
Towards Learning Action Models From Narrative Text
Through Extraction and Ordering of Structured Events

Ruiqi Li1, Patrik Haslum1, and Leyang Cui2

1 Australian National University, Canberra Australia
{ruiqi.li,patrik.haslum}@anu.edu.au

2 Tencent AI Lab, Shenzhen China
leyangcui@tencent.com

Abstract. Event models, in the form of scripts, frames, or precondition/effect
axioms, allow for reasoning about the causal and motivational connections be-
tween events in a story, and thus are central to AI understanding and generating
narratives. However, previous efforts to learn general structured event models
from text have overlooked important challenges raised by the narrative text, such
as the complex (nested) event arguments and inferring the order and actuality of
mentioned events. We present an NLP pipeline for extracting (partially) ordered,
structured event representations for use in learning general event models from
three large text corpora. We address each of the challenges that we identify to
some degree, but also conclude that they raise open problems for future research.

Keywords: event model acquisition · event extraction · event ordering.

1 Introduction

Narratives are made up of events. Events tell us what happened, who or what was in-
volved, and in what order. Knowledge about typical events, such as their usual partici-
pants, dependencies and effects, is crucial to understanding, and creating, narrative text.
Event models can take several forms, from simple scripts or schemas – subsequences of
events, parameterised by their participants, that frequently occur together [10] – to mod-
els that link each schematic known event to the possible preceding or following events
[11], which may be ranked by likelihood [38], to state/transition models that associate
to each event the conditions on the world state under which it can occur, and the effects
of its occurrence on the state. Model-based reasoning about events/actions3, studied in
AI domains such as reasoning about action and change [39], planning [15] and diag-
nosis of dynamical systems [20], assumes such a symbolic preconditions-and-effects
model of events/actions is available.

Hand-crafting event models with the breadth required for narrative understanding
or generation is an enormous task. Hence our interest in learning them from text, a
medium that hosts an abundance of human-authored narratives in many styles and gen-
res. We aim to explore the hypothesis that by processing a sufficient volume of text we

3 We will use the terms event and action interchangeably. Although a distinction can be made –
actions have at least one intentional participant or actor – from the point of view of the models
we consider, they are largely the same.

2 Ruiqi Li1, Patrik Haslum1, and Leyang Cui2

can extract sufficiently many distinct events with a sufficient number of occurrences
to learn meaningful models of them. The problem of learning various kinds of event
models from text has been researched for well over a decade [10, 36, 38], and has
recently gained renewed interest in AI planning [13, 23, 24, 27] for several reasons,
including narrative generation [17, 18]. The latter breaks the problem into two stages:
first, extracting structured and ordered (typically as sequences) representations of event
mentions from source texts and, second, inducing event models from these examples
of event sequences, leveraging existing work on planning model acquisition [e.g., 2, 8].
The work we present in this paper also follows this approach. However, we argue that
previous work has overlooked several characteristics of narrative text, which raise chal-
lenges both for extraction of event mentions from text and for model acquisition.

Event ordering: In simpler texts, such as recipes or instruction manuals, events/actions
are for the most part written in the order they occur [13, 18, 23, 24, 27]. In these cases,
it is acceptable to assume that the event sequence corresponds to the sequence of event
mentions in the text. In narrative texts, however, such linearity is rarely the case. As
one point of reference, in the MATRES [32] dataset, which contains 275 news articles
manually annotated with temporal relations between events, approximately 58.2% of
the events in each article indeed do not occur before all of the events mentioned later in
the text.

Olmo et al. [33] also note that inferring plan order from text “... is a feature which
is mostly missing in the previous task-specific state of the art”, but test the ability of a
model to perform such inferences only with three hand-crafted examples.

Events as arguments: Many verbs can take, or require, a clausal complement, i.e., an
argument of the event verb is itself an event. For example, if “she tries to stop them ...”,
the event verb is “try”, and the event “[she] stop them” is its argument. Furthermore,
event arguments can be nested: if “she tries to stop them finding out ...”, “find out” is
an argument of “stop”, and the event “[she] stop ([they] find out)” is itself the argument
of “try”. Events of this kind are frequent in narrative texts: in each of the three datasets
we examine, 16.4%, 14% and 14.7%, respectively, of event mentions are arguments
or conditions. Distinguishing them is important for both accurately representing the
mentioned events, and for identifying those events that actually take place.

