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Abstract

An important challenge in AI research is to build models which can
encapsulate the behaviour of agents in a dynamically changing world.
Events and actions are a formal framework which can be used to construct
such models. However it is not feasible to construct large, sufficiently
detailed collections of events and actions by hand. Thus the challenge is
to build systems to automatically generate them. An approach to this
problem via textual event extraction is presented in Sil et al. (2010). In
this thesis I outline my attempt to replicate it and give a more thorough
exposition of the proposed system. I was not able to achieve the reported
level of performance and discuss some potential reasons.

1 Introduction

In order for an intelligent agent to make decisions it needs to be able to model its
environment. Such a model must describe the effects of its actions (and possibly
the actions of other agents or other events that may occur). Furthermore, it must
be possible to use this model to plan by reasoning about sequences of possible
actions and evaluating the ensuing state of the world.

Planning is a well studied problem and many tasks have been framed as
planning problems to great effect (see 1.2). Posing a planning problem requires
information about the state of the environment and dynamics of that state. One
limit to the application of planning algorithms to general tasks is the “knowledge
acquisition bottleneck” (Sil et al., 2010): it is expensive or even infeasible for
humans to write models of the requisite complexity. To address this gap, attempts
have been made to automatically generate this data. The obvious approach is
to extract it from text; humanity’s largest repository of knowledge.

Sil et al. (2010) describe a novel approach to solving this problem. Their
system, known as ‘PrePost’, uses a combination of statistical and structural
information — extracted from automatically downloaded web documents — to
build simple representations of events and actions. The PrePost system is ex-
panded upon in Sil and Yates (2011) to extract a more powerful representation
and address problems the authors identify with word sense disambiguation and
generalisation to hypernyms. Both papers leave a number of expositionary gaps
and implementations of the systems are not publically available.
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The purpose of this thesis is twofold: I aim to reproduce the results of the
PrePost system as well as provide a more thorough exposition of the details of
its implementation. In 1 I outline the problem, give a motivating example, and
briefly discuss other approaches. I describe my work implementing the PrePost
system in 2, including explanation of some background techniques as well as
difficulties I faced. Finally in 3 I evaluate the performance of my implementation
and discuss some potential limiting factors.

1.1 Events and Actions

Sil et al. (2010) give an informal definition of events as “observable phenomena
that happen at a particular time and place”. It is helpful to, in addition, think
of events as always changing the state of the world in some way. Actions are
simply events which are brought about by (rational) agents.

There are different ways of formally representing events. One representation
popular in automated planning is STRIPS (originally used in the Stanford
Research Institute Problem Solver). A STRIPS representation of an action
consists of the arguments it takes, boolean predicates on those arguments that
must be true before the action is taken (preconditions) and boolean predicates
which are made true (add effects) or made false (delete effects) after the action
has occured. Automated planners sequence STRIPS actions from a start state
to a goal state by heuristic graph search.

PrePost relies on a simpler representation of events. Pre- and post-conditions
are represented as single words and don’t take arguments, and there is no dis-
tinction between add effects and delete effects. Thus they are less expressive
than the predicative pre- and post-conditions of STRIPS. The authors build
upon PrePost in Sil and Yates (2011) to extract full STRIPS representations.

awaken insert

STRIPS args: x o, p
pre: asleep(x) object#1 (o),

opening# 1 (p),
¬ in(o, p)

add: awake(x) in(o, p)
del: asleep(x) ¬in(o, p)

PrePost pre: asleep person, slot
post: awake in

Figure 1: Example STRIPS and PrePost representations of actions “awaken”
and “insert”. From Sil and Yates (2011).
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1.2 Application to Narrative Generation

One planning problem that would greatly benefit from larger action datasets
is narrative generation. Narrative generation is the task of generating fictional
plots (fabula) and is not concerned with the related task of representing those
plots in prose (syuzhet). We frame it as a planning problem as follows:

• Build a collection of characters, locations, and objects

• Specify ways in which these characters may interact with the world (ie
actions)

• Choose a starting state and goal state

A planner then generates a story by sequencing together character actions from
the starting state to the goal.

