Planning with Time and Scheduling – Three Examples

P@trik Haslum

NICTA/ANU

Advanced Topics in AI, 2007

Australian Government

Department of Communications, Information Technology and the Arts

Australian Research Council

Summary

- Ist Examle: TP4
 - Makespan-optimal planning.
 - Temporal regression.
- 2nd Example: LPGP & Crikey
 - Separating planning and plan scheduling (almost).
 - "Expressive" temporal planning (PDDL2.1).
- 3rd Example: HSTS/Europa
 - Constaint-Based Scheduling.
 - Planning with an activity/constraint model.

TP4

NICTA

- Simple temporal planning ("TGP semantics"):
 - Actions have duration, dur(a) > 0.
 - For action *a* to execute over [*s*, *t*]:
 - preconditions hold at s;
 - preconditions and effects not interfered with (not added/deleted by any other action) over [s, t];
 - effects can be relied on only at t.
- Temporal regression.
 - The "regression cut" property.
- h^2 heuristic for makespan.

Digression: Temporal Constraint Networks

- Temporal Constraint Network (TCN):
 - Variables representing time points
 - Disjunctive interval constraints on differences:

$$(t_j - t_i \in [l_1, u_1]) \vee \ldots \vee (t_j - t_i \in [l_n, u_n])$$

- Consistency checking is NP-hard
- Reasonably efficient meta-CSP approach.
- Simple Temporal Network (STN):
 - Single interval constraint between any two variables:

 $d_{i,j}^{min} \leqslant t_j - t_i \leqslant d_{i,j}^{max}$

• Constraint are *linear* – consistency checking is tractable.

NICTA

- More efficient: all-pairs shortest path on *distance graph*.
- Dechter, R., Meiri, I., & Pearl, J., AIJ, 1991.

LPGP, Crikey & DEP+

- PDDL2.1 temporal planning:
 - Actions have conditions *at start, at end* and *over all* (interior of execution interval).
 - Actions have instantaneous effects at start and at end.
 - Compatibility constraints at a time point are the same as in simple temporal planning.
 - States have duration > 0: conditions must be separated from establishing effects by a positive amount of time.
- Separating planning and scheduling:
 - Sequential plan in the space of *events*: sets of actions starting and ending.
 - Maintain temporal constraints as STN/LP to ensure *schedulability*.
 - Makespan optimality only in the limit not in practice.

Constraint-Based Scheduling

- Variables:
 - start(A), end(A), $\forall A$ absolute or relative.
- Constraints:
 - Duration: $d_{min}(A) \leq end(A) start(A) \leq d_{max}(A)$

NICTA

- Precedence ("A before B): end(A) < start(B).
- Unary resource:
 - $(end(A) < start(B)) \lor (end(B) < start(A)).$
- Cumulative: $\forall t, \left(\sum_{start(A) \leq t \leq end(A)} req(A)\right) \leq cap(R).$
- Alternative resources and (optional) set-up activities cause *disjunctions* – hard to deal with efficiently.
- Specialised propagators for certain classes of resource constraints more efficient than general (disjunctive) formulation.

HSTS/Europa

- Activity/constraint model:
 - Timelines state variables.
 - Tokens variable value over *time interval* ([s, t](v = x)).
 - Compatibility constraints

 $[s,t](v=x) \rightarrow ([u_1,v_1](v_1'=y)) \lor \ldots \lor ([u_n,v_n](v_n'=z))$

- No distinction between states and actions!
- Search:
 - Branch on disjunctive compatibilities/token placement.
 - Maintain consistency by STN.
 - Solution consistent and all compatibilities satisfied.
- Requires (domain-specific) search control for efficiency.
- Recent work on domain-independent heuristics.

