than about 100 milliseconds, HPLAN -P
solves more problems than MIPS-XXL and MIPS-BDD, while MIPS-XXL and MIPS-BDD per-
form similarly.

It is worth noting that, within about 5 CPU minutes, SGPLAN 5 solves all these IPC5 benchmark
problems producing no empty plan. By contrast, a small percentage of the plans generated by the other
three planners are empty. Most of these plans are computed for theTPP domain.

CPU time and plan quality relative to SGPLAN5

Figure 23 shows the performance of HPLAN -P, MIPS-BDD and MIPS-XXL w.r.t. SGPLAN 5 in
terms of CPU time and plan quality. As indicated by the distribution of the crosses in the plots of the
top part of the figure, SGPLAN 5 is always faster than MIPS-BDD and MIPS-XXL, and very oftenit

47

CPU-time of MIPS-BDD, MIPS-XXL and HPLAN -P versus SGPLAN 5

 10

 100

 1000

 10000

 1e+05

 1e+06
 U

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-BDD

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-XXL

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

HPlan-P

Plan metric value of MIPS-BDD, MIPS-XXL and HPLAN -P versus SGPLAN 5

 1

 10

 100

 1000

 10000

 2
tW

 W

 B

 2
tB

 B: 6 +
 2tB: 4 +

 2tW: 6 +
 W: 9 +

 1 10 100 1000

MIPS-BDD
 1

 2
tW

 W

 B

 2
tB

 B: 3 +
 2tB: 3 +

 2tW: 5 +
 W: 8 +

 1 10 100 1000

MIPS-XXL
 1

 2
tW

 W

 B

 2
tB

 B: 19 +
 2tB: 3 +

 2tW: 21 +
 W: 48 +

 1 10 100 1000 10000

HPlan-P

Figure 23: Performance of MIPS-BDD, MIPS-XXL and HPLAN -P w.r.t. SGPLAN5 in terms of CPU
time (top plots) and plan quality (bottom plots) for the IPC5benchmark problems in the QualitativePref-
erences domains. In the plots in the top (bottom) part of the figure, on thex-axis there is the CPU time
(plan metric value) of SGPLAN 5; on they-axis there is the CPU time (plan metric value) of the other
compared planners.

HPLAN-PSGPLAN5

CPU-time analysis

MIPS-BDD MIPS-XXL

HPLAN -PSGPLAN5

Plan quality analysis

MIPS-BDD
MIPS-XXL

Figure 24: Partial order of the performance of MIPS-BDD, MIPS-XXL, HPLAN -P and SGPLAN5
according to the results of Wilcoxon test for IPC5 benchmarkproblems of the QualitativePreferences
domains.

is faster than HPLAN -P as well (with the exception of severalTPP problems, for which we observed
that HPLAN -P generates empty plans).

The distribution of the crosses in the plots on the bottom part of the figure shows that SGPLAN 5
also computes plans that are more often better than worse w.r.t. the plans generated by HPLAN -P,
MIPS-BDD and MIPS-XXL. It is worth noting that the computed empty plans are again worse than
the non-empty plans.

Statistical analysis

Figure 24 shows the results of the Wilcoxon test comparing the performance of the IPC5 planners for the
benchmark problems in the QualitativePreferences domain versions. In terms of CPU time required for
finding a valid plan, SGPLAN 5 performs statistically better than the other compared planners. In terms
of plan quality, SGPLAN 5 performs statistically better than HPLAN -P, while it performs similarly to
MIPS-BDD and MIPS-XXL.

48

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10 100 1000 10000 100000 1e+06

CPU-time (milliseconds)

ComplexPreferences DomainsNumber of solved problems

MIPS-XXL
SGPlan5

Figure 25: Number of problems solved by MIPS-XXL and SGPLAN5 with respect to an increasing
CPU-time limit (logarithmic scale) for the IPC5 problems inComplexPreferences domains.

4.4.5 Domains with ComplexPreferences

The results of this experimental comparison concern five metric-temporal domains extended with soft
goals as well as soft state trajectory constraints. These are the ComplexPreferences versions of domains
TPP, Pathways, Pipesworld,Storage andTrucks. Only two planners attempted this category
of benchmark problems: SGPLAN 5 and MIPS-XXL.

Number of solved problems

Figure 25 shows the number of problems solved by MIPS-XXL andSGPLAN 5 within an increasing
CPU-time limit ranging from 10 milliseconds to 30 minutes. For every CPU-time limit considered,
SGPLAN 5 solves many more problems than MIPS-XXL. SGPLAN 5 solves all test problems except
three large ones in domainPipesworld ComplexPreferences. It is worth noting that, while most of
these problems can be solved by the empty plan (because all goals are soft), neither of the compared
planners generates empty plans.

CPU time and plan quality (direct comparison)

Figure 26 compares the performance of MIPS-XXL and SGPLAN 5 in terms of CPU time and plan
quality. Since in the plot on the left side of the figure all crosses are above the main diagonal, it easy to
see that SGPLAN 5 outperforms MIPS-XXL in terms of CPU time. In terms of plan quality (plot on
the right side of the figure), SGPLAN 5 again performs generally better than MIPS-XXL, although for
few test problems it performs significantly worse. Note thatthere are two classes of test problems here,
depending on whether the plan metric expression has to be minimised (crosses in the plot) or maximised
(circles in the plot). For maximisation problems, when the circles appearbelowthe main diagonal, it
means that MIPS-XXL performsworsethan SGPLAN 5 (for minimisation problems it is the other way
around).

Statistical analysis

The results of the Wilcoxon test comparing the performance of MIPS-XXL and SGPLAN 5 for the IPC5
problems with complex preferences indicate that in terms ofCPU time SGPLAN5 performs statistically
better than MIPS-XXL, while in terms of plan quality it performs better with confidence level 98.1%.