By itself this approach generates plots that are usually not very coherent or
compelling. Long sequences of legal events may make sense to a planner but be
incomprehensible to a human reader. Furthermore there is no reason for us to
expect them to be “interesting” in the same way a well-written story is.

Riedl and Young (2010) address the problem of coherence by adding the
constraint of intentionality. Under their framework any action a character takes
must further that character’s intentions. An intention is a model literal of the
form (intends A f), where A is a character and f is a fact. Intentions are
dynamic in the sense that they may arise as effects of actions. For example, a
character ?woman being betrayed by another character ?man could establish
the intention (intends ?woman (dead ?man)). Intentionality creates coher-
ence by requiring characters’ actions to be internally consistent. Haslum (2012)
demonstrated that Reidl and Young’s narrative planning problem can be com-
piled as a classical planning problem. This allows it to be solved much more
efficiently using existing, highly optimised classical planners.

While the example Riedl and Young (2010) give consists of a small cast of
5 characters and a handfull of possible actions, human novels typically feature
hundreds of characters and thousands of different interactions. Often actions that
may seem inconsequential can play a central role in a plot. For example imagine
a murder suspect signing something with his left hand being the clue a detective
needs to identify him as the killer. An open-domain narrative generation system
would need a collection of millions of actions to be able to model complex
interactions like this in the same way human authors do. The only feasible way
to compile a dataset this large is through automatic extraction.

1.3 Other Work

Most approaches to event extraction derive a temporal ordering of events but
do not seek to model the underlying state of the world that allows for and arises
from these events. Chambers and Jurafsky (2008) extract “narrative schemas”,
or sets of events that occur together. In its sequel (Chambers and Jurafsky,
2009) they extend this to also extract participant roles. The event2event system
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(Martin et al., 2018) uses a recurrent encoder-decoder neural network to extract
sequences of events from a corpus of Wikipedia movie plot summaries. Knowl-
ywood (Tandon et al., 2015) is a knowledge base of human activities extracted
from Hollywood scripts, including attribute data (participating agents, location,
time of day) as well as temporal links to typical previous and next activities.
Manikonda et al. present a naive approach to event extraction which assumes
events occur in the order they are described.

These approaches all primarily extract event–event relationships rather than
event–state relationships. Information about typical event sequences can be used
for narrative generation (see for example Martin et al. (2018)), however it does
not lend itself to classical planning. Without explicit pre- and post-conditions it
is not possible to decide whether an action can be taken at a particular step in
a plan and what the effects of that action are. Thus the problem PrePost and
its successor attempt to solve is relatively unexplored.

2 PrePost

The PrePost system aims to extract events by identifying the pre- and post-
conditions of given action words. Action words themselves are not automatically
extracted, however this could easily be done using a list of transitive verbs for
example. For each given action word the system collects web documents from
google searches. Candidate pre- and post-conditions are identified using a sta-
tistical heuristic. Two binary classifiers are trained on a hand-labeled collection
of actions, using features extracted from the collected documents. Both of these
classifiers take as input a single (action, candidate) pair (A,C). Given a pair
(A,C), the first classifier identifies whether C is a pre-condition of A. Similarly,
the second classifier determines whether C is a post-condition of A.

Features are chosen to be independent of the specific choice of action word
A. The intent is that they only indicate whether there is a causitive relationship
between A and C. Thus the two trained classifiers should be able to identify
pre- and post-conditions for previously unseen action words which have similar
causitive relationships.

