
Reducing Accidental Complexity in Planning
Problems

P@trik Haslum

National ICT Australia

IJCAI’07



A Theory of Easy Planning

P@trik Haslum

National ICT Australia

IJCAI’07



NICTAMotivation

Accidental vs. Essential Complexity
Planning is a hard problem...
...but not all planning problems are really hard.
...and even if a problem is hard, parts of the problem may be
easy.
Easy problems may be difficult to recognize when formulated
in a domain-independent specification language (such as
STRIPS).

Reducing Accidental Complexity
Applying solution-preserving (“safe”), polynomial simplifying
problem transformations. Ideally, if the problem really is simple, it
reduces to “solved”.



NICTAThe Main Tools

Simplifications
Transformations that reduce problem size and complexity.

Relevance Analysis – Ignore irrelevant parts of the problem.
Safe Abstraction – Postpone solving “easy” problem parts.
Simple Decomposition – Solve independent parts separately.

Reformulations
Transformations that may enable further simplifications.

Determined atom elimination.
Action sequence composition.
Compacting the representation.



NICTAResults

IPC Domains Solved with Previous Techniques
Logistics, Elevator-STRIPS

IPC Domains Solved with New Techniques
Gripper, Movie, Satellite

IPC Domains with Significant Simplification
Rovers (60 – 90% less atoms)
Airport (40 – 60% less atoms)
PSR (small; 0 – 50% less atoms).



NICTARepresentation

Assume interchangeable (propositional) STRIPS and
multi-valued state variable (“SAS”) representations.
Variable domains correspond to “exactly-one” or
“at-most-one” invariants of the STRIPS instance.

The Domain Transition Graph (DTG) of a variable V is a directed
graph on the domain of the variable with edges labeled by actions
changing the variable.

(pointing sat1 star0)

(pointing sat1 ...){}/{}

(pointing sat1 ...)

{}/{}

(pointing sat1 ...)

{}/{}

...

{}/{}

{}/{}

{}/{} {}/{}

{}/{}
{}/{}

{}/{}

(avail)

(on i1)
{}/{(not (cal i1))}

(on i2)

{}/{(not (cal i2))}

{}/{}

{}/{}

true false{} / {(movie-rewound)}

{} / {}

pointing(sat1) power(sat1) counter-at-zero



NICTASafe Abstraction

(Hierarchical) Abstraction Planning
Abstract away (“forget”) part of the problem;
Solve what remains;
Refine abstract solution by “filling in the gaps”;
...and do this recursively.

Safe Abstraction
Abstracting away a variable V is safe if every abstract solution is
guaranteed to be refinable (“Downward Refinement Property”).
In general,

there may not be a (useful) safe abstraction hierarchy;
deciding safeness is hard (as hard as planning?)



NICTASufficient Conditions for Safe Abstraction

The free DTG of V is the subgraph of the variables DTG
containing only actions with no pre- or post-condition on any
variable besides V .

(pointing sat1 star0)

(pointing sat1 ...){}/{}

(pointing sat1 ...)

{}/{}

(pointing sat1 ...)

{}/{}

...

{}/{}

{}/{}

{}/{} {}/{}

{}/{}
{}/{}

{}/{}

(avail)

(on i1) {}/{}

(on i2)
{}/{}

truefalse {} / {}

pointing(sat1) power(sat1) counter-at-zero

Sufficient Conditions for Safe Abstractability of V
(i) The free DTG is strongly connected (Helmert, 2005).
(ii) Every value of V required by a non-free action is free

reachable from the initial value of V and from from every
value of V caused or required by a non-free action.



NICTA

(pointing sat1 star0)

(pointing sat1 ...){}/{}

(pointing sat1 ...)

{}/{}

(pointing sat1 ...)

{}/{}

...

{}/{}

{}/{}

{}/{} {}/{}

{}/{}
{}/{}

{}/{}

(avail)

(on i1) {}/{}

(on i2)
{}/{}

truefalse {} / {}

pointing(sat1) power(sat1) counter-at-zero

Safely abstractable
by condition (i).

Not safe to abstract. Safely abstractable
by condition (ii) but
not by (i).



