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Abstract. We study the problem of exploring an unknown undirected connected
graph. Beginning in some start vertex, a searcher must visiteach node of the graph
by traversing edges. Upon visiting a vertex for the first time, the searcher learns
all incident edges and their respective traversal costs. The goal is to find a tour of
minimum total cost. Kalyanasundaram and Pruhs [23] proposed a sophisticated
generalization of a Depth First Search that is16-competitive on planar graphs.
While the algorithm is feasible on arbitrary graphs, the question whether it has
constant competitive ratio in general has remained open. Our main result is an
involved lower bound construction that answers this question negatively. On the
positive side, we prove that the algorithm has constant competitive ratio on any
class of graphs with bounded genus. Furthermore, we providea constant compet-
itive algorithm for general graphs with a bounded number of distinct weights.

1 Introduction

In an exploration problem an agent, or searcher, has to construct a complete map of
an environment without any a priori knowledge of its topology. The searcher makes
all its decisions based on partial local knowledge and gathers new information on its
exploration tour. Exploration problems appear in various contexts, such as robot motion
planning in hazardous or inaccessible terrain, maintaining security of large networks,
and searching, indexing, and analyzing digital data in the internet [7,20,28].

We study the online graph exploration problem on undirectedconnected graphsG =
(V, E). We assume that the vertices are labeled so that the searcheris able to distin-
guish them. Each edgee = (u, v) ∈ E has a non-negative real weight|e|, also called
the length or the cost of the edge. Beginning in a distinguished start vertexs ∈ V ,
the searcher learnsG according to the following online paradigm, also known asfixed
graph scenario[23]: whenever the searcher visits a vertex, it learns all incident edges,
their weights, and the labels of their end vertices. To explore a new vertex, the searcher
traverses previously learned edges in the graph. For traversing an edge, the searcher has
to pay the respective edge cost. The task is to find a tour that visits all verticesV and
returns to the start vertex. The goal is to find a tour of minimum total length. An illus-
tration of this model (see [23]) is the scenario where vertices correspond to cities and
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upon arrival in a city the searcher sees the road signs of routes to other cities including
distance information.

A standard technique to measure the quality of online algorithms iscompetitive
analysis[9], which compares the outcome of an algorithm with anoptimal offline so-
lution. For our graph exploration problem, the corresponding offline problem is the
fundamentalTraveling Salesman Problem(TSP), one of the most studied optimization
problems which is in general even NP-hard to approximate [21]. It asks for a short-
est tour that visits every vertex of a graph known in advance.For a positive numberc,
we call an online exploration algorithmc-competitive, if it computes for any instance
a tour of total length at mostc times the optimal offline tour through all vertices. The
competitive ratioof an algorithm is the infimum over allc such that it isc-competitive.

The greedy algorithmNearest Neighbor(NN) is a simple and fast heuristic that
has been studied intensively in the traditional offline TSP environment. It repeatedly
chooses the next vertex to be visited as an unexplored vertexclosest to the current
location. The worst case ratio for this greedy algorithm,Θ(log n) [29], also applies to
our online scenario. It is tight even on planar unit-weight graphs, which follows from a
nice and simple lower bound construction of particular graphical instances [22].

In case all edges have equal weight, aDepth First Search(DFS) is 2-competitive. It
yields a total tour not larger than twice the size of a minimumspanning tree (MST ), a
lower bound on the optimal tour. This is optimal in the unit-weight case [25].

