Online Graph Exploration: New Results on
Old and New Algorithms

Nicole Megow, Kurt Mehlhorrt, and Pascal SchweitZet

L Max-Planck-Institut fiir Informatik, Saarbriicken, German
{nnegow, nehl hor n} @i -i nf. npg. de
2 The Australian National University, Canberra, Australia.
pascal . schwei t zer @nu. edu. au

Abstract. We study the problem of exploring an unknown undirected ected
graph. Beginning in some start vertex, a searcher museash node of the graph
by traversing edges. Upon visiting a vertex for the first tithe searcher learns
all incident edges and their respective traversal costs.gbal is to find a tour of
minimum total cost. Kalyanasundaram and Pruhs [23] prapassophisticated
generalization of a Depth First Search thatl scompetitive on planar graphs.
While the algorithm is feasible on arbitrary graphs, thestiom whether it has
constant competitive ratio in general has remained open.n@in result is an
involved lower bound construction that answers this qoastiegatively. On the
positive side, we prove that the algorithm has constant etitiye ratio on any
class of graphs with bounded genus. Furthermore, we prevtd@stant compet-
itive algorithm for general graphs with a bounded numberistirnct weights.

1 Introduction

In an exploration problem an agent, or searcher, has to rumhst complete map of
an environment without any a priori knowledge of its topgloghe searcher makes
all its decisions based on partial local knowledge and gathew information on its
exploration tour. Exploration problems appear in varioustexts, such as robot motion
planning in hazardous or inaccessible terrain, maintgisecurity of large networks,
and searching, indexing, and analyzing digital data iniernet [7, 20, 28].

We study the online graph exploration problem on undirectethected graphs =
(V, E). We assume that the vertices are labeled so that the sedschige to distin-
guish them. Each edge= (u,v) € E has a non-negative real weiglat, also called
the length or the cost of the edge. Beginning in a distingdss$tart vertexs € V,
the searcher learrs according to the following online paradigm, also knowrfiasd
graph scenarid23]: whenever the searcher visits a vertex, it learns aldient edges,
their weights, and the labels of their end vertices. To enxgpédonew vertex, the searcher
traverses previously learned edges in the graph. For simgean edge, the searcher has
to pay the respective edge cost. The task is to find a tour thiés all verticesl” and
returns to the start vertex. The goal is to find a tour of mimmtotal length. An illus-
tration of this model (see [23]) is the scenario where vesticorrespond to cities and

* Supported by the National Research Fund, Luxembourg, aiutded under the Marie Curie
Actions of the European Commission (FP7-COFUND).

upon arrival in a city the searcher sees the road signs oésdatother cities including
distance information.

A standard technique to measure the quality of online dlgms$ iscompetitive
analysis[9], which compares the outcome of an algorithm withagatimal offline so-
lution. For our graph exploration problem, the correspondingradfiproblem is the
fundamentallraveling Salesman Proble(@SP), one of the most studied optimization
problems which is in general even NP-hard to approximaté¢ [2&hsks for a short-
est tour that visits every vertex of a graph known in advaRoe.a positive numbet,
we call an online exploration algorithmcompetitive if it computes for any instance
a tour of total length at mosttimes the optimal offline tour through all vertices. The
competitive raticof an algorithm is the infimum over allsuch that it is:-competitive.

The greedy algorithnNearest Neighbo(NN) is a simple and fast heuristic that
has been studied intensively in the traditional offline T8Rir@nment. It repeatedly
chooses the next vertex to be visited as an unexplored veltsest to the current
location. The worst case ratio for this greedy algoritl@llog n) [29], also applies to
our online scenario. It is tight even on planar unit-weigtahs, which follows from a
nice and simple lower bound construction of particular iegl instances [22].

In case all edges have equal weighDepth First SearcliDFS) is 2-competitive. It
yields a total tour not larger than twice the size of a miningpanning tree{/ST), a
lower bound on the optimal tour. This is optimal in the unight case [25].

For general graphs with arbitrary weights no constant caitiyee algorithm is
known. A promising candidate was introduced by Kalyanasuah and Pruhs [23].
Their algorithmShortCut is a sophisticated generalization DFS obtained by intro-
ducing a parameterizdaocking conditiorthat determines when to diverge frapgs.
They prove an upper bound o6 on its competitive ratio in planar graphs. The algo-
rithm itself is defined for general graphs. However, sinedritroduction almost two
decades ago, it has been operslibrtCut has constant competitive ratio in general.
There has been no progress on this question since then, &act,iall subsequent re-
sults concerned with our graph exploration setting onlylyappsimple cycles: In [2],
it is shown thatNN yields a competitive ratio 03/2 on simple cycles. Additionally, a
lower bound of /4 for any deterministic online algorithm is proven. Both lovaad up-
per bound are improved in [25]. There, the authors give a mophisticated algorithm
which takes additionally the current total tour length iatount. They prove that, on
simple cycles, this algorithm achieves the best possiliepatitive ratio ofl + /3. It
is not clear how the algorithm can be generalized and aptietbre complex graphs.