Event actuality: Narrative texts very frequently mention events that are not actually
part of the sequence of events that is recounted. For example, consider the sentence
“King Louie offers to help Mowgli stay in the jungle if he will tell Louie how to make
fire like other humans.” (from [18] Figure 5). Although it contains many event verbs
(“help”, “stay”, “tell”, “make”), only one of them, “offer”, is actually said to happen:
the remaining are the argument and condition of the offer. Events that are arguments are
only one source of event mentions that do not correspond to actual event occurrences.

Scale: Finally, the size of the model required for general narrative understanding and
generation is significantly greater than what has been considered in previous work. For
example, the Story Cloze dataset [30], which tests a form of narrative understanding,
supposes knowledge of over 2,000 distinct verbs.

In this paper, we present an NLP pipeline for extracting (partially) ordered, structured
event representations, that to some degree deals with the above challenges. We apply

Title Suppressed Due to Excessive Length 3

it to three sets of texts: the movie plot summaries provided by Bamman et al. [3], a
subset of articles from the Goodnews dataset [6], and a set of New York Times arti-
cles obtained from kaggle4. The partially ordered sets of event occurrences produced
by our pipeline are meant as a basis for inducing event models. Furthermore, we report
a preliminary experiment extracting simple narrative chains (recurring subsequences of
connected events). However, our aim is to induce knowledge such as event precondi-
tions and effects. The necessary complexity of the events we extract – nested argument
events, conditionals, etc – as well as the scale of the task, are beyond the capabilities
of current model acquisition techniques [see, e.g., 2, 8]. We plan to pursue this goal in
future work. We will also make the generated dataset public so that other researchers
can attempt to tackle the challenge of learning models from it.

2 Related work

Learning of event models from text has been studied for some time. Chambers & Ju-
rafsky [9, 10] proposed a system for unsupervised induction of parameterised scripts
from text; applied to news text from the Gigaword corpus, it generated scripts cover-
ing around 1800 verbs. But it is restricted to finding scripts in which one entity, i.e.,
the protagonist, is common to all events. Tandon et al. [38] analysed movie and televi-
sion scripts, as well as novels, to extract over 2,000 activities (verb, optional preposi-
tion, and object, e.g., “chase car”) and link them with typical values for location, time
and participants, as well as likely preceding and following activities. However, activ-
ity participants are ground, i.e., objects rather than parameters (e.g., agents of “loom
in distance” are “door” and “island”). The Never-Ending Language Learning (NELL,
http://rtw.ml.cmu.edu/rtw/) project extracted over 50M beliefs, in the form of entity–
relation triples, from the web, combined with crowdsourced feedback. However, it is
focused on acquiring instance-level facts, and mainly about entities, not general activi-
ties. Although it has categories for “event” and different types of actions, the majority
refer to specific event instances (e.g., product launches, elections, etc) and information
about them is sparse: 99% have no relation but a hypernym and a source URL.

Extracting sequences of actions or events from text has recently gained interest in AI
planning [13, 23, 24, 27]. In some instances, this is a precursor to learning the kinds of
precondition/effect action models that AI planners require, using planning model acqui-
sition tools. Methods of event extraction vary, from using the dependency parse struc-
ture to neural language models and reinforcement learning. However, previous work
in this line has overlooked several of the complexities of narrative events. As noted
by Olmo et al. [33], they have assumed the order of events is their order of mention.
Furthermore, none identify events that are arguments or conditions of other events. For
instance, the plan representation generated by Hayton et al. [18] from a synopsis of
the movie “The Jungle Book” includes many of the events mentioned in the sentence
quoted in the Introduction (“stay in jungle”, “tell” and “make fire”) even though none
of these actually happen in the story.

4 https://www.kaggle.com/datasets/nzalake52/new-york-times-articles

4 Ruiqi Li1, Patrik Haslum1, and Leyang Cui2

Fig. 1: An example of partially ordered events extracted by the pipeline. Left: Source
text. (The mark-up of verbs and arguments of extracted events are not part of the input,
just for improving readability) Middle: Extracted event samples. Events that are argu-
ments are in red, conditions are in blue. Right: Predicted partial order between events,
and possible event traces. Dashed edges indicate predictions we consider incorrect.