For general graphs with arbitrary weights no constant competitive algorithm is
known. A promising candidate was introduced by Kalyanasundaram and Pruhs [23].
Their algorithmShortCut is a sophisticated generalization ofDFS obtained by intro-
ducing a parameterizedblocking conditionthat determines when to diverge fromDFS.
They prove an upper bound of16 on its competitive ratio in planar graphs. The algo-
rithm itself is defined for general graphs. However, since its introduction almost two
decades ago, it has been open ifShortCut has constant competitive ratio in general.
There has been no progress on this question since then, and infact, all subsequent re-
sults concerned with our graph exploration setting only apply to simple cycles: In [2],
it is shown thatNN yields a competitive ratio of3/2 on simple cycles. Additionally, a
lower bound of5/4 for any deterministic online algorithm is proven. Both lower and up-
per bound are improved in [25]. There, the authors give a moresophisticated algorithm
which takes additionally the current total tour length intoaccount. They prove that, on
simple cycles, this algorithm achieves the best possible competitive ratio of1 +

√
3. It

is not clear how the algorithm can be generalized and appliedto more complex graphs.

Our contribution. We revisit algorithmShortCut proposed by Kalyanasundaram and
Pruhs [23]. We elaborate on the sophistication of the underlying idea, but report also
a precarious issue in the given formal implementation. We propose a reformulation,
which we callBlocking, highlighting the elaborate idea from [23], and adapt the proof
of [23] to assure that the reformulation has constant competitive ratio for planar graphs.
Here, a concise observation allows us to simplify the proof and to generalize it to graphs
of bounded genus. More precisely, we generalize the upper bound on the competitive
ratio of16 for planar graphs to a bound of16(1 + 2g) for graphs of genus at mostg.

As further contribution we give a constant competitive algorithm for general graphs
with a bounded number of distinct weights. Our online algorithm generalizesDFS to
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an algorithm that hierarchically performs depth first searches on subgraphs induced by
restricted weights. For arbitrary graphs with arbitrary weights we round weights up
to the nearest power of2 and apply the same algorithm. With this modification the
algorithm has a competitive ratio ofΘ(log n) in general.

As our main result we show thatBlocking does not have constant competitive ratio
on general graphs. We use a classical construction of Erdős [15] of graphs with large
girth and large minimum degree to construct complex graphs for which Blocking has
arbitrarily large competitive ratio. Considering the factthat we have shown thatBlocking
is constant competitive for classes of graphs that have bounded genus, it seems plausible
that similarly heavy machinery is indeed necessary for the lower bound construction.

Related work.Exploration problems have been studied extensively; see the surveys [7,
28]. In the sixties, such problems were addressed mainly from a game-theoretic per-
spective [19]. More recent research on online motion planning, aiming explicitly for
worst-case performance guarantees on the total travel distance, was initiated in [5].

Generally, the geometry of the search environment can be arbitrary — a bounded or
unbounded space, with or without obstacles, two, three, or higher dimensional. How-
ever, in many particular applications, it is possible to abstract from the geometry of the
real environment and model the unknown search space as a graph, in which the searcher
may only move along edges. First formal models for exploringan unknown graph were
proposed in [27] in the context of finding a shortest path between two given points.
Research on fully exploring a graph was initiated in [10]. Incontrast to our problem,
they consider the task of exploring alledgesin a directed labeled unknown graph (with
unit-weight edges). At any time, the searcher is given the number of unexplored edges
leaving the vertex, but not their endpoints. Notice that thecorresponding offline problem
is the polynomially solvable Chinese postman problem, in contrast to the TSP in our
setting. This exploration problem has been studied extensively in directed [1,16,24] and
undirected graphs [11, 26]. Numerous variants were considered, e.g., routing multiple
searchers [6,14,17], models that impose additional constraints on the searcher, such as
being tethered [12], or having a tank of limited capacity [4,8], and exploration problems
in graphs without unique labeling but with some other additional information [18,20].

Our problem of exploring allverticesof a labeled undirected graph is in some sense
also a variant of the initial problem in [10]. In particular,on trees the problem of ex-
ploring all vertices is equivalent to exploring all edges. Apart from the aforementioned
previous work on our problem in planar graphs [23] and cycles[2,25], it has been stud-
ied on un-weighted trees also for multiple synchronously moving searchers [13,14,17].