4.4.6 Domains with MetricTimeConstraints

The only two IPC5 planners that support this category of benchmark problems are SGPLAN 5 and
MIPS-XXL. The results of their experimental comparison concern the MetricTimeConstraint version

49

CPU-time of MIPS-XXL vs SGPLAN 5 Plan metric value of MIPS-XXL vs SGPLAN 5

 10

 100

 1000

 10000

 1e+05

 1e+06
 U

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-XXL
 1

 10

 100

 1000

 1 10 100 1000

MIPS-XXL (Min)
MIPS-XXL (Max)

B: 3 +
2tB: 3 +

2tW: 2 +, 4◦
W: 18 +, 1◦

Figure 26: Performance of MIPS-XXL and SGPLAN5 in terms of CPU time (left plot) and plan quality
(right plot) for the IPC5 problems in ComplexPreferences domains. In the plot on the left (right) side, on
thex-axis there is the CPU time (plan metric value) of SGPLAN 5; on they-axis there is the CPU time
(plan metric value) of MIPS-XXL. For plan quality, in case ofplan metric maximisation, MIPS-XXL
performs worse than SGPLAN 5 when the circles appearbelowthe main diagonal, while for plan metric
minimisation problems, it performs worse when the crosses are abovethe main diagonal.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 100 1000 10000 100000 1e+06

CPU-time (milliseconds)

 MetricTimeConstraints DomainsNumber of solved problems

MIPS-XXL
SGPlan5

Figure 27: Number of problems solved by MIPS-XXL and SGPLAN5 with respect to an increasing
CPU-time limit (logarithmic scale) for the IPC5 benchmark domains with strong plan trajectory con-
straints.

of four domains (Pipesworld, Trucks, Storage andTPP), involving various types of (strong)
state trajectory constraints.

Number of solved problems

Figure 27 shows the number of problems solved by MIPS-XXL andSGPLAN 5 within an increasing
CPU-time limit ranging from 10 milliseconds to 30 minutes. For every CPU-time limit considered,
SGPLAN 5 solves many more problems than MIPS-XXL, but about 50% of the IPC5 problems in this
domain category remain unsolved.

CPU time and plan quality (direct comparison)

Figure 28 shows the performance of MIPS-XXL and SGPLAN 5 in terms of CPU time and plan quality
for the IPC5 problems involving strong state trajectory constraints. Since all crosses in the plot on
the left side of the figure are above the main diagonal, SGPLAN 5 is always faster than MIPS-XXL.
However, in terms of plan quality, the plot on the right side of the figure shows that often MIPS-XXL
generates plans that are better than or similar to the corresponding plans computed by SGPLAN 5.

50

CPU-time of MIPS-XXL vs SGPLAN 5 Plan metric value of MIPS-XXL vs SGPLAN 5

 10

 100

 1000

 10000

 1e+05

 1e+06
 U

 2
oS

 1
oS

 S

 F

 1
oF

 2
oF

 10 100 1000 10000 1e+05 U

MIPS-XXL
 1

 10

 100

 1000

 10000

 1e+05

 2
tW

 W

 B

 2
tB

 B: 8 +
 2tB: 4 +

 2tW: 0 +
 W: 5 +

 1 10 100 1000 10000 1e+05

MIPS-XXL

Figure 28: Performance of MIPS-XXL with respect to SGPLAN5 in terms of CPU time (left plot) and
plan quality (right plot) for the IPC5 problems with strong state trajectory constraints. In the plot on the
left (right) side on thex-axis there is the CPU time (plan metric value) of SGPLAN 5, and on they-axis
there is the CPU time (plan metric value) of MIPS-XXL.

Statistical analysis

According to the Wilcoxon test comparing the CPU times of SGPLAN5 and MIPS-XXL for the IPC5
problems involving strong state trajectory constraints, as expected by observing the plot on the left
of Figure 28, SGPLAN5 performs better than MIPS-XXL. Concerning plan quality, the number of
problems for which both the planners compute a solution is too low for a significant statistical analysis
of the results.

4.5 How Good is the Performance of the IPC5 Planners?

In the previous section, we have given a comparative evaluation of the performance of the IPC5 planners;
in this section we analyse their CPU time and plan quality with respect to (a) the winners of the previous
competition, and (b) exact or estimated lower/upper boundson the distance from the optimal solutions of
the IPC5 plans for a subset of the benchmark problems. For (a)we separately analyse optimal planners,
satisficing propositional planners and satisficing metric-temporal planners; for (b) we separately analyse
a subset of the IPC5 plans forPDDL2 andPDDL3 problems.

4.5.1 Performance Relative to the IPC4-Winner Optimal Planner

The optimal planners that won IPC4 are: for the propositional track, the 2004 version of SATPLAN
[46] (here indicated with SATPLAN.ipc4); for the metric-time track, CPT [66] (here indicated with
CPT.ipc4).The analysis in this section shows that, overall, the optimal planners that won IPC5 improve
on the performance of the optimal planners that won IPC4.

The tables in Figure 29 compare the CPU times of SATPLAN.ipc4and CPT.ipc4 with the CPU
times of the IPC5 optimal planners for all the IPC5 propositional and temporal domains. For this
analysis, as well as for the comparison of the best IPC4 satisficing planners with the IPC5 satisficing
planners, we summarize the result of the experiment by counting the number of test problems in which
the IPC4 winner planner is faster (slower), at least one order of magnitude faster (slower) and at least
two orders of magnitude faster (slower) than the compared IPC5 planner (these values are lower bounds
because for the unsolved problems here we consider the exceeded CPU-time limit, which is a lower
bound of the actual solution time). Bold data emphasise the comparisons that are in favour of the IPC5
planners.

Overall, we have that for a large number of test problems, theIPC5 version of SATPLAN is faster
than the IPC4 winner version, which is faster than the new version only for a few problems. Moreover,
for many test problems the 2006 version of SATPLAN is at leastone order of magnitude faster, while
this is never the case for the IPC4 version. On the other hand,according to this analysis, we observe no
significant improvement for the other optimal propositional planners of IPC5.

51

SATPLAN.ipc4 vs 2oS 1oS S F 1oF 2oF
CPT2 2 9 34 32 9 2
FDP 8 14 26 49 28 16
IPPLAN-1SC 0 0 0 50 30 10
MIPS-BDD 8 14 22 62 45 14
MAX PLAN 0 8 41 59 9 1
SATPLAN 1 17 65 8 0 0

CPT.ipc4 vs 2oS 1oS S F
CPT2 3 7 19 0

Figure 29: Numbers of IPC5 test problems for which SATPLAN.ipc4 and CPT.ipc4 are faster/slower
than the IPC5 optimal propositional and temporal planners.The table columns distinguish the number
of problems for which the reference planner is faster (slower), F(S)-columns, and theminimumnumber
of problems for which it is at least one order of magnitude faster (slower), 1oF(S)-columns, and at least
two orders of magnitude faster, 2oF(S)-columns.

