(More or Less Successful) Applications of Planning:
- Planning in Space.
- “Intelligent Control”.
- Project/Operations Planning.
- Project/Operations Scheduling.

Why Is It So Hard, or Is It Really That Hard?
- What to Automate?
- Knowledge Engineering.
- Domain Complexity & Scaling.
- Plan Management.
Planning in Space

- The Remote Agent Experiment (RAX):
 - Experimental AI system – including a planner – commanded DS-1 probe for a few days in 1999.
- MAPGEN: Mars Rover Daily Planning.
 - Mixed-initiative planning/scheduling system used by ground staff to generate rover plans.
 - Over-subscribed problems, complex time/resource constraints, but “causally simple”.
- Constraint-based planner/scheduler (HSTS/Europa) integrated with domain-specific solvers.
- Still requires (highly tuned) domain-specific search control.
Planning as Intelligent Control

- On-line problems: New goals arrive while plan executing.
- Schindler’s Elevator Destination Control:
 - Passengers input destination before entering the elevator – system allocates elevators to waiting passengers to optimise, e.g., mean wait or travel time.
 - Can be modelled as a (almost classical) planning problem, but domain-specific implementation required for efficiency.
- PARC’s Flexible Printer Control:
 - High-speed printer constructed from multiple (standard) print units and flexible, redundant “paper path” elements – plan moves and operations for each sheet in turn, respecting sheets already in progress and output order.
 - Domain-specialised implementation of general (domain-independent) planning techniques sufficiently expressive and efficient.
Project/Operations Planning

- “Crisis Response” Scenarios:
 - Oil-spills, Forest fires, Military operations.
- Extensive Use of HTN Representation:
 - Hierarchical organisation & “standard operating procedures”.
 - Minimise/eliminate search.
- Extensive Use of External/Legacy Software:
 - Databases (e.g., GIS).
 - Specialised solvers, Forecasting, Plan analysis.
 - Temporal Reasoning & Scheduling.
- Demonstrators only.
- Knowledge-intensive.
Logistics (air transport) for US army.
Large-scale construction projects (nuclear submarine).
Constraint-based scheduling:
 “Domain-specific” by nature (emphasis on modelling), but (re-)using general techniques.
 Integration of domain-specific solvers for subproblems.
 For large-scale problems, typically use local search – not optimal, but “good enough”.
Level of Automation

- Plan sketching tool ("scratchpad").
- Plan validation tool / constraint checker.
- Scheduling.
- Limited planning (e.g., goal selection in oversubscribed problems, alternatives in scheduling).
- Full automated planning.
Planning is *model-based*.

Acquiring and *maintaining* a *correct* model is often the hardest part!

Can planners be extended/modified to cope with incorrect / incomplete models?
Does modelling “real-world domains” require
- temporal reasoning? “expressive” temporal reasoning?
- resources, “geographic reasoning”, general numeric reasoning?
- complex optimisation criteria, such as “soft goals”?
- probabilities, incomplete information, or other kinds of uncertainty?

Does solving “real-world problems” require solving very large problems very fast?
Plan Management

- Finding a plan is not the *only* problem:
 - Validation & explanation.
 - Execution & monitoring of execution.
 - Plan repair / replanning.
 - Storage, retrieval & adaptation.

- Finding a set of *diverse* plans, providing users with options.