3 Structured Event Extraction

The ordered event extraction process has three main steps: (1) Extracting event verbs
and arguments from the source text. This is done using the BERT-based AllenNLP
(https://allenai.org/allennlp) semantic role labelling (SRL) system. We also use POS
tagging and dependency parse information, obtained using the Stanford CoreNLP toolkit
[25], in several ways. First, the SRL system often mistakes adjectives for verbs (e.g.,
“reloaded” in “the Matrix reloaded”), and we use the words’ POS tags to filter these
out. We also filter out modal verbs. Second, the SRL system does not detect phrasal
verbs, so we use a rule-based method that relies on the dependency parsing to identify
these. (2) Identifying argument and condition events. As mentioned, events may be ar-
guments or conditions of other events. We use the argument structure provided by the
SRL system, together with a rule-based method that relies on the dependency parse in-
formation, to determine which events are arguments or conditions of other events. We
term any event that is not an argument or condition independent, and we assume that
the non-negated independent events are those that, according to the text, actually take
place. This is a simplification, as some argument events can also be actual. (3) Ordering
the independent events. We use a temporal relation classifier [31] to predict temporal
relations between the pairs of independent events, and inference (transitivity) to extend
the partial order. Because the classifier is myopic, i.e., predicts each event pair in isola-
tion, it often induces inconsistent orders (with cyclic precedences). We resolve these by
deleting the predicted order with the lowest probability in each cycle.

Title Suppressed Due to Excessive Length 5

Event Verb and Arguments An event mention e consists of a verb or phrasal verb
V (e) and a set of labelled arguments A(e). Verbs are lemmatised. We call any event
whose verb lemma is “be” or “have” a statement, since these describe facts or cir-
cumstances rather than events occurring. The extraction and ordering of statements is
exactly the same as for other events, but it is useful to make the distinction for some re-
sults analysis. In the rest of the paper, we use the term “event” to mean both statements
and other events except where specifically stated otherwise.

The SRL system follows the PropBank schema [7], which divides argument labels
into numbered arguments (ARG0–ARG5), for arguments required for the valency of
an action (e.g., agent, patient, etc.), and modifiers of the verb, such as purpose (PRP),
locative (LOC), and so on. Argument values are spans of text. Arguments (without their
label) of extracted events are shown with brackets in the source text in Figure 1.

Phrasal Verb Detection Phrasal verbs are common in English, and identifying them is
important because the meaning of a phrasal verb is often different from that of the verb
part of it (e.g., the meaning of “make up” is different from “make”; this is distinct from
the fact that “make up” also has several meanings). The SRL system, however, extracts
only single verbs. We use the following rule, adapted from [19], to detect phrasal verbs:
If a word P either (i) has a compound:prt relation with the event verb W , or (ii) is
adjacent to the event verb W and has a case or mark relation with W in the dependency
parse tree, then WP is a candidate phrasal verb; it is accepted if it appears in a list of
known phrasal verbs5. We performed a small-scale evaluation of the accuracy of this
method: of 100 randomly sampled extracted events where rules (i) or (ii) apply, 58 of
the candidate phrases appear in the known phrasal verbs list. Manually checking these,
47 are actual phrasal verbs, i.e., the precision is 0.81. The false positives are sentences
where the phrase is used in a literal sense (e.g., “take off” in “takes off his clothes”).

Argument Event Detection Because arguments are spans of text, part or all of an
extracted event may lie within the argument of another event. If V (ej) is within an
argument of ei, we say ej is contained in ei. This can be nested. Contained events are
candidates for being arguments, but are not necessarily so. For example, in Figure 1,
ARG2 of e6 (“is”) contains V (e7) (“offer”), but e7 is not an argument of e6.

We designed the following rules: If any of them is satisfied, a contained event ej is
an argument of the containing event ei: (i) The dependency relation V (ei) to V (ej) is
clausal complement (ccomp or xcomp) or clausal subject (csubj). (ii) The dependency
relation from V (ej) to V (ei) is copula (cop). (iii) All of ej is contained in an argument
of ei that is labelled with either ARGM-PRP (“purpose”) or ARGM-PNC (“purpose
not cause”).