2.1 Data Labeling

Sil et al. (2010) randomly select “a set of 40 actions from the lexical units in the
frames that inherit from the Transitive action frame in FrameNet (Johnson
et al., 2003)”. They label each action with a list of pre-conditions and a list of post-
conditions (of average length 4.2 and 3 respectively). Only one partial example of
labeled pre- and post-conditions of an action is given (in discussing their results).
They identify “knife”, “sharp”, and “person” as being pre-conditions, and “blood”
and “bloodshed” as being post-condtions, of the action“cut”. This contrasts with
the more idealised system they describe where true generalised pre- and post-
conditions are distinguished from candidates which are merely sometimes true
before or after the action. For example they state that “ice” is not actually a
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arresting washing kindling

Pre police, dirty, sticks,
criminal, stains, paper,
crime, soap, spark,
warrant water, firewood,

detergent, matches,
laundry match,

logs
Post jail, clean, fire,

charges, washed blaze,
fines, flame,
caught heat

Figure 2: Three example labeled pre- and post-conditions

precondition of “melt” (prefering the precondition “solid”). By this logic, “knife”
and “person” are not true pre-conditions and “blood” and “bloodshed” are not
true post-conditions of “cut” (one could envisage a chimpanzee cutting paper
with scissors).

I chose a set of 40 actions in a similar way. However, I intentionally avoided
actions which were not well described by the simplified PrePost representation
due to having a very general meaning or multiple meanings. Where actions had
one usage that was much more common than other (potentially more general)
meanings, I chose the common meaning. Some examples of labeled actions are
given in Figure 2. The full list can be found in my git repository1.

2.2 Document Collection

For each labeled action word A, PrePost collects documents by using a search
engine to search “(is|are|was|were) A-ing”. The idea behind this is to “select
documents where the word A is being used as an action, rather than as a noun
or perhaps a sense of the word A that is not an action” (Sil et al., 2010).

In my system the python package google-search2 was used to query google
for the phrases “is A-ing”, “was A-ing”, etc. Here A-ing is taken to mean the
present participle of A, so for example “juggle” becomes “juggling” and “cut”
becomes “cutting”. For each phrase 200 results were requested with a delay of 60
seconds every 10 results to avoid being timed out by google. The corresponding
webpages were downloaded and parsed using jusText3 to extract body text from
the HTML. This removed most of the text that was unrelated to the content
of the article, such as advertisements and navigational links. The downloaded
documents were then checked to ensure they contained A, because some websites

1This is currently cecs-private https://gitlab.cecs.anu.edu.au/u6384109/prepost
2https://pypi.org/project/google-search
3https://pypi.org/project/jusText
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would serve non-related texts such as requests to solve a CAPTCHA.
I chose to exclude the action “desiccate” from the dataset since my system

only collected 28 documents for it. For the remaining actions there was an
average of 418 documents collected with a minimum of 190 (“weaken”) and a
maximum of 561 (“demolish”). The system works relatively well.

2.3 Candidate Selection

PrePost selects potential preconditions and postconditions for an action A by
computing the pointwise mutual information (PMI) between “A-ing” and every
other word in the documents collected for A. PMI is a measure of how often two
words appear in the same document, weighted by how many documents they
appear in individually. If D is the set of documents then we define

PMI(A,C) = log
∣{d ∈D∣A,C ∈ d}∣

∣{d ∈D∣A ∈ d}∣ ∣{d ∈D∣C ∈ d}∣

It is worth noting that PAPE1 defines PMI as

PMI(A,C) = log
∣{d ∈D∣A,C ∈ d}∣

∣DA∣ ∣{d ∈D∣C ∈ d}∣

where DA is the documents collected as described above for the action word
A. The difference here is that in their definition occurences of “A-ing” outside
the documents collected for A are not counted. I could see no reason for this
restriction and the former definition is used in Sil and Yates (2011) so I went
with that.

To enable fast calculation of PMI my system precomputes a dictionary map-
ping each word to the set of documents they appear in. To exclude mispellings
and other errors, words are first filtered using a list of around 100,000 english
words4. From this dictionary PMI can be efficiently computed using Python’s
set cardinality and intersection methods. After the PMI between A and all
other words has been computed the 500 words with highest PMI are selected as
candidates.

Sil et al. (2010) report that their method was enough to ensure over 95%
of labeled pre- and postconditions appeared among the selected candidates. In
my experience this was not the case: only 5% of my labeled pre- and postcon-
ditions were recovered as candidates. The main cause of this was words that
appeared very rarely. For a fixed action A, PMI(A,C) is maximised by max-

imising ∣{d∣A,C∈d}∣
∣{d∣C∈d}∣

, thus words which appeared once in a document containing A

and nowhere else were given the highest possible rating. This led to words like
aadvarks, encaenia, and pfennig appearing as candidates for murder.