Our contribution. We revisit algorithmShortCut proposed by Kalyanasundaram and
Pruhs [23]. We elaborate on the sophistication of the ugdeylidea, but report also
a precarious issue in the given formal implementation. Wippse a reformulation,
which we callBlocking, highlighting the elaborate idea from [23], and adapt theopr
of [23] to assure that the reformulation has constant coitiyeetatio for planar graphs.
Here, a concise observation allows us to simplify the proofta generalize it to graphs
of bounded genus. More precisely, we generalize the uppandon the competitive
ratio of 16 for planar graphs to a bound ©6(1 + 2¢) for graphs of genus at mogt

As further contribution we give a constant competitive aidpon for general graphs
with a bounded number of distinct weights. Our online altjon generalize®FS to

an algorithm that hierarchically performs depth first shascon subgraphs induced by
restricted weights. For arbitrary graphs with arbitraryigies we round weights up
to the nearest power &f and apply the same algorithm. With this modification the
algorithm has a competitive ratio &f(log) in general.

As our main result we show th8tocking does not have constant competitive ratio
on general graphs. We use a classical construction dsEftb] of graphs with large
girth and large minimum degree to construct complex graphsvhich Blocking has
arbitrarily large competitive ratio. Considering the fewit we have shown th&tocking
is constant competitive for classes of graphs that havedrdigenus, it seems plausible
that similarly heavy machinery is indeed necessary fordiaet bound construction.

Related work.Exploration problems have been studied extensively; seeuhveys [7,
28]. In the sixties, such problems were addressed mainiy fiogame-theoretic per-
spective [19]. More recent research on online motion plagnaiming explicitly for
worst-case performance guarantees on the total travahdisf was initiated in [5].
Generally, the geometry of the search environment can beagb— a bounded or
unbounded space, with or without obstacles, two, threejgiren dimensional. How-
ever, in many particular applications, it is possible totedat from the geometry of the
real environment and model the unknown search space asta graghich the searcher
may only move along edges. First formal models for exploanginknown graph were
proposed in [27] in the context of finding a shortest path leetwtwo given points.
Research on fully exploring a graph was initiated in [10]ctmtrast to our problem,
they consider the task of exploring alligesn a directed labeled unknown graph (with
unit-weight edges). At any time, the searcher is given thalmer of unexplored edges
leaving the vertex, but not their endpoints. Notice thatihieesponding offline problem
is the polynomially solvable Chinese postman problem, intiast to the TSP in our
setting. This exploration problem has been studied extelysn directed [1,16,24] and
undirected graphs [11, 26]. Numerous variants were corsije.g., routing multiple
searchers [6, 14, 17], models that impose additional caim$$ron the searcher, such as
being tethered [12], or having a tank of limited capacity]4and exploration problems
in graphs without unique labeling but with some other addgi information [18, 20].
Our problem of exploring aNerticesof a labeled undirected graph is in some sense
also a variant of the initial problem in [10]. In particulamn trees the problem of ex-
ploring all vertices is equivalent to exploring all edgega#t from the aforementioned
previous work on our problem in planar graphs [23] and cy[@e25], it has been stud-
ied on un-weighted trees also for multiple synchronouslyimpsearchers [13,14,17].
Even though our online graph exploration problem has thes@tal TSP as cor-
responding offline problem, another class of online prolslésrtypically regarded as
Online TSPin the literature. In [3] a model is introduced in which theph is given
in advance and the vertices to be visited appear online aver This means that new
vertices appear as the salesman proceeds, in contrastrwoalet, independently of his
current position. The corresponding offline problem is a WHh release dates.

2 The exploration algorithm of Kalyanasundaram and Pruhs

We discuss the algorithi®hortCut, that was proposed and analyzed in [23].

Algorithm 1 The exploration algorithrBlockings (G, y)
Input: A partially explored grapldz, and a vertex of G that is explored for the first time.

1: while there is an unblocked boundary edge= (u,v), with u explored and» unexplored,
such that, = y or such that had previously been blocked by some edge y) do

2 walk a shortest known path frognto «

3. traversee = (u,v)

4: Blockings(G,v)

5 walk a shortest known path fromto y

6: end while

Definition 1. A vertex isexploredonce it has been visited by the searcher. An edge is
exploredonce both endpoints are exploredbAundary edgéu, v) is an edge with an
explored end vertex and an unexplored end vertex

We adopt the convention that for a boundary edge, the firsy @étlways vertex that
has already been explored. For a set of edgese let|E'| = >, |e|.

Algorithm ShortCut can be seen as a sophisticated variadts. The crucial ingre-
dient is ablocking conditiordepending on a fixed parameter- 0, which determines
when to diverge fronDFS.

Definition 2. At any point in time during the exploration of the graph, a hdary
edgee = (u,v) is said to beblocked if there is a boundary edg€ = (v’,v’) with v’

explored andy’ unexplored which is shorter than(i.e, |¢'| < |e|) and for which the
length of any shortest known path framo v’ is at most(1 + ¢) - |e|.