Condition Event Detection We commonly find conditional promises, threats, etc, in
narrative text. Conditional offers are found in both the example from The Jungle Book
quoted in the introduction and the example in Figure 1. The condition event is not an

5 https://en.wiktionary.org/wiki/Category:English phrasal verbs

6 Ruiqi Li1, Patrik Haslum1, and Leyang Cui2

argument of the offer, but it is also not actual; hence, a different mechanism is required
to identify conditions.

We use a method based on the signal words and phrases “if”, “whenever”, “as long
as”, “on [the] condition that”, and “provided that”. For example, in Figure 1 the signal
word “if” is in between the consequence e9 and the condition e10. Our method is a
modification of that introduced by [34]. Event ej is determined to be a condition of ei
iff (a) one of the subsequences V (ei) S V (ej) or S V (ej) V (ei), where S is one
of the signal words/phrases, appear in the sentence, with no other event verb appearing
in the subsequence; and (b) one of the following holds:

S1: V (ei)’s tense is future simple, V (ej)’s tense is present simple;
S2: V (ei)’s tense is present simple, V (ej)’s tense is present simple;
S3: “must” or “should” or “may” or “might” is adjacent to V (ei), the tense of V (ej) is
present simple;
S4: “would” is adjacent to V (ei) and V (ei)’s tense is infinitive, V (ej) is past simple;
S5: “could” or “might” is adjacent to V (ei), V (ej)’s tense is past simple;
S6: V (ei) is preceded by “could” and its tense is infinitive, the tense of V (ej) is past
continuous or past perfect;
S7: “would have” or “might have” or “could have” is adjacent to V (ei) and the tense
of V (ei) is past participle, the tense of V (ej) is past perfect;
S8: V (ei)’s tense is perfect conditional continuous, V (ej)’s tense is past perfect;
S9: V (ei)’s tense is perfect conditional, V (ej)’s tense is past perfect continuous;
S10: “would be” is adjacent to V (ei) and V (ei)’s tense is gerund, V (ej) is past perfect;

Tenses of event verbs are determined from their POS tags.

Entity Resolution In the event representation that we generate, the exact words used to
denote entities in event arguments do not matter, as long as we identify repeat mentions
of entities throughout the narrative. (The words that denote an entity may of course
carry important information about the entity type, or relation to other entities.) Hence,
we apply co-reference resolution, and substitute the first mention of any resolved entity
for later mentions. We use a document-level inference-based LSTM model [22] from
AllenNLP for the co-reference resolution task. While there are potentially better co-
reference resolution methods [18], this aspect of the pipeline is somewhat orthogonal,
and we leave its further development for future work.

4 Event Ordering

To determine the relative order of the events narrated within a document, we build a
temporal relation classifier. We order only the independent events, i.e., not argument
events or conditions, since the independent events are, the ones that are actually said to
happen. Although temporal relations can exist between argument events, their actuality
is also uncertain. Following the method proposed by Ning et al. [31], we trained an
LSTM-based classifier using the temporal relation dataset MATRES [32]. Earlier stud-
ies of temporal relation extraction [e.g. 5, 21, 29] have adhered to the TimeML standard

Title Suppressed Due to Excessive Length 7

[35], which uses fourteen different temporal relations between events and temporal ex-
pressions. In contrast, the MATRES dataset considerably simplifies the task by using
only four relations: before, after, equal and vague (the last meaning no or unknown
relation). However, because these four seem sufficient to establish a partial order be-
tween events, and because earlier studies have reported low prediction accuracies for
the TimeML relation set, we choose the simpler task variant.

The predictor is trained on pairs of events within the same or adjacent sentences
and keeps only relations with a probability of at least 0.5. after relations are reversed
and converted to before, giving a network of precedence and equality relations. We then
use transitivity to infer additional precedences. Because the classifier is myopic, i.e.,
predicts each event pair in isolation, it often induces inconsistent orders (with cyclic
precedences). We resolve these by deleting the predicted ordering with the lowest prob-
ability in each cycle. An example of the resulting partial order is shown in Figure 1. On
average, we find 2.7 subnetworks per document, with an average size of 22 events.

Table 1: Number of distinct event chains that meet the selection criteria, and the number
of distinct event chains with more than one occurrence. Numbers are subgrouped by the
genre of the document in which chains appear: CT: crime thriller, RC: romantic comedy.
“Across” means chains that occur in documents in both genres, while the total includes
both chains recurring in documents within one genre only and across both.