To address this I imposed minimums for the number of times a candidate word
must appear in the document set and the number of documents it must appear

4Available in my repository or at https://cs.anu.edu.au/courses/comp1730/labs/data/

wordlist.txt
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arresting washing kindling

PMI only arresting washing kindling
kibitz uncaught crossbreeding
fossicking pressurizes vermis
hairlocks unhitching outbred
hairlock rocketry morbidities
quilled tetanies inbreed
ungloved mullens forelimbs
presaging mangers hyperexcitable
prefabbing hollands amygdalae
subhumid enjoin focally

PMI and min arresting washing kindling
frequency detaining detergents kindled

jailing shampooing amygdala
detain lather twigs
arrests softener kindle
handcuffed detergent campfire
handcuffs washer lobe
lawfully grime alight
deport shampoos firewood
arrest washers epilepsy

Figure 3: Top ten selected candidates with and without minimum frequencies.
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in5. This created a trade-off between generally widely appearing candidates —
which had lower PMIs and thus benefited from higher choices of minimums —
and more specific candidates. For example, “masseur” occurred only 35 times
in the document set and in only 17 documents. If we lowered the minimums to
allow this to be selected as a candidate for “massage” then the candidate “table”
did not make the PMI ranking cut-off. I experimentally chose the minimums of
300 occurences and 25 documents. This resulted in 85% of my labeled pre- and
post-conditions being recovered.

2.4 PMI Features

To classify C as a precondition of A or not the first feature used is PMI(A,C).
This feature gives a measure of the association between A and C and allows
the classifier to identify words which appear more frequently with A as more
likely to be pre- or post-conditions. However, candidate words may be highly
associated with an action even if they are not true pre- or post-conditions. For
example, “drying” appears often with “washing” and is neither a pre-condition
nor a post-condition.

To address this issue Sil et al. construct a set of feature words. The idea is
that for example words like “requires” or “before” may be more highly correlated
with true action-precondition pairs than non-precondition pairs, regardless of
how correlated the words in the pair are with each other. To measure this three
way association between A, C, and a feature word F , they use three way PMI
defined6 as

PMI(A,C,F ) = log
∣{d ∈D∣A,C,F ∈ d}∣

∣{d ∈D∣A ∈ d}∣ ∣{d ∈D∣C ∈ d}∣ ∣{d ∈D∣F ∈ d}∣

In theory this should, as Sil et al. (2010) put it, “allow the classifier to learn the
nature of association between candidate words and action words”.

Rather than manually constructing such a set of feature words they propose a
system to automatically select them. First, “to ensure that [their] PMI statistics
would have sufficient numbers of occurrences to work with” (Sil et al., 2010),
they filter their dataset for words which appeared more than 500 times. They
reported that this resulted in around 3000 candidate feature words. Using these
candidate feature words they “computed χ2 values by comparing each candidate
feature word and [their] labeled pre and postconditions” (Sil et al., 2010). They
then chose an experimental threshold on the χ2 value which resulted in 161
feature words to use in extracting both pre- and post-conditions.

This part of Sil et al. (2010) was the most difficult to interpret. I selected
candidate feature words using the same threshold of 500 which resulted in a

5This second condition was inspired by a word which appeared over 500 times in a Victorian
era erotic novel, and almost nowhere else.

6As before PAPE1 actually defines it as

PMI(A,C,F ) = log
∣{d ∈ D∣A,C,F ∈ d}∣

∣DA∣ ∣{d ∈ D∣C ∈ d}∣ ∣{d ∈ D∣F ∈ d}∣
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similar amount of candidates (3419). Even after doing so over 99% of candidates
feature words resulted in undefined PMI values for at least one point in my
dataset. I interpreted the χ2 test as a test of categorical independence. That
is, whether the PMI values were statistically independent of the label given
to the data. Sil et al. select the same set of feature words for both pre and
postconditions. Since the idea is to train two separate classifiers I simplified
things by selecting them separately.