DOWNWARD.ipc4 vs 2oS 1oS S F 1oF 2oF
DOWNWARD.04SA 0 1 83 51 2 1
IPPLAN-G1SC 0 4 14 164 144 111
MIPS-XXL 0 2 39 139 111 85
SGPLAN 5 26 114 165 54 13 0
YOCHANPS 0 0 16 113 59 35

DOWNWARD.ipc4 vs 2tW W B 2tB
DOWNWARD.04SA 0 3 72 17
IPPLAN-G1SC 0 29 3 0
MIPS-XXL 1 16 13 0
SGPLAN 5 0 84 65 0
YOCHANPS 0 14 41 0

Figure 30: Minimum numbers of IPC5 test problems for which DOWNWARD.ipc04 performs bet-
ter/worse than the IPC5 satisficing propositional planners. The table on the left concerns CPU time
(the meanings of the column labels is as in Figure 29); the table on the right gives the numbers of prob-
lems for which DOWNWARD.ipc4 produces better (worse) plans, B(W)-columns, and at least two times
better (worse) plans, 2tB(W)-columns.

The results of the Wilcoxon test comparing the IPC4 version of SATPLAN and the IPC5 optimal
propositional planners indicate that the only IPC5 plannerthat performs statistically better than SAT-
PLAN.ipc4 is the IPC5 version of SATPLAN.

Concerning the optimal metric-temporal planners, the ploton the right side of Figure 29 indicates
that CPT2, which was the only competing IPC5 planner of this category, significantly improves the
previous (IPC4 awarded) version of CPT. The result of the Wilcoxon test confirms that CPT2 is statis-
tically faster than CPT.ipc4.

4.5.2 Performance Relative to the IPC4-Winner Satisficing Propositional Planner

The satisficing planners that won IPC4 are: for the propositional track, FAST DOWNWARD [40] (here
indicated with DOWNWARD.ipc4); for the metric-time track, SGPLAN 4 [17] (here indicated with SG-
PLAN .ipc4). The analysis in this section shows that, overall, the winnerof the IPC5 satisficing track
improves on the performance of the satisficing planners thatwon IPC4, both in terms of CPU time and
plan quality.

The tables in Figure 30 summarise the results of an experimental comparison about the performance
of DOWNWARD.ipc4 with the IPC5 satisficing propositional planners, forall the IPC5 propositional
benchmarks. Concerning CPU time, we have that SGPLAN 5 clearly outperforms DOWNWARD.ipc4 for
most of the problems. In many cases SGPLAN 5 is at least one order of magnitude faster, and in several
cases it is at least two orders of magnitude faster. On the other hand, in most cases DOWNWARD.ipc4 is
faster that the other IPC5 planners, with the exception of the IPC5 version of DOWNWARD04SA.

Concerning plan quality (measured in terms of number of actions in the plans generated for the
problems solved by both the compared planners), more than one planner performs generally better than
the IPC4 winner. As the table on the right side of Figure 30 shows, the number of test problems for
which IPPLAN-G1SC, MIPS-XXL and SGPLAN 5 compute better quality plans is higher than the
number of problems for which they produce worse quality plans. On the other hand, there are more
test problems for which DOWNWARD04SA and YOCHANPS generate worse quality solutions (w.r.t. the
solutions of the IPC4 winner) than test problems for which they produce better solutions.

52

SGPLAN .ipc4 vs 2oS 1oS S F 1oF 2oF
MIPS-XXL 0 0 1 128 111 85
SGPLAN 5 48 70 132 39 8 2
YOCHANPS 0 4 7 61 53 14

SGPLAN .ipc4 vs 2tW W B 2tB
MIPS-XXL 2 50 7 0
SGPLAN 5 19 113 1 0
YOCHANPS 36 50 2 0

Figure 31: Numbers of IPC5 test problems for which the SGPLAN .ipc4 performs better/worse than the
IPC5 satisficing metric-temporal planners. The table on theleft concerns CPU time: the table on the
right concerns plan quality. The meanings of the column labels are as in Figures 29 and 30.

The main results of the Wilcoxon test comparing the performance of DOWNWARD.ipc4 and the
IPC5 satisficing planners for propositional domains are:

• In terms of CPU time, the only planners that perform statistically better than the IPC4 winner
are SGPLAN 5 and DOWNWARD04SA (the latter with confidence level 99.5%). In terms of plan
quality, SGPLAN 5 performs better than the IPC4 winner with confidence level 98.9%, while
DOWNWARD04SA performs worse;

• In terms of plan quality, the only planner that statistically performs better than the IPC4 winner
is IPPLAN-G1SC, which however, as we have seen in Table 2, solves a small percentage of the
test problems.

4.5.3 Performance Relative to the IPC4-Winner Satisficing Metric-Temporal Planner

We now analyse the performance of the satisficing IPC5 planners supporting metric-temporal domains
with respect to SGPLAN .ipc4, the best IPC4 metric-temporal planner, for all the metric-temporal IPC5
domains.

Concerning plan generation speed, as indicated by the results in the table on the left hand side of
Figure 31, SGPLAN 5 is generally faster than SGPLAN .ipc4, and for many problems it is at least two
orders of magnitude faster. On the other hand, in most cases,the other IPC5 planners considered in this
analysis are slower than SGPLAN .ipc4.

Concerning plan quality, interestingly, we observed that all the compared IPC5 planners perform
generally better than SGPLAN .ipc4.

Finally, the results of the Wilcoxon test comparing the performance of MIPS-XXL, SGPLAN 5
and YOCHANPS with the performance of SGPLAN .ipc4 confirm the observation derived from Figure
31: SGPLAN 5 is the only IPC5 satisficing metric-temporal planner whichis statistically faster than
SGPLAN .ipc4, while in terms of plan quality every IPC5 satisficing metric-temporal planner performs
statistically better than SGPLAN .ipc4.

4.5.4 Quality of the Solutions for PDDL2 problems

In order to evaluate how good a plan for a problem is w.r.t. thespecified plan metric, we first need to
know the plan metric value of an optimal plan for the problem.In this section, we compare the plans
generated by the IPC5 satisficing planners with the plans generated by the optimal IPC5 planners. Ob-
viously, since the satisficing planners solve many more problems than the optimal ones, in this analysis
only a subset of the solved problems can be considered. To extend the collection of optimal plans (w.r.t.
number of actions) for the propositional domains, we also used a domain-specific solver to obtain op-
timal solutions for theOpenstacks propositional problems. Since for metric-timePDDL2 domains
the number of known optimal solutions is very limited, for this category of IPC5 benchmarks we also
compare the solutions generated by the IPC5 planners with solutions that approximate the optimal ones.