Even though our online graph exploration problem has the classical TSP as cor-
responding offline problem, another class of online problems is typically regarded as
Online TSPin the literature. In [3] a model is introduced in which the graph is given
in advance and the vertices to be visited appear online over time. This means that new
vertices appear as the salesman proceeds, in contrast to ourmodel, independently of his
current position. The corresponding offline problem is a TSPwith release dates.

2 The exploration algorithm of Kalyanasundaram and Pruhs

We discuss the algorithmShortCut, that was proposed and analyzed in [23].
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Algorithm 1 The exploration algorithmBlockingδ(G, y)

Input: A partially explored graphG, and a vertexy of G that is explored for the first time.

1: while there is an unblocked boundary edgee = (u, v), with u explored andv unexplored,
such thatu = y or such thate had previously been blocked by some edge(u′, y) do

2: walk a shortest known path fromy to u

3: traversee = (u, v)
4: Blockingδ(G, v)
5: walk a shortest known path fromv to y

6: end while

Definition 1. A vertex isexploredonce it has been visited by the searcher. An edge is
exploredonce both endpoints are explored. Aboundary edge(u, v) is an edge with an
explored end vertexu and an unexplored end vertexv.

We adopt the convention that for a boundary edge, the first entry is always vertex that
has already been explored. For a set of edgesE′ we let|E′| =

∑
e∈E′ |e|.

AlgorithmShortCut can be seen as a sophisticated variant ofDFS. The crucial ingre-
dient is ablocking conditiondepending on a fixed parameterδ > 0, which determines
when to diverge fromDFS.

Definition 2. At any point in time during the exploration of the graph, a boundary
edgee = (u, v) is said to beblocked, if there is a boundary edgee′ = (u′, v′) with u′

explored andv′ unexplored which is shorter thane (i.e, |e′| < |e| ) and for which the
length of any shortest known path fromu to v′ is at most(1 + δ) · |e|.

Intuitively, the exploration algorithmShortCut performs a standardDFS but tra-
verses a boundary edge only if it is not blocked. Suppose the searcher is at a vertexu
and considers traversing a boundary edge(u, v). If (u, v) is blocked then its traversal is
postponed, possibly forever; otherwise the searcher traverses(u, v). Traversing(u, v)
and exploringv may cause another edge(x, y), whose traversal was delayed earlier, to
become unblocked. Then the shortest path fromv to y is added as virtual edge (called
jump edge in [23]) to theDFS-tree and can be traversed virtually like any real edge.

It is important to carefully update the blocking-state of edges as the algorithm pro-
ceeds. In particular, an edge which has become unblocked, after having previously been
blocked, may become blocked again. This may be the case if a new shorter path from
an unblocked edge to another boundary edge is revealed. In this case, the virtual edge
must be removed again. Disregarding reblocking will cause an unbounded worst case
ratio, even for planar graphs. This important issue is not explicitly addressed in the algo-
rithm description in [23]. In particular, no means of removing virtual edges are provided
therein.

In Algorithm 1, we formalize our interpretation of the algorithmic idea by Kalyana-
sundaram and Pruhs. To distinguish it from [23] and since the(parameterized) blocking
condition is a very subtle and a key ingredient, we choose thenameBlockingδ. To ex-
plore the entire graph starting in vertexs, we call Algorithm 1 asBlockingδ(Gs, s),
whereGs is the partially explored graph in which onlys has been visited so far.
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We prove thatBlockingδ has constant competitive ratio on graphs of bounded genus.
Our proof not only extends the one in [23] for planar graphs (genus0), but also differs
in using an additional argument which allows an easier handling of the recurrence.

Theorem 1. Blockingδ is 2(2 + δ)(1 + 2/δ)(1 + 2g)-competitive on graphs of genusg.

Proof. Since in every iteration of the while loop a new vertex is explored, the algorithm
terminates. It is easy to see that all vertices are eventually explored.