Sil et al. do not make it explicit whether they select features using their
entire dataset or only the training set. To avoid biasing performance estimates I
restricted feature selection to the training set. A more thorough treatment could
involve feature selection during cross-validation. See Ambroise and McLachlan
(2002) for a discussion.

While χ2 feature selection is a very standard technique it is somewhat unclear
how Sil et al. use it. Normal χ2 feature selections works on frequency tables or
counts which must have non-negative values. However since PMI is a log of a
number between 0 and 1 it is always negative. Using Python’s sklearn.chi2

(Pedregosa et al., 2011) I tried three different approaches to address these two
issues.

Simply working without the log results in values that are always defined and
non-negative. However, this resulted in an almost meaningless χ2 test where
all p-values were above 0.99. One possible cause is numerical instability in the
Python implementation of the χ2 statistic. Words that were selected using this
method were highly dependent on the choice of training data. For example,
the top ten words selected for a training set containing the action “juggling”
included “jugglers”, “juggle”, “juggling”, and “balls”. Two disjoint training sets
of five actions shared only 6/161 feature words. Thus I rejected this method.

My second approach was to exclude any undefined PMI values and then take
the negative of the defined ones in calculating the χ2 statistic. The intent was to
then replace undefined PMI values during classification by an artificial “negative
infinity” represented by a large negative number. This produced similarly data-
dependent feature words which did not serve the intended purpose.

My third approach was to use a modified definition of three way PMI defined
as

PMI ′(A,C,F ) = log
1 + ∣{d ∈D∣A,C,F ∈ d}∣

1 + ∣{d ∈D∣A ∈ d}∣ ∣{d ∈D∣C ∈ d}∣ ∣{d ∈D∣F ∈ d}∣

This was defined everywhere and I could compute χ2 statistics using its negative
which is always greater than zero. The resulting p-values for the 161 chosen
feature words ranged from around 0.05 to 0.12; a huge improvement. Selected
feature words included “and”, “to”, “with”, “when”, “before”, “never” and “while”
which from a human standpoint seem like much better choices. Using this method
the two disjoint training sets compared above shared 62 feature words.
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Figure 4: Normalised three way PMI frequencies for feature word “jugglers”, the
highest ranked candidate feature word using the first method.
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Figure 5: Normalised three way PMI frequencies for feature word “you”, the
highest ranked candidate feature word using the third method. Note that the
two distributions appear to differ, which would indicate dependence on the label.
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2.5 Structural Information

The use of PMI only gives “coarse-grained, document-level features that ignore
the significant structure in language and the prediction task” (Sil et al., 2010).
Sil et al. (2010) identify that for many actions the arguments to the action are
often its pre- and post-conditions. They give the example sentence

“Kava is a highly prized medicinal herb whose primary benefit is
alleviating anxiety and minor pain.”

where the precondition “pain” acts as an argument to the predicate “alleviating”.
To allow their classifiers access to this structural information Sil et al. annotate
their dataset with a Semantic Role Labeling (SRL) system and Coreference
Resolution (Coref.) system and use this information to extract five different
features.

2.5.1 Semantic Role Labeling

SRL refers to the task of labeling words or phrases with the semantic role they
play in a sentence. There is no single standard set of labels used in SRL, however
common labels include the verb, the actor/agent of the verb, and the patient (the
thing which is acted on). The two sentences below are annotated using labels
from PropBank (Palmer et al., 2005). Note that the semantic role of a word is
distinct from its syntactic role. In the sentence

The girl
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A0

hit
¯
V

the ball
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

A1

“The girl” is the subject of “hit” whereas in the passive formulation

The ball
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A1

was hit
¯
V

by the girl
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

A0

it is the object. However, in both sentences “the girl” is the actor (A0).
Sil et al. used an SRL system developed in Huang and Yates (2010). Huang

and Yates don’t provide an out of the box implementation of their system so I
searched for an alternative. I settled on SENNA (Collobert et al., 2011), which
provided fast SRL and offered similar performance to the system developed by
Huang and Yates. It is worth noting that there are more recent SRL systems
which claim to achieve much higher performance, for example He et al. (2017).