Figure 32 summarises the results of this analysis for the propositional IPC5 benchmarks for which
we know optimal solutions (28 fromOpenstacks, 4 fromPathways, 9 fromPipesworld, 7 from
Rovers, 14 fromStorage, 6 fromTrucks and 8 fromTPP). The measure of plan quality here is
plan length, i.e., the number of actions. Overall, the satisficing IPC5 planners tend to perform well (an
exception is DOWNWARD04SA, which overall has the worst behaviour in terms of distance from the
optimal solution): the quality of most of the solutions examined is at most 10% worse than the optimal

53

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0-1% 1-5% 5-10% 10-25% 25-50% >50%

Distance from the optimal solution

Propositional Domains% of plans

Downward04sa (72 problems considered over 180 solved)
IPPLAN-G1SC (39 problems considered over 51 solved)

MIPS-XXL (61 problems considered over 68 solved)
SGplan5 (76 problems considered over 217 solved)
YochanPS (33 problems considered over 75 solved)

Figure 32: Plan quality distance of the solutions computed by DOWNWARD04SA, IPPLAN-G1SC,
MIPS-XXL, SGPLAN 5 and YOCHANPS from the optimal plan metric value for a subset of problems
in every IPC5 propositional domain.

plan length, and there is a small percentage of the solutionswith a quality that is 25% or more worse
than the optimal plan length. Interestingly, most of the examined plans computed by IPPLAN-G1SC
and SGPLAN 5 are optimal or nearly optimal. On the other hand, we observethat only a small subset
of the IPC5 benchmark problems are considered in this analysis and, moreover, most of them are small
instances (those solved by the IPC5 optimal planners). The behaviour of the IPC5 satisficing planners
may be different for larger instances.

A comparison of the solutions generated by CPT2, the only IPC5 optimal temporal planner, with
those found by the metric-temporal IPC5 satisficing planners indicates that, contrary to the propositional
case, for these problems the IPC5 satisficing planners oftenproduce poor quality solutions.

Since CPT2 solves only 21 temporal problems, in order to havea more general analysis, Figure 33
shows the evaluation of the IPC5 plans in terms of lower bounds for their distance from the optimal
solution. We computed these lower bounds by running the version of LPG described in [34] up to
some CPU hours, and we compared the solutions of the IPC5 planners with the solutions computed by
LPG.17 For each IPC5 solution that is worse than the LPG solution, the distance between the qualities
of the compared solutions provides a lower bound on the distance from the optimal solution. For each
evaluated planner, the analysis does not consider the problems for which the planner computes a solution
that is better than the one generated by LPG; these problems are a very small percentage of those solved
by both the planners.

The analysis confirms that most of the generated plans are farfrom the optimal solutions: for at
least 65% of the IPC5 metric-time benchmarks considered forthis analysis, the solutions computed by
SGPLAN 5 and MIPS-XXL are at least 50% worse than the optimal solutions, with a distribution of
their solutions over the lower bounds for the plan quality distance that tends to increase with the size of
the bound.

The reason for the low plan qualities for SGPLAN 5 is not completely clear, but we believe it is
mainly because this planner optimises plan quality only under certain particular conditions which rarely
occur in the considered test problems [44]. During search, SGPLAN 5 optimises only the makespan
when it runs best-first search, which is executed only when the main method based on enforced hill-
climbing fails (the hill-climbing does not optimise plan quality). If the problem can be serially de-
composed into some stages (called “subproblem level decomposition” [17]), SGPLAN 5 tries different
orders of these stages to get multiple feasible plans with different metric values. If SGPLAN 5 employs
neither subproblem-level decomposition nor best-first search, it never considers the plan metric during
the search [44].

MIPS-XXL attempts to optimise the plan metric during search, however, evidently the implemented
techniques are not very effective within 30 CPU minutes (thecompetition limit). Finally, although both

17The CPU-time limit for LPG was much higher than the one used inthe competition, and this analysis isnot intended to
compare LPG with the IPC5 planners.

54

 0

 10

 20

 30

 40

 50

 0-1% 1-10% 10-25% 25-50% 50-100% >100%

Lower bound for the distance from the optimal solition

Metric-time Domains% of plans

MIPS-XXL (60 problems considered over 70 solved)
SGPlan5 (242 problems considered over 269 solved)
YochanPS (68 problems considered over 70 solved)

Figure 33: Percentage of the IPC5 solutions (satisficing planners) for a large subset of problems in every
IPC5 metric-time domain with respect to increasing lower bounds for the plan quality distance from the
optimal solution.

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

openstacks-SimplePreferencesPlan Metric

MIPS-BDD (2 solved)
MIPS-XXL (18 solved)
SGPlan5 (20 solved)
Best known solution
Worst solution
Optimal solution

 1000

 0 2 4 6 8 10 12 14 16 18 20

rovers-MetricSimplePreferencesPlan Metric

MIPS-XXL (6 solved)
SGPlan5 (20 solved)
YochanPS (20 solved)
Best known solution
Lower-bound
Empty solution
Optimal solution

Synergistic Interfering Mixed

Figure 34: Plan quality evaluation for MIPS-BDD, MIPS-XXL,YOCHANPS and SGPLAN 5 in
Openstacks SimplePreferences andRovers MetricSimplePreferences. On thex-axis there are the
problem names simplified by numbers; on they-axis there is the plan metric value in log scale (the
lower the better).

these two planners schedule plan actions by a post-processing algorithm, these techniques do not derive
significantly better plans. We conjecture this is because oftwo main reasons: the implemented post-
processing step does not perform optimal action (re-)scheduling; the original plans do not allow good
scheduling of the actions. In order to support the first conjecture, we ran a simple scheduling algo-
rithm on the plans generated by MIPS-XXL and SGPLAN 5 for theOpenstacks Time benchmarks,
obtaining considerably better plans.

Concerning YOCHANPS, this planner attempts to minimise the number of actions during search and
performs a post-processing step for improving their scheduling. Somewhat surprisingly, this strategy
allows YOCHANPS to perform slightly better than MIPS-XXL and SGPLAN 5, with fewer plans having
very poor quality and a more uniform distribution of the solutions over the plan quality distance bounds.