NICTA

Some Observations
Can be done recursively: Abstracting away variable V makes
a V ′-transition free if it previously depended only on V .
Condition (ii) is strictly weaker than condition (i).
Checking both conditions, and performing refinement, is
polynomial in size of the domain of V .
Both conditions trivially generalize to product variables,
V1 ×V2 × . . .×Vn, but the domain of the product variable may
be exponentially large.



NICTAReformulations

Determined Atom Elimination
Certain invariants correspond to equivalences, which “define”
some atoms in terms of other atoms; such atoms may then be
eliminated by replacing them with the defining formula in action
preconditions and goals.

Action Sequence Composition
Replacing a set of actions by all possible and useful “macros” over
the set is safe if intermediate states are “uninteresting”, and can
break “temporary” interactions between variables.

Compacting the Representation
Avoid building product variables with unnecessarily large domains.



NICTACompacting the Representation

Example satellite problem, after abstraction of pointing(sat1):

(avail)

(on i1)
{}/{(not (cal i1))}

(on i2)

{}/{(not (cal i2))}

{}/{}

{}/{}

power(sat1)

true false{power(sat1) = avail} / {power(sat1) = (on i1)

{power(sat1) = (on i1)} / {}

calibrated(i1)

true false{power(sat1) = avail} / {power(sat1) = (on i2)

{power(sat1) = (on i2)} / {}

calibrated(i2)

Product of all three variables is safely abstractable even
though no variable is so by itself.
Size of the product variable is product of individual variable
sizes (i.e. exponential, in general).



NICTA

Variables are Automata Accepting Sequences of Actions
power(sat1) × cal(i1):

{power = avail, (not (cal i1))

{power = avail, (cal i1)}

{power = (on i2), (cal i1)}

(switch_on i2)

{power = (on i1), (not (cal i1))

(switch_on i1) {power = (on i1), (cal i1)}

(switch_off i1)

(switch_off i2)

(switch_on i1)

{power = (on i2), (not (cal i1))

(switch_on i2)

(calibrate i1)

(switch_off i1) (switch_off i2)

min(power(sat1) × cal(i1)):

{power = avail, (not (cal i1))

{power = (on i1), (cal i1)}

(switch_off i1) {power = (on i1), (not (cal i1))

(switch_on i1)

{power = (on i2), (not (cal i1))

(switch_on i2)

(calibrate i1)

(switch_off i1) (switch_off i2)

Applying Myhill-Nerode minimization results in smaller
automaton accepting exactly the same action sequences.
Enforced by only changing action effects.



NICTA

power(sat1) × cal(i1) × cal(i2) after minimization:

{(power_avail), (not (cal i1)), (not (cal i2))}

{(power_on i1), (not (cal i1)), (not (cal i2))}

(switch_on i1)

{(power_on i2), (not (cal i1)), (cal i2)}

(switch_on i2)

{(power_on i1), (cal i1), (not (cal i2))}

(calibrate i1)

(switch_off i1)

{(power_on i2), (not (cal i1)), (cal i2)}

(calibrate i2)

(switch_off i2)

Size of the product domain over the minimized variables is
linear in sizes of component variables.
Note that minimization is applied only to products of two
variables.



NICTASummary & Conclusions

Reducing Accidental Complexity
Apply safe, polynomial simplifying problem transformations.

Two Approaches to Tractable Planning
Polynomial algorithms that are sound and complete for some
class of problems.

Work by Jonsson & Bäckström; Domshlak & Brafman; etc.
As presented earlier this session!

Sound and complete algorithms that are polynomial for some
class of problems.

Heuristic search in cases for which heuristic is exact.
As presented in this talk!
Lack of precise characterisations of such problem classes.



NICTA

Justified (?) Criticisms
It’s just a hack to deal with the IPC benchmarks!

Result of “iterative” development.
A test for benchmark “triviality”.

No quality guarantee.
Still sensitive to problem encoding.

Open Problems
What transformations to apply and in what order?
Still sensitive to problem encoding.
A safe, useful and computationally feasible notion of
relevance is still lacking.


	Introduction