In multi-clause sentences words often play multiple semantic roles. SENNA
indicates this with a multicolumn output where each column corresponds to the
roles played by words in a particular clause. Tags are in IOBES format. The
prefix (I, O, B, E, or S) indicates what part of a tag they are (Interior, Outside,
Beginning, End, or Singleton tag). The suffix is the semantic role. So for example
“girl” in the above sentences would be tagged “E-A0”.

I parsed the SENNA output into a graph structure where the nodes were
words, tags, and clauses. Each word is linked to the tags it is labeled with and
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Word Predicates Clause 1 Clause 2

How - B-AM-TMP O
often - E-AM-TMP O
you - S-A0 S-A0
should - S-AM-MOD O
change change S-V O
bed - B-A1 O
sheets - E-A1 O
to - B-AM-PNC O
avoid avoid I-AM-PNC S-V
bugs - I-AM-PNC B-A1
and - I-AM-PNC I-A1
mould - E-AM-PNC E-A1

Figure 6: Example SENNA SRL output

change

AM-TMP

How often

A0

you

AM-MOD

should

V

change

A1

bed sheets

AM-PNC

to avoid bugs and mould

Figure 7: Graph representation of Clause 1

each tag is linked to the clause that contains it. Tags that denoted an argument
or predicate were also marked with that information. In doing this I noticed
a relatively rare bug: SENNA occasionally doesn’t properly begin a tag with
the B prefix (instead having the first word with an E prefix). Fortunately this
exception could be accounted for.

2.5.2 Coreference Resolution

Coreference resolution is the task of identifying phrases in text which refer to
the same entity. For example in

“My sister has a pet dog. She takes him for walks.”

the noun phrases “My sister” and “She” both refer to the same thing (similarly
for “a pet dog” and “him”).

Coreference resolution is a non-trivial task. One reason for this is that a
coreference system must combine syntactic and semantic information (often with
contextual knowledge) to correctly identify coreferent phrases. As an example
consider the sentences

“The bowling ball broke the glass table because it was heavy.”
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and

“The bowling ball broke the glass table because it was fragile.”

Syntactically the two are identical. However, in the first sentence we can identify
the pronoun “it” with “The bowling ball” since being heavy implies the ability to
break rather than breakability. Similarly, in the second sentence “it” is identified
with “the glass table” since being fragile implies breakability. Things are futher
complicated through metaphor where phrases figuratively refer to the same thing
(“But soft, what light through yonder window breaks? It is the east, and Juliet
is the sun!”) or in puns where the same phrase refers to different things (“Mr
Leopold Bloom ate with relish the inner organs of beasts and fowls”).

There are several publically available software packages which advertise out
of the box coreference resolution. Sil et al. used Apache OpenNLP7 (written in
Java). I initially tried using OpenNLP but found that its coreference functionality
lacked documentation and did not have a command line interface which made it
difficult to integrate with my work (written in Python). Instead I used Stanford
CoreNLP8 which was better documented and offered a command line interface
as well as wrappers for a variety of different languages.

CoreNLP’s output contains a lot of irrelevant information so I used the
Python wrapper9 to reduce this to collections of coreferent phrases (and their
sentence number, word number addresses). I also retained information about
sentence and word character offsets to allow me to integrate the coreference infor-
mation with the semantic role labelling of SENNA. I did this by augmenting the
word/tag/clause graph I had constructed earlier with phrase nodes which linked
to the words in the corresponding phrase, and any other coreferent phrases. This
was actually a significant challenge as SENNA and CoreNLP tokenised (split
plaintext into words) differently. For example SENNA would split a Java function
call “Class.method()” into the tokens “Class”, “.”, “method”, and “()”, whereas
CoreNLP would maintain the whole string as a single token “Class.method()”.
Using character offset information I identified strictly contained tokens, so in my
graph“method” would be linked to any phrase CoreNLP identified as contain-
ing “Class.method()”. I ignored tokens which overlapped but were not strictly
contained in each other as these occurred relatively infrequently.