4.5.5 Quality of the Solutions for PDDL3 problems

In this section, we study the quality of the solutions computed by the satisficing IPC5 planners for prob-
lems involving preferences. The main observation that we can derive from the results of this analysis is
that, while in many cases the IPC5 planners produce good quality solutions, there is also a large num-
ber of problems for which their solution is far from the optimal one. In the following, we analyse the

55

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14 16 18 20

rovers-QualitativePreferencesPlan Metric

SGPlan5 (20 solved)
HPlan-P (14 solved)
Best known solution
Lower-bound
FF - low quality solution (baseline)
Worst solution

 10

 100

 0 2 4 6 8 10 12 14 16

pipesworld-ComplexPreferencesPlan Metric

MIPS-XXL (5 solved)
SGPlan5 (15 solved)

Lower-bound
Upper-bound

Figure 35: Plan quality evaluation for HPLAN -P, MIPS-XXL and SGPLAN 5 in Rovers Qualita-
tivePreferences andPipesworld ComplexPreferences. On thex-axis there are the problem names
simplified by numbers. On they-axis there is the plan metric value (log scale): for the ploton the left
side, the lower the better; for the plot on the right side, thehigher the better.

IPC5 solution plans with respect to the best known solutionsor the optimal solutions, the worst plan
metric values, and the lower/upper bound on the optimal solutions. For a minimisation (maximisation)
problem, the lower bound is a plan metric value that is better(worse) than the optimal value, while
the upper bound is a plan metric value that is worse (better) than the optimal value. (Pipesworld
ComplexPreferences is the only IPC5 domain encoding a maximisation problem). The definition of the
worst plan metric depends on the specific domain.

We derived the upper bound values using solutions that couldbe obtained “easily”, meaning either
as a side-effect of the construction of problem instances, or by a domain-specific polynomial procedure.
Optimal solutions, best known solutions and lower bounds were obtained in a variety of ways, some by
domain-specific methods and some by general planning techniques using a large amount of CPU time.
For a more detailed description, see [38].

We consider two domains involving soft goals and two domainswith preferences over state tra-
jectory constraints. Figure 34 shows the evaluation of the plans computed by the IPC5 planners for
Openstacks andRoverswith soft goals. In general, the plans forOpenstacksSimplePreferences
generated by SGPLAN 5 and MIPS-XXL have low qualities. The solutions computed byMIPS-XXL
are close to the worst plans and at least one order of magnitude worse than the optimal solutions; the
plans computed by SGPLAN 5 are better, but they are often still significantly distant from the optimal
plans. (In this domain, each preference can be violated exactly once, so the worst plan quality is the
sum of penalties over all preferences in the plan metric.)

The problems inRovers MetricSimplePreferences form three groups (in Figure 34 denoted “syn-
ergistic”, “interfering” and “mixed”), which differ in certain properties of the penalties associated with
soft goals (see Section 3). In this domain, the worst possible solution quality is infinity. However, the
empty plan is a valid plan for every instance of this domain, so we consider this as our baseline. Almost
every plan computed by the IPC5 planners has quality better than the empty plan. The two planners
that behave generally better are SGPLAN 5 and YOCHANPS. For problems in the “synergistic” group,
they generally compute good quality plans; for problems in the “interfering” group, the quality of their
plans is very close to the quality of the empty plan; finally, for problems in the “mixed” group, in most
cases SGPLAN 5 and YOCHANPS compute plans that, in terms of plan quality, are closer tothe optimal
solution than to the empty plan.

Figure 35 shows the evaluation of the plans computed by the IPC5 planners for domainsRovers
andPipesworld with preferences over state trajectory constraints. Concerning Rovers Qualita-
tivePreferences, since problems have hard goals, as a baseline for analysing plan quality, we used the
plans generated by FF [43] for solving the problems in this domain modified by omitting all pref-
erences. The distances between the qualities of the best known solutions and the plan quality lower

56

Planner & Domain category Probs 100%W 33%W Worse Better 33%B 100%B

HPLAN -P
QualitativePreferences 70 0 0 1.42 75.0 37.0 21.0
MIPS-XXL
SimplePreferences 49 0 2.0 2.0 79.0 26.0 18.0
QualitativePreferences 12 0 0 0 33.0 33.0 33.0

ComplexPreferences 22 4.0 9.0 59.1 36.0 31.0 18.0
MIPS-BDD
SimplePreferences 29 0 0 0 82.0 48.0 44.0
QualitatativePreferences 16 0 0 0 68.0 50.0 37.0
SGPLAN 5
SimplePreferences 117 0 0 0.85 97.0 71.0 42.0
QualitativePreferences 85 0 0 1.17 98.0 95.0 77.0
ComplexPreferences 105 5.0 11.0 15.2 74.0 53.0 29.0
YOCHANPS
SimplePreferences 54 1.0 3.0 13.0 79.0 44.0 29.0

Table 4: Percentages of problems for which the solutions computed by the IPC5 planners are
worse/better than the solutions generated by these planners for the same problems without preferences
in the plan-metric: at least two times worse (column “100%W”), at least 33% worse (column “33%W”),
worse (column “W”), better (column “B”), at least 33% better(colum“33%B”), at least two times better
(column “100%B”). Column “Probs” indicates, for each planner and domain category, the number of
test problems considered for this analysis. The shaded value indicates the only case when the percentage
of the better solutions was smaller than the percentage of the worse solutions.

bounds identify intervals containing the plan metric values of the (unknown) optimal solutions. Shaded
areas indicate problems for which the qualities of the IPC5 plans are (a) close to (at most 30% worse
than) the qualities of the corresponding best known solutions and (b) far from (at least 30% greater than)
their lower bounds; in these cases, the results of this experiment are not very informative.

For most of the considered problems, the plan quality of FF isat least two times worse than the
optimal plan quality. The worst plan quality is given by the sum of the preference weights in the
plan metric. Interestingly, all the plans computed by SGPLAN 5 and HPLAN -P are better than those
computed by FF, although they are not very good plans: their qualities are often roughly in the middle
between the quality of the plan computed by FF and the optimalplan quality.