We letP be the set of edges that are traversed during some execution of Line 3.
For each iteration of the while loop, we charge all costs thatoccur in Lines 2, 3

and 5 to the edge inP traversed in Line 3. Since any execution of Line 3 explores a new
vertex, every edge is charged in at most one while-loop iteration.

The cost charged to any edgee is at most2(2 + δ)|e|: Indeed, either the edge had
previously not been blocked, in which case the cost is simply2|e|, or the edgee had
previously been blocked by some edge ending iny, and therefore (by the definition of
blocking) the distance fromy to the starting point ofe is at most(1 + δ) · |e|. Thus
Lines 2, 3 and 5 provoke costs of at most(1 + δ) · |e|, |e|, and(2 + δ) · |e|, respectively.

Let MST be a minimum spanning trees that shares a maximum number of edges
with P . It suffices now to show that|P | ≤ (1 + 2/δ)(1 + 2g)|MST | in order to get an
overall cost of at most2(1 + δ)(1 + 2/δ)(1 + 2g)|MST |.

Claim. If an edgee ∈ P \MST is contained in a cycleC in P ∪MST , then the cycleC
has length at least(2 + δ)|e|.

Proof. Suppose otherwise. On the cycleC, consider the edgee′ = (u, v) ∈ P \ MST

with |e′| ≥ |e| that is charged the latest. W.l.o.g. supposee′ is traversed fromu to v at
the time it is charged. Due to the choice ofMST , the edgee′ is strictly larger than any
edge inC ∩ MST : Otherwise we could replacee′ with an edge inMST to obtain a
smaller minimum spanning tree or to obtain a minimum spanning tree that shares more
edges withP . At the timee′ is charged,e′ is a boundary edge, and therefore not the
whole cycle has been explored. Thus there is a boundary edge different frome′ on the
cycle. Moreover at this point in timee′ is not blocked. Lete′′ be the first boundary edge
encountered when traversingC − e′ starting fromu towardsv. Since we assume the
cycle has length less than(2 + δ)|e| ≤ (2 + δ)|e′| ande′ is not blocked, we conclude
thate′′ is not smaller thane′ and thus not inMST . This contradicts the fact thate′ is
the edge inP \MST with |e′| ≥ |e| that is charged the latest and shows the claim.⊓⊔

Consider an embedding ofG on a surface of genusg. We chooseMST
′ ⊆ MST∪P

to be a maximal superset ofMST obtained by repeatedly adding edges that do not sep-
arate two faces, i.e., are incident with only one face. (Topologically this can be viewed
as adding a set of non-separating cycles, after contractingMST to a single point.) Since
adding a non-separating edge increases the Euler characteristic of the surface bounded
by the edges, and a surface of genusg has Euler characteristic2 − 2g, there are at
most2g edges inMST

′ \ MST . In caseMST
′ does not bound a topological disk, we

artificially add non-separating edges each of weight|MST | to the graph induced byP ,
to obtain a supersetMST

′′ of MST
′ that bounds a topological disk. These edges are

artificial in the sense that they do not need to be edges ofG. By the Euler characteristic
argument above, there are at most2g edges inMST

′′ \ MST in total.
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All edges inP , and thus, all edges inMST
′′ \ MST have a weight not larger

than |MST |, since otherwise they would be blocked until the whole minimum span-
ning tree has been explored. This implies|MST

′′| ≤ |MST | + 2g|MST |. Since ev-
ery edgee ∈ P \ MST

′′ is contained in a cycle of length at most|e| + |MST |
and edges inMST

′′ \ MST
′ are of length|MST |, we can extend the claim: If an

edgee ∈ P \ MST
′′ is contained in a cycleC in P ∪ MST

′′, then the cycleC
has length at least(2 + δ)|e|. We iteratively define for every edgee ∈ P \ MST

′′

a cycleCe in the following way: In each step we choose an edge that together with
edges inMST

′′ and edges to which a cycle has already been assigned closes a face
cycle. Note that for two distinct edgese, e′ ∈ P \ MST