2.5.3 Structural features

From the structural annotations Sil et al. calculate five features for each action-
candidate pair (A,C). The first three are determined only using SRL, whereas
the last two rely on both SRL and coreference information. As discussed above,
the features all indicate predicate-argument relationships between A and C. In
Figures 8–12 the action “washing” is used as a recurring example to indicate
typical distributions of these features. Inspecting these Figures we see many of
the highly ranked features are pre- or post-conditions.

7https://opennlp.apache.org/
8https://stanfordnlp.github.io/CoreNLP/
9https://stanfordnlp.github.io/stanfordnlp/
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Feature 1: Arg in

To capture the fact that pre- and post-conditions often appear as arguments
to their action, Sil et al. calculate “how often the candidate word C appears
as part of a phrase that is an argument to the action word A”. In evaluating
this (and the proceeding features) I counted the predicates in the form “A-ing”
rather than “A”, since that was the form selected for in document collection.

Candidate Counts
machines 166
clothes 97
soda 71
dishes 61
washing 31
detergent 26
beaches 24
soap 23
powder 19
laundry 19
⋮ ⋮

softener 0
lather 0

Figure 8: Highest ranked candidates for “washing” by Arg in

Feature 2: Arg anywhere

The second structural feature is a count of “how often the candidate word
appears as an argument to any predicate at all”. There is a commonly occurring
ambiguity here where in a multi-clause sentence a single word might be the
argument to multiple predicates. I took the literal interpretation and counted
these multiple occurences.
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Candidate Counts
washing 2756
clothes 2026
bacteria 1883
wash 1344
soap 1257
machines 1235
wet 1062
cleaning 988
laundry 962
⋮ ⋮

anxiously 5
scrubbed 5
adheres 2

Figure 9: Highest ranked candidates for “washing” by Arg anywhere

Feature 3: Arg near

The next three features were intended to provide less sparse counts. Sil et
al. determine a distance based feature, counting “how often C appears as an
argument near (less than 50 words away from) A”.

Candidate Counts
washing 5622
wash 901
clothes 634
machines 562
laundry 433
soda 318
soap 264
cleaning 260
detergent 235
⋮ ⋮

sinful 0
pitting 0
eyelids 0

Figure 10: Highest ranked candidates for “washing” by Arg near

15



Feature 4: Coref 1

Using the coref. annotations they counted “how often C appears as an argument
that is coreferential with an argument of A”. Consider the sentences

“The clothes were covered in mud after the storm. He was washing
them.”

Here “clothes” is taken to be a precondition10 of “wash”. While not directly
an argument to “washing”, “clothes” is coreferential with the argument “them”.
Thus this feature would count this relationship.

Candidate Counts
washing 1110
nappies 691
soda 288
machines 139
clothes 119
dishes 103
drum 47
fishermen 35
laundry 32
⋮ ⋮

lather 0
shampooing 0
stained 0

Figure 11: Highest ranked candidates for “washing” by Coref 1

Feature 5: Coref 2

The final structural feature counts “how often C appears as an argument to
a predicate P which has another argument D which is coreferential with an
argument of A.” Consider the exampleSil et al. (2010)

“Doctors need to

A
¬

heal patients.

D


They

P
«
are the ones who need

C
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

medicine.”

The candidate “medicine” (C) appears as an argument to the predicate “are” (P )
which has another argument “they” (D) which is coreferential with an argument
of “heal”. Ideally this feature would allow us to use scenarios like this to identify
that “medicine” is a pre-condition of “heal”.