The problems inPipesworld ComplexPreferences require the satisfaction of the problem pref-
erences be maximised, instead of their violation be minimised. The plans violating every problem
preference are the worst solutions and they all have qualityzero. The lower/upper plan quality bounds
identify intervals containing the plan metric values of the(unknown) optimal solutions. Shaded areas
indicate problems for which the IPC5 plan qualities are (a) far from (at least 30% lower than) the cor-
responding upper bounds and (b) are also close to (at most 30%lower than) their lower bounds; in
these cases, the results of this experiment are not very informative. The planner with the best behavior
is SGPLAN 5, which generates good quality plans for the small problems. However, for medium-size
problems it often computes plans with qualities roughly in the middle between the worst and the optimal
ones.

4.5.6 Behaviour of the IPC5 Planners for the Benchmark Problems with/out Preferences

Since in a valid plan for aPDDL3 problem the preferences specified in the plan metric do not have
necessarily to be satisfied, a planner that simply ignores them could accidentally produce a plan satis-
fying some or most of them, possibly obtaining a good-quality plan. In order to give a general exper-
imental evaluation of the effectiveness of the methods implemented in the IPC5 planners to deal with
preferences, we conducted the following experiment. We ranall IPC5 planners supportingPDDL3.0
preferences using the IPC5 benchmarks modified byremovingthe preferences, and we compared the
quality of the plans for the modified problems with the plans for the corresponding original problems
containing preferences. In case a modified test problem contains no classical goals, for every tested

57

planner, we used the empty plan. The results of this experimental analysis are given in Table 4. If we
consider only the problems with hard goals similar results can be obtained.

In most cases, the techniques for dealing with the preferences implemented in the tested planners
allow the planners to derive plans with better qualities. Remarkably, SGPLAN 5 achieves the highest
improvements (relative to its own solutions generated without considering preferences), with the best
results for the problems involving soft qualitative state-trajectory constraints (called qualitative prefer-
ences): 77% of the solutions are at least 2 times better than the solutions generated for the problems
with the preferences omitted. On the other hand, for every tested planner except MIPS-BDD, there are
some problems for which ignoring the preferences leads to better quality plans.

5 Conclusions

Planning has been tackling increasingly difficult problemswith greater success over recent years. An
objective for the community is to move the focus of research towards the solution of problems with
increasing relevance to application. In many application areas, the quality of plans is central to their
usefulness. In IPC5, differently from the previous IPCs, plan quality was important, both in the planning
language and in the evaluation of the competing planners.

In this paper we have presented a new version ofPDDL, PDDL3, that was designed for the determin-
istic part of IPC5.PDDL3 includes new features that allow the user to specify plan quality in terms of
constraints across the trajectories and in terms of preferences over such constraints as well as over goals.
Although the concepts of constraints, both hard and soft, are not new, even to planning, the adoption of
a common language and the basis for benchmarks plays a central role in promoting research into these
areas. In order to make the new language more accessible to the IPC5 participants, a restricted version
of PDDL3, PDDL3.0, was used for the competition. Several new planners supporting some of or most
of the new features ofPDDL3.0 entered the competition. Some methods for compiling state trajectory
constraints and preferences have recently been developed (in particular by some competing teams of
IPC5, e.g.,[25]), but these schemes were not designed with the purpose of studying the language the-
oretical expressiveness. Although a detailed study of the expressiveness ofPDDL3 is outside the goals
of this paper, we have given some new basic results about the compilability of PDDL3.0 state trajectory
constraints and preferences.

PDDL3.0 as well asPDDL3 could be further extended in many ways. An interesting possibility would
be to use an alternative way to define the importance of preferences that is more based on qualitative
priorities rather than numerical weights, as outlined in [31]. However, the current version ofPDDL is
already a powerful language. As demonstrated by the resultsof IPC5 and previous competitions, current
planners are not yet capable of dealing with many features ofPDDL in a fully satisfactory.

Another contribution of our work is the development of a large collection of new benchmark do-
mains and problems, specified withPDDL3.0 andPDDL2, which we have presented in this paper. The
new benchmark domains were derived from a variety of sources: some are inspired by (potential) ap-
plications of planning technology; some are encodings of benchmark problems used in other areas of
computer science and operations research; and some were created for the explicit purpose of trying out
the new language features offered byPDDL3. In line with the aim to emphasise plan quality in the
evaluation of competing planners, many IPC5 domains encodeoptimisation problems, in which it is
significantly easier to find a plan that only satisfies the hardgoals and constraints (if any) of a problem
instance, and the true difficulty lies in finding a plan that also has high quality. For the same reason, the
problem instances were designed very carefully so that, forexample, they admit many solutions with
significantly different qualities or require the planner tofind a good compromise among the different
(possibly conflicting) terms in the objective function. Although most of the domains and problems de-
veloped for the previous two IPCs [41, 50] are equipped with aplan metric function, only a few of them
had an emphasis on optimisation, or the emphasis was split between time to plan and quality of plan in
a way that left it unclear what aspect was intended to matter more.

Finally, we have presented the results of a large experimental investigation that includes a detailed
analysis of the data from the deterministic part of IPC5, as well as additional experiments that we

58

conducted to better understand the effectiveness of the twelve compared planners. The main conclusions
we can draw from this investigation are:

• The detailed analysis confirms that SATPLAN and MAX PLAN are the best (in terms of ability
to solve problems quickly) propositional optimal plannersof those participating in IPC5, which
is consistent with the preliminary informal evaluation of the planners conducted during the com-
petition. However, it also shows that SATPLAN is generally faster than MAX PLAN . Likewise,
our analysis confirms that, overall, SGPLAN 5 is the best satisficing IPC5 planner;

• The 2006 version of SATPLAN, CPT2 and SGPLAN 5 each offers a significant improvement
over the performance of the winner of the corresponding track of the previous competition. In
this sense, we can say that they advance the state of the art infully automated planning systems;

• An analysis of the quality of the plans generated by the satisficing IPC5 planners for a subset of
the benchmark problems shows that: for propositional problems, they tend to find good solutions
(as measured by the number of actions), while for metric-temporal problems and problems with
preferences, the quality of the solutions they find is generally far from the best known to be
achievable;

• An analysis of the behaviour of the IPC5 planners supportingPDDL3.0 preferences also shows
that the techniques they use to deal with preferences are useful, in the sense that, for the most
part, they find plans of quality better than what would be expected from blind luck, i.e. from
completely disregarding preferences when solving these problems.