M1 M2
N=3 N=4 N=5 N=3 N=4 N=5

of distinct event chains CT 191,933 388,455 782,441 197,503 401,840 818,449
RC 216,752 474,706 1,041,439 223,520 487,491 1,071,732
Total 404,971 862,925 1,823,004 419,119 888,348 1,889,313

of recurring chains CT 1,712 104 5 676 20 1
RC 2,417 160 8 816 39 1
Across 2,948 203 14 1,128 40 1
Total 6,015 453 27 2,358 99 3

5 Narrative Chain Extraction

Finally, we perform a preliminary experiment in acquiring simple scripts, or narrative
event chains [9], from the extracted partially ordered events. A narrative event chain is
a subsequence of N non-statement events that are all connected by sharing some co-
referring argument with another event in the chain. (It does not have to be one entity that
is shared by all events. For example, if A is an argument of events 1 and 3, and B is an
argument of events 2 and 3, the chain is connected.) Events in the chain must be totally
ordered, but not necessarily consecutive. We are interested in event chains that recur,
in particular across documents, since these represent general elements of narrative. For
two event chains to match, the event verbs and arguments must match. We consider

8 Ruiqi Li1, Patrik Haslum1, and Leyang Cui2

two different conditions for arguments matching: The first (M1) is that there must be a
mapping between the labelled arguments of the two instances of the chain that respects
argument recurrence within the chain (i.e., if A in one instance maps to B in the other,
B must recur in the same argument positions of the corresponding events that A does).
The second (M2) requires in addition that argument and condition events of events in
the chains recursively match, under the same condition.

We applied chain extraction to the partially ordered events extracted from a sub-
set of the Movie summaries dataset, comprising those with genre label “crime thriller”
(1678 documents) and “romantic comedy” (2069 documents), for N = 3, 4, 5. Results
are summarised in Table 1. We count repetitions of event chains only when they are re-
peated in different documents, because repetitions within a document tend to have large
overlap. As expected, increasing the length of the chain or applying the stricter argu-
ment matching condition M2 substantially reduces the number of recurring event chains
found. In this experiment, we use a straightforward form of matching events verbs: they
match if their lemma is the same. Applying sense disambiguation, i.e., matching verbs
only when used in the same sense, could reduce the number of recurring event chains.
Meanwhile, applying semantic generalization that matches distinct verbs when their
senses satisfy some degree of semantic similarity, would likely increase the number.

6 Challenges for NLP Research

Several tasks in our event extraction pipeline pose open challenges for NLP research.

Event and Argument Extraction Some aspects of the current SRL systems can be
improved: First, identifying phrasal verbs, and distinguishing their occurrence from lit-
eral uses of the same phrase. The method we have used depends on a given list of
known phrasal verbs (without this filter, its precision would be too poor) and also can-
not recognise discontinuous phrasal verbs with more than two words, such as “put ...
down to”, which is different from “put down”. Second, arguments identified by the SRL
system often capture independent event mentions, particularly when those occur in rel-
ative clauses of a nominal argument. Our argument event classifier tries to resolve these
cases, but still misses some.

Event Actuality Related to deciding which events are arguments of other events is
determining which of the mentioned events are actual, i.e., which have, according to
the narrative, taken place. We have considered any non-negated non-argument and non-
condition event to be actual. This is, however, an approximation. First, because argu-
ment events can also be actual; this depends on the verb they are arguments of. Consider
“she thought it rained outside” and “she could see it rained outside”: in both, “rain” is
an argument, but in the second example it is also actual. Second, some temporal expres-
sions give rise to non-argument events that are also not actual. Consider, for example,
“before she falls down, she catches the railing and steadies herself” (implying the “fall”
does not actually happen). We are not aware of prior work on resolving event actual-
ity. As the examples above show, this is closely linked with the meanings of the verbs
involved. This is a significant research challenge.