10Clothes aren’t a true precondition of “washing” but in the majority of uses online, “washing”
is used in the sense of laundry. See 2.1
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Candidate Counts
washing 11588
wash 2450
clothes 1308
nappies 1022
soap 826
laundry 725
shampoo 688
washed 681
detergent 653
machines 625
⋮ ⋮

tubs 0
stained 0

Figure 12: Highest ranked candidates for “washing” by Coref 2

2.6 Experimental Setup

Sil et al. split their 40 labeled actions into a set of 5 training actions and 35
test actions. Words which are labeled as pre- or post-conditions are taken to be
positive examples by their respective classifiers. For a given action, any word in
its 500 candidates which is not labeled is taken as a negative example. They use
a support vector machine, implemented in SVM-Light (Joachims, 1998), with
radial basis function (RBF) kernel and default parameter settings.

I followed their test/train split and used scikit-learn’s (Pedregosa et al., 2011)
SVM with RBF kernel and default parameter settings. Training time was less
than 30 seconds.

3 Results

Sil et al. evaluate the performance of their system with a precision-recall graph
(Figure 13). This is generated by varying the threshold which their classifier uses
to decide on its classification to trade off the two metrics. I was not able to
achieve nearly the same level of precision-recall performance (See Figure 14). In
fact, my implementation performs worse than the author’s version restricted to
only PMI features.
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Figure 13: Precondition Precision-Recall (Sil et al., 2010)
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Figure 14: Precondition Precision-Recall for my full PrePost system.
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Candidate Probability
loose 0.28
friction 0.10
bird 0.03
sweat 0.02
overnight 0.01
pollution 0.01
cotton 0.01
excess 0.01
bowl 0.01
consumption 0.01
delicate 0.01
thoroughly 0.01
instructions 0.01
powder 0.01
dirt 0.01
machines 0.01
load 0.01
bacteria 0.01
mesh 0.01
shoes 0.01

Figure 15: 20 most likely preconditions for “washing” and their predicted prob-
ability of being a precondition. None of them are labeled preconditions. Inter-
estingly the two highest candidates “loose” and “friction” are preconditions for
one of the training actions “chafing”.

On the training set my implementation achieves precision and recall over 0.99
(where 1 is a perfect score). This means that the classes are sufficiently separable
and that the system is failing to generalise adequately. There are several possible
reasons for this discrepancy.

One obvious suspect is my hand-constructed actions. Given the sparsity of
labeled examples it is difficult to be sure that my labeling coincides with that
of Sil et al. (2010). As previously mentioned, fewer of my labeled pre- and post-
conditions appear among the selected candidates and I encountered a trade off
caused by the minimum frequencies I introduced.

I had to make several decisions in interpreting the PMI features. My method
for selecting words as feature words with χ2 may have differed from theirs. They
may also have dealt with undefined PMI in a different way.

It is possible that SENNA or CoreNLP performed substantially worse than
their SRL and coreference systems. This could feasibly lead to a reduction in
the quality of structural features, thus making them less useful in distinguishing
examples.

The default parameters chosen by sklearn’s SVM implementation may have
differed from those of SVM-light. In particular the two systems may have dif-
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Figure 16: Dimension reduction of entire dataset using PCA with RBF kernel.
In two dimensions the data is not linearly separable. We can see however that
true preconditions are relatively clustered.

ferently dealt with the imbalanced dataset (sklearn’s default behaviour is to
weight classes proportionally).

Finally, while I have performed many sanity checks on the individual com-
ponents of my system it is difficult to inspect 20,000 datapoints, each with over
150 features. Thus there is always the chance that my system contains some
fatal bug.

4 Conclusion

Sil et al. (2010) formulate the problem of event extraction and convincingly
argues its importance in the context of classical planning. While their exposition
lacks detail and I was ultimately unable to reproduce their results, the system
they propose is the beginning of a plausible solution. Its largest flaw is failing
to distinguish between multiple meanings a single action word may have (word
sense disambiguation). Sil and Yates (2011) expand on this work substantially
to include argument extraction and generalisation to hypernyms. There are a
number of gaps in their work too, particularly in their treatment of word sense
disambiguation. A follow-on project could be to more thoroughly diagnose the
reasons for my implementation’s poor performance as well as implement the
extensions of Sil and Yates (2011).
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