Overall, while we observed a clear advancement of the state-of-the-art in optimal propositional
planning as well as in satisficing planning (in terms of CPU time, plan quality, and support for features
of the language), finding high quality plans in metric-temporal domains and in domains with preferences
remains an important open issue deserving further researcheffort. Moreover, most of the benchmark
problems with hard state trajectory constraints are still unsolved, suggesting that there is considerable
need for improved techniques for dealing with them.

Acknowledgements

We would like to thank the anonymous reviewers for many useful comments. The organisers of IPC5,
Yannis Dimopoulos, Alfonso E. Gerevini, Patrik Haslum and Alessandro Saetti, would like to thank
all participants of IPC5 and the consulting committee of thedeterministic track of IPC5. Alfonso E.
Gerevini and Derek Long would also like to thank Carmel Domshlak, Stefan Edelkamp, Maria Fox, Jo-
erg Hoffmann, Ari K. Jonsson, Drew McDermott, Len Schubert,Ivan Serina, David E. Smith and Daniel
S. Weld for some very useful discussions aboutPDDL3. NICTA is funded by the Australian Govern-
ment as represented by the Department of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of Excellence program.

References

[1] F. Bacchus. The AIPS ’00 planning competition.AI Magazine, 22(3):47–56, 2001.

[2] F. Bacchus and F. Kabanza. Planning for temporally extended goals.Annals of Mathematics and
Artificial Intelligence, 22(1-2):5–27, 1998.

[3] F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for plan-
ning. Artificial Intelligence, 116:123–191, 2000.

[4] C. Bäckström. Expressive equivalence of planning formalisms. Artificial Intelligence, 76:17–34,
1995.

59

[5] J. Baier and S. McIlraith. Planning with first-order temporally extended goals using heuristic
search. InProc. of 21st National Conf. on Artificial Intelligence (AAAI’06), 2006.

[6] J. Baier and S. McIlraith. Planning with temporally extended goals using heuristic search. InProc.
of 16th Int. Conf. on Automated Planning and Scheduling (ICAPS’06), 2006.

[7] J. Benton and S. Kambhampati. YochanPS: PDDL3 simple preferences as partial satisfaction
planning. In5th Int. Planning Competition Booklet, 2006.

[8] J. Benton, M. van den Briel, and S. Kambhampati. A hybrid linear programming and relaxed
plan heuristic for partial satisfaction planning problems. In Proc. of 17th Int. Conf. on Automated
Planning and Scheduling (ICAPS’07), 2007.

[9] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and optimization.
Journal of ACM, 1997.

[10] A. Blum and M.L. Furst. Fast planning through planning graph analysis.Artificial Intelligence,
90:281–300, 1997.

[11] B. Bonet and H. Geffner. Planning as heuristic search.Artificial Intelligence, 129(1-2):5–33, 2001.

[12] B. Bonet and H. Geffner. Heuristics for planning with penalties and rewards using compiled
knowledge. InProc. of 10th Int. Conf. on Knowledge Representation (KR’06), 2006.

[13] B. Bonet, A.E. Gerevini, and R. Givan. Abstract bookletof the Fifth Int. Planning Competition.
http://ipc5.ing.unibs.it, 2006.

[14] R. Brafman and Y. Chernyavsky. Planning with goal preferences and constraints. InProc. of 15th
Int. Conf. on Automated Planning and Scheduling (ICAPS’05), 2005.

[15] M. Briel, R. Sanchez, M. Do, and S. Kambhampati. Effective approaches for partial satisfaction
(over-subscription) planning. InProc. of 19th National Conf. on Artificial Intelligence (AAAI’04),
2004.

[16] N. Chabrier, 2003.http://contraintes.inria.fr/BIOCHAM/EXAMPLES/~cell_
cycle/cell_cycle.bc.

[17] Y. Chen, B.W. Wah, and C. Hsu. Temporal planning using subgoal partitioning and resolution in
SGPlan.Journal of Artificial Intelligence Research, 26:323–369, 2006.

[18] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications.ACM Transactions on Programming Languages and
Systems, 8(2):244–263, 1986.

[19] E.M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.

[20] S. Cresswell and A. Coddington. Compilation of LTL goalformulas into PDDL. InProc. of 15th
Eureopean Conf. on Artificial Intelligence, (ECAI’04), 2004.

[21] P. J. Delgrande, T. Schaub, and H. Tompits. A general framework for expressing preferences
in causal reasoning and planning. InProc. of 7th Int. Symposium on Logical Formalizations of
Commonsense Reasoning, 2005.

[22] M. Do, J. Benton, M. van den Briel, and S. Kambhampati. Planning with goal utility dependencies.
In Proc. of 20th Int. Conf. on Artificial Intelligence (IJCAI’07), 2007.

[23] M.B. Do and S. Kambhampati. Partial satisfaction (over-subscription) planning as heuristic search.
In Proc. of 5th Int. Conf. on Knowledge Based Computer Systems (KBCS’04), 2004.

[24] D. Dubois, H. Fargier, and H. Prade. Possibility theoryin constraint satisfaction problems: Han-
dling priority, preference and uncertainty.Applied Intelligence, 6:287–309, 1996.

60

[25] S. Edelkamp. On the compilation of plan constraints andpreferences. InProc. of 16th Int. Conf.
on Automated Planning and Scheduling (ICAPS’06), 2006.

[26] S. Edelkamp and J. Hoffmann. PDDL2.2: The language for the classic part of the 4th International
Planning Competition. Technical Report 195, Institut für Informatik, Freiburg, Germany, 2004.

[27] A. Fink and S. Voss. Applications of modern heuristic search methods to pattern sequencing
problems.Computers & Operations Research, 26:17–34, 1999.

[28] M. Fox, Long D., and Halsey K. An investigation into the expressive power of PDDL2.1. InProc.
of 16th European Conf. on Artificial Intelligence (ECAI-04), 2004.

[29] M. Fox and D. Long. PDDL2.1: An extension to PDDL for expressing temporal planning domains.
Journal of Artificial Intelligence Research, 20:61–124, 2003.

[30] H. Geffner, P. Haslum, M. Helmert, J. Hoffmann, V. Vidal, B. Bonet, and C. Domshlak.Proceed-
ings of the ICAPS-07 Workshop on Heuristics for Domain-independent Planning: Progress, Ideas,
Limitations, Challenges. 17th Int. Conf. on Automated Planning and Scheduling (ICAPS’07),
2007.

[31] A. Gerevini and D. Long. Plan constraints and preferences in PDDL3. Technical Report RT-2005-
08-47, Dipartimento di Elettronica per l’Automazione, Universitá di Brescia, 2005.