Title Suppressed Due to Excessive Length 9

Conditional Event Detection The problem of detecting condition–consequence rela-
tions between events in text has been studied, motivated in particular by finding causal
relationships [34]. We evaluated two recent methods that detect conditional structures,
called CNC [14] and CiRA [37], respectively. Both are BERT-based neural networks,
but trained with different data. CiRA use an annotated set of requirements documents,
while CNC annotated and used a set of news articles, together with the Penn Discourse
Treebank 3.0 [40] and CausalTimeBank [28] datasets. However, we also note that both
are intended to extract causal relations between events, which do not always coincide
with the condition–consequence relation.

Precision Recall EM-rate
CiRA [14] 0.75 0.79 0.41
CNC [37] 0.80 0.80 0.1
Ours 0.93 0.71 0.85

Table 2: Precision and recall of detecting the existence of conditionals in sentences. EM-
rate is the proportion of sentences in which the detected condition and consequence
events exactly match our annotation.

We apply these two systems to the same set of 100 randomly selected sentences
from the Movie summary dataset that we used to evaluate our rule-based method. Re-
call that these were selected to include the five signal words or phrases that we use
(20 for each) and that 75 of them contain conditionals. 3 sentences have more than
one condition–consequence event pair. Both systems detect the presence of condition-
als in a sentence in more cases than our method (59 and 60 of the 75 positive cases,
respectively, compared to 53 for our method), but also have a much higher number of
false positives (20 and 15 of the 25 negative cases, respectively, compared to 4 for our
method), leading to their lower precision, as shown in Table 2. Furthermore, in true
positive cases identified by each, we compare the events identified as conditions and
consequences with our annotation. These results are worse: CNC identifies the correct
text spans in only 6 of the 60 cases (EM-rate=0.1), while CiRA does so in 24 of the 59
cases. On the other hand, our method is blind to any conditional expression that does
not use one of the five signal words or phrases. We conclude that more research on this
aspect of relations between events is warranted.

Event Ordering Predicting the right order of event mentions remains a hard problem.
For instance, in the example in Figure 1, six of the thirteen precedence relations are
incorrect. (The precision of the classifier is actually better than this would suggest, as
it makes many correct predictions that are transitively implied by those shown in the
figure.) There are also some event pairs that arguably should be ordered, but which are
not detected, e.g., e7 before e12, e7 before e0 and e1 before e0. We note that four of
the falsely predicted precedences are associated with statements (e0, e6 and e15), sug-
gesting that these pose particular difficulty for the classifier. Although Ning et al. [31]

10 Ruiqi Li1, Patrik Haslum1, and Leyang Cui2

report much better accuracy on the simplified 4-relation prediction task than previously
achieved by state-of-the-art predictors for the full TimeML relation set, the difficulty
caused by statements, which often describe enduring circumstances, suggests that in-
cluding a during relation may help.

Causal relations between events imply a temporal ordering (i.e., cause precedes ef-
fect). However, current state-of-the-art in predicting causal relations [e.g., 14, 29, 37]
did not perform well on narrative text in our test. We did not test Mirza & Tonelli’s sys-
tem, because it depends on features such as verb mood and aspect, which are available
in the annotated CausalTimebank dataset but not in our unannotated source texts, and
because CNC achieved better prediction performance when evaluated on the same data.
Another potential source of information is the super–sub relation: an event is defined to
be a sub-event of another iff it occurs during the super-event and is spatially contained
by the super-event [16]. The precision of current state-of-the-art sub-event detection
methods is, however, mostly low [1, 4].

7 Challenges for Model Acquisition

The problem of inducing action preconditions and effects from observations of plans
has been studied in AI planning for some time (e.g., [12, 41]). Approaches vary in the
assumptions they make, such as whether observations are complete or partial, precise
or noisy, whether only actions/events are observed or also (full or partial) states (i.e.,
statements), and so on (see, e.g., [2, 8]). However, we are not aware of any method that,
off-the-shelf, can successfully exploit the event information that we can extract from
text: partially ordered, with partial state observations, and some degree of uncertainty
in all parts (i.e., which events actually occur, their arguments, and order). Furthermore,
the complex structure of events, with nested argument events and conditions, is not
represented in standard planning formalisms (e.g., PDDL [26]), and not supported by
current model acquisition methods.

Another challenge raised by learning models from events extracted from text is
sense disambiguation and semantic generalization, of both verbs and arguments. While
this can be handled as a separate task in between extraction and model acquisition, inte-
grating with the latter, i.e., deciding which general event each occurrence is an instance
of, and what level from a hierarchy of types to assign each of its arguments, jointly with
inducing the models of general events, may lead to better models.