′′ the associated cyclesCe

andCe′ are different. Every edge inMST
′′ ∪ P is contained in at most two such cy-

cles, since they form a set of distinct face cycles. For an edge in P \ MST
′′ one of

these cycles isCe. In fact these cycles are exactly all face boundaries apart from the
boundary of the outer face. Therefore,|P \ MST

′′| ≤ 1

1+δ

∑
e∈P\MST ′′ |Ce − e| ≤

1

1+δ
(2|MST

′′|+ |P \MST
′′|), and thus|P \ (MST

′′)| ≤ (2/δ)|MST
′′|. We conclude

that |P | ≤ (1 + 2/δ)|MST
′′| ≤ (1 + 2/δ)(1 + 2g)|MST |. Overall, we conclude that

Blockingδ is 2(2 + δ)(1 + 2/δ)(1 + 2g)-competitive on graphs of genusg. ⊓⊔

Corollary 1. AlgorithmBlocking2 is 16(1 + 2g)-competitive on graphs of genusg.

3 A lower bound construction

Our lower bound construction for AlgorithmBlockingδ relies on abase graphH with
specific bounds on girth and degree. Its existence is guaranteed by the following lemma
which extends a classical construction of Erdős [15].

Lemma 1. For all d̄, δ ∈ N there exists a connected bipartite graphH with minimum
degree at least̄d, maximum degree at most2d̄, and a girth ofg ≥ δ + 2.

Let H be a connected bipartiten-vertex graph with average degree at leastd̄, max-
imum degree at most2d̄, and girth at leastδ + 2 as given by Lemma 1. Suppose the
partition classes have sizen1 andn2. We fix orders(u1, . . . , un1

) and (v1, . . . , vn2
)

for the vertices in each of the bipartition classes. We call the vertices in the bipartition
classes in-vertices and out-vertices, respectively. We order the edges by the lexicograph-
ical ordering satisfying{u, v} < {u′, v′} if v < v′ or (v = v′ andu < u′).

In H we now replace each in-vertex and each out-vertex by a release gadget and
collection gadget, respectively. Our final construction will have edges with two types of
weights, namely 1 andw > 1. We call edges of weightw heavyedges.

Description of the release gadgets:Figure 1 depicts a release gadget of degree 4. In
general a release gadget consists of two parts, which we callleft and right part. A gadget
replacing a vertex of degreed consists in the left part ofd vertices forming a path. Each
of these vertices is attached to a heavy (red) edge of weightw that has an endpoint in
some collection gadget. The right part containsd vertices forming a path. Each of these
vertices is incident with an attachedrelease pathof lengthd−1. The endpoints of these
paths are incident with a (blue) edge that ends in a collection gadget. The two parts are
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Fig. 1. Release gadget of a degree 4 vertex. Fig. 2.Collection gadget of a degree 5 vertex.

joined by acenter pathof length(δ + 1)w − d (depicted by a double edge) with unit-
weight edges. Finally, each part has ablocking path(depicted as triple edges) of length
(δ + 1)w with unit-weight edges, by which it is connected to other release gadgets.

The crucial property of a release gadget is the following: The length of the center
path is chosen such that thei-th heavy edge may be blocked by the first edge of thei-th
release path, but not by the(i + 1)-st release path (both times counting from the left to
right). Once the exploration of a release path has begun, thealgorithm will finish the
exploration of the entire release path before exploring anyother edges.

Thus, thei-th heavy edge of the gadget is blocked, if one of the release paths1, . . . , i
has not yet been explored. If a release path has been completely explored, we also say
that the release has been triggered. Suppose in some releasegadget all releases1, . . . , i
have been triggered, but thei-th heavy edge is still blocked. This situation implies that
there is a path to some unit-weight boundary edge which exitsthe gadget via another
heavy edge: Indeed, the blocking paths are sufficiently longto prevent other release
gadgets from interfering with this fact. We will show later that at the moment releasei
is triggered such paths exiting via heavy edges do not exist.