[32] A. Gerevini and D. Long. Preferences and soft constraints in PDDL3. InProc. of ICAPS-2006
Workshop on Preferences and Soft Constraints in Planning, 2006.

[33] A. Gerevini, A. Saetti, P. Haslum, D. Long, and Y. Dimopoulos. Deterministic planning in the
fifth planning competition: PDDL3 and experimental evaluation of the planners. Technical Report
RT-2008-02-59, Dipartimento di Elettronica per l’Automazione, Universitá di Brescia, 2008.

[34] A. Gerevini, A. Saetti, and I. Serina. An approach to efficient planning with numerical fluents and
multi-criteria plan quality.Artificial Intelligence, 172(8-9):899–944, 2008.

[35] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verification of linear
temporal logic. InProc. of 15th Workshop on Protocol Specification, Testing and Verification,
1995.

[36] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso, D. Weld, and D. Wilkins.
PDDL - the planning domain definition language. Technical Report CVC TR98-003/DCS TR-
1165, Yale Center for Computational Vision and Control, 1998.

[37] E. Giunchiglia and M. Maratea. Planning as satisfiability with preferences. InProc. of 22nd Conf.
of Artificial Intelligence (AAAI’07), 2007.

[38] P. Haslum. Quality of solutions to IPC5 benchmark problems: Preliminary results. InProc. of
ICAPS-07 Workshop on Int. Planning Competition: Past, Present & Future, 2007.

[39] P. Haslum and P. Jonsson. Some results on the complexityof planning with incomplete informa-
tion. In Proc. of 5th European Conf. on Planning (ECP’99), 1999.

[40] M. Helmert. The fast downward planning system.Journal of Artificial Intelligence Research,
26:191–246, 2006.

[41] J. Hoffmann and S. Edelkamp. The deterministic part of IPC-4: An overview.Journal of Artificial
Intelligence Research, 24:519–579, 2005.

[42] J. Hoffmann, S. Edelkamp, S. Thiébaux, R. Englert, F. Liporace, and S. Trüg. Engineering bench-
marks for planning: the domains used in the deterministic part of IPC-4. Journal of Artificial
Intelligence Research, 26:453–541, 2006.

61

[43] J. Hoffmann and B. Nebel. The FF planning system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14:253–302, 2001.

[44] C. Hsu, B.W. Wah, and Y. Chen. Personal communication. Oct 2007.

[45] F. Kabanza and S. Thiébaux. Search control in planning for temporally extended goals. InProc.
of 15th Int. Conf. on Automated Planning and Scheduling (ICAPS’05), 2005.

[46] H. Kautz. SATPLAN04: Planning as satisfiability. In4th Int. Planning Competition Booklet,
2004.

[47] K. Kohn. Molecular interaction map of the mammalian cell cycle control and DNA repair systems.
Molecular Biology of the Cell, 10(8), 1999.

[48] J. Kvarnström and P. Doherty. TALplanner: A temporal logic based forward chaining planner.
Annals of Mathematics and Artificial Intelligence, 30(1-4):119–169, 2000.

[49] A. Linhares and H.H. Yanasse. Connection between cutting-pattern sequencing, VLSI design and
flexible machines.Computers & Operations Research, 29:1759–1772, 2002.

[50] D. Long and M. Fox. The 3rd International Planning Competition: Results and analysis.Journal
of Artificial Intelligence Research, 20:1–59, 2003.

[51] D. Long, H. Kautz, B. Selman, B. Bonet, H. Geffner, J. Koehler, M. Brenner, J. Hoffmann, F. Rit-
tinger, C. Anderson, D. Weld, D. Smith, and M. Fox. The AIPS-98 planning competition.AI
Magazine, 21(2):13–33, 2000.

[52] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent Systems. Springer,
1992.

[53] I. Miguel, P. Jarvis, and Q. Shen. Efficient flexible planning via dynamic flexible constraint satis-
faction. Engineering Applications of Artificial Intelligence, 14(3):301–327, 2001.

[54] B. Nebel. On the compilability and the expressive powerof propositional planning formalisms.
Journal of Artificial Intelligence Research, 12:271–315, 2000.

[55] S. Penberthy, J.Planning with Continuous Change. PhD thesis, University of Washington, 1993.
Available as technical report UW-CSE-93-12-01.

[56] A. Pnueli. The temporal logic of programs. InProc. of 18th IEEE Symposium on Foundations of
Computer Science, 1977.

[57] J. Riera-Ledesma and J. Salazar-Gonzalez, J. A heuristic approach for the travelling purchaser
problem.European Journal of Operational Research, 160(3):599–613, 2005.

[58] J. Rintanen. Incorporation of temporal logic control into plan operators. InProc. of 14th European
Conf. on Artificial Intelligence (ECAI’00), 2000.

[59] J. Rintanen. Complexity of concurrent temporal planning. InProc. of 17th Int. Conf. on Automated
Planning and Scheduling, 2007.

[60] F. Rossi, K.B. Venable, and N. Yorke-Smith. Controllability of soft temporal constraint problems.
In Proc. of 10th Int. Conf. on Principles and Practice of Constraint Programming (CP’04), 2004.

[61] B.M. Smith and I.P. Gent. Constraint modelling challenge 2005.http://www.dcs.st-and.
ac.uk/~ipg/challenge/, 2005.

[62] D. Smith. Choosing objectives in over-subscription planning. InProc. of 14th Int. Conf. on
Automated Planning and Scheduling (ICAPS’04), 2004.

62

[63] C. Son, T. and E. Pontelli. Planning with preferences using logic programming. InProc. of 7th
Int. Conf. on Logic Programming and Nonmonotonic Reasoning(LPNMR’04), 2004.

[64] P. Thagard. Pathways to biomedical discovery.Philosophy of Science, 70, 2003.

[65] S. Thiébaux, J. Hoffmann, and B. Nebel. In defense of PDDL axioms. Artificial Intelligence,
168:38–69, 2005.

[66] V. Vidal and H. Geffner. Branching and pruning: An optimal temporal POCL planner based on
constraint programming.Artificial Intelligence, 170(3):298–335, 2006.

[67] F. Wilcoxon and R. A. Wilcox.Some Rapid Approximate Statistical Procedures. Lederle Labora-
tories, Pearl River, New York, USA, 1964.

63