8 Conclusions

Narrative text exhibits many of the complexities of natural language, but is also a rich
source of knowledge about events/actions. We proposed a pipeline for automatically
extracting (partially) ordered structured event representations from narrative texts, with
the ultimate aim of learning general event models. Applying the pipeline to three large-
scale narrative corpora demonstrates several open research challenges. We propose
methods to deal with some of these, such as argument and conditional event recog-
nition, and so on. Learning general action models from the event representations will
be the next step of our work.

Bibliography

[1] Aldawsari, M., Finlayson, M.A.: Detecting subevents using discourse and narra-
tive features. In: Proceedings of the 57th Annual Meeting of ACL (2019)

[2] Arora, A., Fiorino, H., Pellier, D., Métivier, M., Pesty, S.: A review of learning
planning action models. The Knowledge Engineering Review 33 (2018)

[3] Bamman, D., O’Connor, B., Smith, N.A.: Learning latent personas of film char-
acters. In: Proceedings of ACL. pp. 352–361 (2013)

[4] Bekoulis, G., Deleu, J., Demeester, T., Develder, C.: Sub-event detection from
twitter streams as a sequence labeling problem. arXiv preprint:1903.05396 (2019)

[5] Bethard, S.: Cleartk-timeml: A minimalist approach to tempeval 2013. In: Pro-
ceedings of SemEval 2013. pp. 10–14 (2013)

[6] Biten, A.F., Gomez, L., Rusinol, M., Karatzas, D.: Good news, everyone! context
driven entity-aware captioning for news images. In: CVPR (2019)

[7] Bonial, C., Hwang, J., Bonn, J., Conger, K., Babko-Malaya, O., Palmer, M.: En-
glish propbank annotation guidelines. Center for Computational Language and
Education Research Institute of Cognitive Science University of Colorado (2012)

[8] Callanan, E., De Venezia, R., Armstrong, V., Paredes, A., Chakraborti, T.,
Muise, C.: MACQ: A holistic view of model acquisition techniques. arXiv
preprint:2206.06530 (2022)

[9] Chambers, N., Jurafsky, D.: Unsupervised learning of narrative event chains. In:
Proceeding of ACL (2008)

[10] Chambers, N., Jurafsky, D.: Unsupervised learning of narrative schemas and their
participants. In: Proc. 47th ACL Meeting and 4th IJCNLP. pp. 602–610 (2009)

[11] Cook, W.W.: Plotto: The Master Book of All Plots. Tin House Books (1928)
[12] Cresswell, S., Gregory, P.: Generalised domain model acquisition from action

traces. In: Twenty-First ICAPS (2011)
[13] Feng, W., Zhuo, H.H., Kambhampati, S.: Extracting action sequences from texts

based on deep reinforcement learning. In: Proc. of IJCAI. pp. 4064–4070 (2018)
[14] Fischbach, J., Frattini, J., Spaans, A., Kummeth, M., Vogelsang, A., Mendez, D.,

Unterkalmsteiner, M.: Automatic detection of causality in requirement artifacts:
the cira approach. In: REFSQ. pp. 19–36. Springer (2021)

[15] Geffner, H., Bonet, B.: A Concise Introduction to Models and Methods for Auto-
mated Planning. Morgan & Claypool (2013), iSBN: 9781608459698

[16] Glavaš, G., Šnajder, J., Kordjamshidi, P., Moens, M.F.: Hieve: A corpus for ex-
tracting event hierarchies from news stories. In: Proceedings of 9th language re-
sources and evaluation conference. pp. 3678–3683. ELRA (2014)

[17] Hayton, T., Porteous, J., Ferreira, J., Lindsay, A., Read, J.: StoryFramer: From
input stories to output planning models. In: ICAPS Workshop on Knowledge En-
gineering for Planning and Scheduling (2017)

[18] Hayton, T., Porteous, J., Ferreira, J.F., Lindsay, A.: Narrative planning model ac-
quisition from text summaries and descriptions. In: Proceedings of AAAI (2020)

[19] Komai, M., Shindo, H., Matsumoto, Y.: An efficient annotation for phrasal verbs
using dependency information. In: Proceedings of PACLIC. pp. 125–131 (2015)