It will be clear later that when a release gadget is entered for the first time, this
happens via the blocking path to the right of the gadget. Assuming this for now, we can
require that the online algorithm traverses the gadget fromright to left, without entering
the release paths: Indeed, whenever there is a choice among edges of equal weight, we
can adversarially choose the edge that is traversed next.

Description of the collection gadgets:Figure 2 depicts a collection gadget of degree 5.
In general a collection gadget consists of a left and a right part. For a gadget replacing
a vertex of degreed, the left part has one vertex of degreed incident withd paths of
length 2. The ends of these paths are incident with heavy (red) edges emanating from
release gadgets. The right part of a collection gadget containsd vertices inducing a path.
Each vertex on the path is adjacent to another vertex which itself is incident with a (blue)
edge emanating from a right part of a release gadget. Three blocking paths (triple edges)
of length(δ + 1)w join the parts with each other and with other collection gadgets.

We will see that when a collection gadget is first entered, this happens via the block-
ing path to the left. We can then require adversarially that the online algorithm traverses
from the left part directly to the right without exploring the left part. Then, on entering
a vertex in the right, it deviates from the main path to explore the respective blue edge.
We will argue that the algorithm will then return via a corresponding heavy edge. It
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Fig. 3. The assembly of the gadgets: A base graphH (left), and the resulting graph with linked
replacement gadgets (right) showing release gadgets on topand collection gadget at the bottom.

then backtracks and subsequently explores the next vertex of the right part, and so on.
Before leaving the gadget to the right, the gadget has been completely explored.

Assembly of the gadgets according to the base graphH : To assemble the gadgets
using the base graphH (see Figure 3), we join the release gadgets according to the
order of in-vertices along the blocking paths (triple lines). The same is done with the
collection gadgets, with respect to the order of out-vertices. The right blocking path of
the last (rightmost) release gadget is connected to a singlevertex, the starting vertex,
that we add to the graph. The left blocking path of the first (leftmost) release gadget and
the first (leftmost) collection gadget are joined by two added, adjacent vertices.

The (red and blue) edges that run between the gadgets correspond to the edges inH .
Heavy (red) edges of weightw run from a left part of a release gadget to a left part of a
collection gadget. Blue edges of weight 1 run from a right part of a release gadget to a
right part of a collection gadget.

In the lexicographical order of the edges defined above, we insert for each edge
of H a heavy (red) edge and a blue edge. To insert a heavy edge corresponding to
the edge(u, v) of H , we connect the leftmost unused vertex in the left part of the
release gadget corresponding tou with the leftmost unused vertex in the left part of the
collection gadget ofv. To insert the blue edge, we connect the leftmost unused vertex in
the right part of the release gadget corresponding tou with the leftmost unused vertex
of the right part of the collection gadget ofv.

Inserting the heavy edges in this ordering has the consequence that the ordering of
the edges is exactly the ordering of their end vertices in thecollection gadgets from left
to right. Furthermore, within each release gadget, the heavy edges from left to right are
also in the lexicographic order.

The tour traversed by the algorithm:Beginning at the starting vertex, we may require
adversarially that the algorithm first traverses all release gadgets without exploring any
release path. Then, via the two additional vertices on the left, the leftmost collection
gadget is entered from the left, and the exploration continues into its right part. Sub-
sequently release paths are triggered, one at a time. In the following we prove that the
algorithm traverses all heavy edges ofH . The lexicographic order defined on the edges
is the order in which these edges are traversed. All of them are traversed from a release
gadget to a collection gadget. The blue edges, each used to trigger a traversal of a heavy
edge, are traversed from a collection gadget to a release gadget. Recall that due to the
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length of the center path connecting the right and left part of a release gadget, a heavy
edge is blocked, unless its corresponding release has been triggered.

