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The APPN domain is an encoding of a discrete event system (DES) diagnosis problem as a
planning problem [2]. The aim of diagnosis, in the context of alarm processing, is to find an
explanation of the observed alarms, which is a possible execution of the system that generates
the same set of observations, with a minimum number of “unexplained” events. In the encoding
as a planning problem, actions that correspond to unexplained events have a cost of 1, while
other actions have a cost of 0, so the objective is to find a plan of minimum cost.

The diagnostic model is highly simplified: for instance, it does not accurately model the
propagation of electricity through the network. In spite of this, it is sufficient to generate
meaningful explanations of some real alarm logs [1].

Domain Formulations

There are three domain formulations: Classical, Timed-TIL and Timed-NoTIL. Note that all
formulations encode the same problem: in particular, the objective in all formulations is to
minimise the sum of action costs. The difference between the formulations is only in how
some constraints on valid plans are expressed.

All formulations use some quantified conditional effects, but these are conditioned only
on static predicates. A plain STRIPS version of each formulation (using one domain file per
instance) is also provided. The two timed formulations differ in that one uses timed initial
literals and the other does not.

Problem Instances

The problem instances in this domain are randomly generated, but in a way aimed to make
them “similar” to real problem instances. This was done by building a statistical model of the
distribution of and associations between types of alarms in the original data, and generating
problems according to this model. The result is reasonable, but not perfect. The random
instances are somewhat less structured. Figure 1 shows the distribution of the estimated ratio
of explicable alarms in the real and randomly generated data. (This ratio, for an instance, is
A−c?

A , were A is the number of alarms and c? is the minimum solution cost, i.e., the minimum
number of unexplained alarms; it is an estimate because a lower bound on c? is used when
the true minimum is not known.) In the real data, there is a large number of instances in
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which no alarm can be explained, but a small set of instances that allow a high fraction of
explained alarms. Among the random instances, on the other hand, there is a much larger
number where a small fraction of alarms is explicable, but instances with a really high fraction
of explained alarms are rarer.

Instances with a zero ratio of explicable alarms are not particularly interesting as bench-
mark problems, since the trivial solution is optimal. Therefore, 35 instances where selected
(from 600 instances generated with some variation in parameters) only among those with a
ratio of at least 0.2. Table 1 summarises characteristics of the chosen instances: #O and #C
are the number of observations and components, respectively. #A is the number of alarms
(observations that are not commands or command responses). This is an upper bound on
plan cost, i.e., there always exists a plan with cost less than or equal to #A. The last columns
are all lower bounds on cost: the value of the LM-Cut heuristic in the initial state, the highest
f -value proven by an A? search with this heuristic within 1 hour CPU time and 3Gb memory
limits, and the value computed by the h++ lower bound function, also within 1 hour CPU
time and 3Gb memory limits. A ? on any lower bound indicates that a matching plan was
found, i.e., the bound is in fact the optimal plan cost.

The lower bounds in the table were obtained from the classical formulation (since no
effective optimal planner or lower bound function exists for the timed formulations). However,
the bounds should be valid for all formulations. A few examples of optimal plans (written by
hand) are provided for the timed formulations.

References

[1] A. Bauer, A. Botea, A. Grastien, P. Haslum, and J. Rintanen. Alarm processing with
model-based diagnosis of discrete event systems. In Proc. 22nd International Workshop
on Principles of Diagnosis (DX’11), 2011. To appear.

[2] P. Haslum and A. Grastien. Diagnosis as planning: Two case studies. In ICAPS’11
Scheduling and Planning Applications Workshop, 2011.

2



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fraction of explicable alarms

F
re

qu
en

cy

0.
0

0.
2

0.
4

0.
6

0.
8

Real
Random

Figure 1: Distribution of the estimated ratio of explicable alarms in real and randomly gen-
erated data.
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#O #C #A h(s0) A? h++

test01-S3-83 5 1 3 2 2? 2?

test02-S2-46 7 5 4 2 2? 2?

test03-S3-88 5 6 3 1 1? 1?

test04-S2-30 5 8 5 4 4? 4?

test05-S3-134 7 10 4 3 3? 3?

test06-S2-4 5 11 2 0 0? 0?

test07-S2-169 6 14 3 2 2? 2?

test08-S2-40 20 19 14 11 11? 11?

test09-S3-4 6 20 4 2 2? 2?

test10-S2-99 20 21 9 7 7? 7?

test11-S3-165 20 26 20 14 14 14?

test12-S2-163 14 28 6 3 4? 4?

test13-S2-47 20 28 13 10 10 10?

test14-S2-178 20 31 20 13 13 14
test15-S2-72 20 31 20 16 16 16
test16-S2-25 20 33 19 14 14? 14?

test17-S3-64 20 35 14 9 9 11?

test18-S2-71 20 38 20 15 15? 15?

test19-S2-177 20 41 18 11 11 12?

test20-S3-90 20 44 17 12 12 13?

test21-S4-175 60 45 54 42 42 43
test22-S2-185 20 47 15 12 12 12?

test23-S3-145 20 51 20 16 16 16?

test24-S3-159 20 52 20 14 14 14?

test25-S3-80 20 54 20 15 15 15?

test26-S4-4 60 66 58 44 44 44?

test27-S4-33 60 86 60 46 46 48?

test28-S4-63 60 96 60 43 43 44?

test29-S4-38 60 101 56 40 40 41?

test30-S4-178 60 108 60 48 48 48?

test31-S4-191 60 114 56 39 39 41?

test32-S4-196 60 114 57 39 39 40
test33-S4-10 60 131 58 44 44 45?

test34-S4-156 60 131 60 38 38 40
test35-S4-8 60 142 56 43 43 44?

Table 1: Size and bounds on plan cost for the selected instances.
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