12 Ruiqi Li1, Patrik Haslum1, and Leyang Cui2

[20] Lamperti, G., Zanella, M.: Diagnosis of active systems (2003)
[21] Laokulrat, N., Miwa, M., Tsuruoka, Y., Chikayama, T.: Uttime: Temporal relation

classification using deep syntactic features. In: SemEval. pp. 88–92 (2013)
[22] Lee, K., He, L., Zettlemoyer, L.: Higher-order coreference resolution with coarse-

to-fine inference. arXiv preprint:1804.05392 (2018)
[23] Lindsay, A., Read, J., Ferreira, J., Hayton, T., Porteous, J., Gregory, P.: Framer:

Planning models from natural language action descriptions. In: ICAPS (2017)
[24] Manikonda, L., Sohrabi, S., Talamadupula, K., Srivastava, B., Kambhampati, S.:

Extracting incomplete planning action models from unstructured social media data
to support decision making. In: KEPS (2017)

[25] Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.:
The stanford corenlp natural language processing toolkit. In: ACL (2014)

[26] McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: Pddl–the planning domain definition language–version 1.2 (1998)

[27] Miglani, S., Yorke-Smith, N.: Nltopddl: One-shot learning of pddl models from
natural language process manuals. In: KEPS (2020)

[28] Mirza, P., Sprugnoli, R., Tonelli, S., Speranza, M.: Annotating causality in the
tempeval-3 corpus. In: CAtoCL. pp. 10–19 (2014)

[29] Mirza, P., Tonelli, S.: CATENA: CAusal and TEmporal relation extraction from
NAtural language texts. In: Proceedings of COLING. pp. 64–75 (2016)

[30] Mostafazadeh, N., Chambers, N., He, X., Parikh, D., Batra, D., Vanderwende, L.,
Kohli, P., Allen, J.: A corpus and cloze evaluation for deeper understanding of
commonsense stories. In: Proceedings of NAACL. pp. 839–849 (2016)

[31] Ning, Q., Subramanian, S., Roth, D.: An improved neural baseline for temporal
relation extraction. In: Proceedings of EMNLP. pp. 6203–6209 (2019)

[32] Ning, Q., Wu, H., Roth, D.: A multi-axis annotation scheme for event temporal
relations. In: ACL (7 2018), http://cogcomp.org/papers/NingWuRo18.pdf

[33] Olmo, A., Sreedharan, S., Kambhampati, S.: Gpt3-to-plan: Extracting plans from
text using gpt-3. arXiv preprint:2106.07131 (2021)

[34] Puente, C., Sobrino, A., Olivas, J.A., Merlo, R.: Extraction, analysis and represen-
tation of imperfect conditional and causal sentences by means of a semi-automatic
process. In: International conference on fuzzy systems. pp. 1–8. IEEE (2010)

[35] Saurı́, R., Littman, J., Knippen, B., Gaizauskas, R., Setzer, A., Pustejovsky, J.:
TimeML Annotation Guidelines Version 1.2.1 (2006)

[36] Sil, A., Yates, A.: Extracting STRIPS representations of actions and events. In:
Recent Advances in Natural Language Processing (2011)

[37] Tan, F.A., Hürriyetoğlu, A., Caselli, T., Oostdijk, N., Nomoto, T., Hettiarachchi,
H., Ameer, I., Uca, O., Liza, F.F., Hu, T.: The causal news corpus: Annotating
causal relations in event sentences from news. arXiv preprint:2204.11714 (2022)

[38] Tandon, N., de Melo, G., De, A., Weikum, G.: Knowlywood: Mining activity
knowledge from hollywood narratives. In: Proc. CIKM (2015)

[39] Van Harmelen, F., Lifschitz, V., Porter, B.: Handbook of knowledge representa-
tion. Elsevier (2008)

[40] Webber, B., Prasad, R., Lee, A., Joshi, A.: The penn discourse treebank 3.0 anno-
tation manual. Philadelphia, University of Pennsylvania 35, 108 (2019)

[41] Yang, Q., Wu, K., Jiang, Y.: Learning action models from plan examples using
weighted max-sat. Artificial Intelligence 171(2-3), 107–143 (2007)