Lemma 2. The heavy (red) edges are traversed in the lexicographic order of the edges
of the base graph. Whenever a release is triggered, the corresponding heavy edgeer

becomes unblocked and is explored subsequently.

Proof. Inductively we assume that all release paths that correspond to edges that appear
earlier thaner in the ordering of edges have been completely explored, and all release
paths that appear later thaner are completely unexplored.

A heavy weight edge can only be blocked by an edge of weight 1. Thus, for a heavy
edge to be blocked, there has to be a path of length at most(δ + 1)w − 1 to a boundary
edge of weight 1. To show the claim, we show that no such path exists for edgeer.

To do so, we analyze where a hypothetical boundary edge of such a path may be
situated in the graph. Observe that the length of blocking paths (triple edge) is chosen
such that they cannot be traversed to reach a boundary edge within a distance of(δ +
1)w − 1. Thus, only two possibilities have to be ruled out:

1. There is a path to a boundary edge that can be reached by a path of length(1 +
δ)w − 1, which traverses a center path (double edge).

2. There is a path to a boundary edge that uses heavy edges, butotherwise is com-
pletely contained in left parts of gadgets.

To rule out Possibility 1, observe that any path that uses a double line to cross from
a left part of a release gadget to a right part, and then uses a complete release path is
longer than(δ+1)w−1. Moreover, since release paths are either completely explored or
the corresponding heavy edge has by induction not been triggered, for every unexplored
edge in the right part of a release gadget, all explored heavyedges in the left part are
further away than(δ + 1)w − 1.

To rule out possibility 2, note that the only boundary edges of weight 1 situated in
the left part of a gadget are contained in the currently used collection gadget. All other
left parts of gadgets have been completely explored or not explored at all. Thus, any
path staying in the left parts of the gadgets that leads to a boundary edge in the left part
of the currently used collection gadget will, together wither, project to a cycle in the
graphH . Since the girth ofH is at leastδ + 2, the path has to use at leastδ + 1 heavy
edges and is thus of length more than(δ + 1) · w.

We have shown that the heavy edgeer becomes unblocked when its release is trig-
gered. The algorithm thus exploreser, returns to the release path of toer, backtracks,
and continues to trigger the release corresponding to the next heavy edge. ⊓⊔

Theorem 2. For no δ ∈ R doesBlockingδ have constant competitive ratio.

Proof. Consider a graph that is obtained from the replacement construction from a base
graphH onn vertices with minimum degreēd, maximum degree at most2d̄, and girth
at leastδ + 2 (Lemma 1). Including blocking paths, the number of unit-weight edges
in a release gadget corresponding to a vertexv of degreed(v) isO(d(v)2) + O(δw) ⊆
O(d̄2) + O(δw). This bound also holds for collection gadgets. Thus, for fixed δ, the
resulting graph has a minimum spanning tree of sizeO(nd̄2)+O(nw). SinceBlockingδ
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Algorithm 2 Exploration algorithmhDFS(G, u, w)

Input: A partially explored graphG, a vertexu of G that is visited for the first time, and a
weightw ∈ R≥0 ∪ {∞}.

1: while there is aw′ < w such thatw′ occurs incomp(G≤w′ , u) but comp(G≤w′ , u) is not
completely exploreddo

2: hDFS(G, u, w′)
3: end while
4: choose a minimal spanning tree ofcomp(G<w, u) and order all vertices according to a depth

first search in this spanning tree
5: while there is a boundary edge(u′, y′) of weightw with u′ ∈ comp(G<w, u) do
6: let (u′, y′) be a boundary edge of weightw with u′ ∈ comp(G<w, u) such thatu′ is

minimal with respect to the ordering ofcomp(G<w, u)
7: traverse a shortest path toy′

8: hDFS(G, y′, w)
9: end while

10: traverse a shortest path tou

traverses all heavy edges (Lemma 2), it incurs a cost ofΩ(d̄nw). By choosingd̄ large
in comparison to all constants involved and then choosingw large in comparison to the
constants and̄d2 the competitive ratio becomes arbitrarily large. ⊓⊔

4 Graphs with a bounded number of distinct weights

We describe a constant competitive algorithm for a bounded number of distinct weights.

Definition 3. For any graphG, weightw, and vertexu, let comp(G≤w, u) be the con-
nected component of the subgraph ofG comprised of all edges of weight at mostw
containingu. The graphcomp(G<w, u) is defined similarly.

Our algorithmhierarchical depth first search(hDFS), defined in Algorithm 2, explores
comp(G≤w, u) for any weightw ∈ R≥0 ∪{∞}, which is provided as a parameter. The
algorithm is based on aDFS in the graphcomp(G≤w, u). However, whenever a new
vertex of this component is encountered, it first explorescomp(G<w, u). The algorithm
then intuitively simulatesDFS in the graphG/comp(G<w, u). HereG/H denotes the
graph obtained fromG by contracting the subgraphH of G to a single point. To ensure
that the total length traversed withinH = comp(G<w, u) is not too large, the boundary
edges leavingH are explored according to a specific order. This order is obtained by
computing a depth first search on a minimum spanning tree ofcomp(G<w, u).

The computation ofcomp(G<w , u) can be reduced to recursive calls of the algo-
rithm itself with parameters smaller thanw due to the following basic observation:

Lemma 3. The componentcomp(G<w, u) is completely explored if and only if there
is no boundary edge of weight smaller thanw with an end-vertex incomp(G<w, u).

To explore the entire graph starting in vertexs, we call Algorithm 2 ashDFS(Gs, s,∞),
whereGs is the partially explored graph in which onlys has been visited so far.
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Theorem 3. hDFS is 2k-competitive on graphs with at mostk distinct weights.

Proof. We first prove that all vertices are explored. To prove this itsuffices to show
thathDFS(G, s, w) explorescomp(G≤w , s). We show this by induction. Suppose there
remains a boundary edge(u, v) with v unexplored after the callhDFS(G, s, w), and
suppose this boundary edge is contained incomp(G≤w, s). By induction(u, v) has
weight w. But u has been explored, thus there is a vertexy which was explored in
a call with parameterw, such that this call causedu to be explored. But then the
call hDFS(G, y, w) causesv to be explored, which gives a contradiction.

Let MST be a minimum spanning tree ofG. To show2k-competitiveness, we show
that for eachw < ∞ the sum of all traversals made in calls with parameterw is at
most2|MST |. For this it suffices to show: IfF is a sub-forest ofG that contains edges
of weight at mostw such that for each vertexu the graphcomp(F<w, u) is a minimum
spanning tree ofcomp(G<w, u), thenF is contained in a minimum spanning tree ofG.
Finally note that the outer call with parameterw = ∞ does not incur any costs. ⊓⊔

For graphs with arbitrary weights, we adapt the algorithm byrounding each edge
weight to the nearest power of2 and simulating the exploration on this altered graph.
This yields a competitive ratio ofΘ(log(n)) for graphs withn vertices.

5 Concluding remarks

Our main result is a non-trivial graph construction which proves that AlgorithmBlock-
ing does not have constant competitive ratio on arbitrary graphs. This answers a long-
standing open question. Nevertheless, the result does not generally rule out online algo-
rithms with constant competitive ratio. In particular, ourconstruction involves only two
distinct types of weights, and thus, our new AlgorithmhDFS has constant competitive
ratio. However, at present, there is no candidate for an algorithm that may achieve a
constant competitive ratio on general graphs. Of course showing that no such algorithm
exists might require a construction even more complicated than the one presented in
this paper. For such result it might be helpful to use the factthat one can equivalently
consider the exploration model in which the label of a vertexis only revealed upon ar-
rival at the vertex. This can be seen by replacing each vertexby a star with edges of
small weight, and linking the previous neighbors to the outer vertices of the star.
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