Intuitively, the exploration algorithnshortCut performs a standarbFS but tra-
verses a boundary edge only if it is not blocked. Supposeghrcher is at a vertex
and considers traversing a boundary e@lge). If (u, v) is blocked then its traversal is
postponed, possibly forever; otherwise the searcherrseaséu, v). Traversing(u, v)
and exploringg may cause another edge, y), whose traversal was delayed earlier, to
become unblocked. Then the shortest path frotm i is added as virtual edge (called
jump edge in [23]) to th®FS-tree and can be traversed virtually like any real edge.

It is important to carefully update the blocking-state ofjed as the algorithm pro-
ceeds. In particular, an edge which has become unblocked hafving previously been
blocked, may become blocked again. This may be the case ifvasherter path from
an unblocked edge to another boundary edge is revealedsloabe, the virtual edge
must be removed again. Disregarding reblocking will causerbounded worst case
ratio, even for planar graphs. This importantissue is nplieXly addressed in the algo-
rithm description in [23]. In particular, no means of remmyvirtual edges are provided
therein.

In Algorithm 1, we formalize our interpretation of the algbmic idea by Kalyana-
sundaram and Pruhs. To distinguish it from [23] and sinc€pgheameterized) blocking
condition is a very subtle and a key ingredient, we choose#imeeBlocking;. To ex-
plore the entire graph starting in vertexwe call Algorithm 1 asBlockings (G, s),
whereG; is the partially explored graph in which ondyhas been visited so far.

We prove thaBlocking; has constant competitive ratio on graphs of bounded genus.
Our proof not only extends the one in [23] for planar graphen(g0), but also differs
in using an additional argument which allows an easier hiagdif the recurrence.

Theorem 1. Blocking; is 2(2 4+ §)(1+2/§)(1 + 2g)-competitive on graphs of genys

Proof. Since in every iteration of the while loop a new vertex is exetl, the algorithm
terminates. It is easy to see that all vertices are evegtagfilored.

We let P be the set of edges that are traversed during some execitiomeds.

For each iteration of the while loop, we charge all costs twur in Lines 2, 3
and 5 to the edge iR traversed in Line 3. Since any execution of Line 3 exploresva n
vertex, every edge is charged in at most one while-looptitara

The cost charged to any edgés at most2(2 + d)|e|: Indeed, either the edge had
previously not been blocked, in which case the cost is sirdply or the edge: had
previously been blocked by some edge ending,iand therefore (by the definition of
blocking) the distance fromg to the starting point oé is at most(1 + ¢) - |e|. Thus
Lines 2, 3 and 5 provoke costs of at m@stt0) - |e], |e], and(2 4 9) - |e|, respectively.

Let MST be a minimum spanning trees that shares a maximum numbegeted
with P. It suffices now to show thaP’| < (1 + 2/6)(1 + 2¢)|MST| in order to get an
overall cost of at most(1 + 6)(1 +2/6)(1 + 2g)| MST.

Claim. Ifanedge: € P\ MST is containedin a cycl€ in PUMST, then the cycle&
has length at leag® + ¢)|e|.

Proof. Suppose otherwise. On the cycle consider the edg€ = (u,v) € P\ MST
with |¢’| > |e| that is charged the latest. W.l.0.g. suppe’sis traversed from: to v at
the time it is charged. Due to the choiceM’ T, the edge’ is strictly larger than any
edge inC' N MST: Otherwise we could replace with an edge inMST to obtain a
smaller minimum spanning tree or to obtain a minimum spagtriee that shares more
edges withP. At the timee’ is charged¢’ is a boundary edge, and therefore not the
whole cycle has been explored. Thus there is a boundary efigeedt frome’ on the
cycle. Moreover at this point in tim€ is not blocked. Let” be the first boundary edge
encountered when traversiidg — ¢’ starting fromu towardse. Since we assume the
cycle has length less thdd + d)|e| < (2 + §)|e’| ande’ is not blocked, we conclude
thate” is not smaller thar’ and thus not inM/ST'. This contradicts the fact that is
the edge inP \ MST with |¢/| > |e| that is charged the latest and shows the claim.

Consider an embedding 6fon a surface of genus We choosé/ST’ C MSTUP
to be a maximal superset 815T obtained by repeatedly adding edges that do not sep-
arate two faces, i.e., are incident with only one face. (Togioally this can be viewed
as adding a set of non-separating cycles, after contragfisigj to a single point.) Since
adding a non-separating edge increases the Euler chastctef the surface bounded
by the edges, and a surface of gemusas Euler characteristiz — 2¢, there are at
most2g edges inM ST’ \ MST. In caseMST’ does not bound a topological disk, we
artificially add non-separating edges each of we|gh$T'| to the graph induced b,
to obtain a superse¥/ST" of MST' that bounds a topological disk. These edges are
artificial in the sense that they do not need to be edgés &y the Euler characteristic
argument above, there are at mdgtedges inMST" \ MST in total.

All edges in P, and thus, all edges in/ST” \ MST have a weight not larger
than |MST|, since otherwise they would be blocked until the whole mimmspan-
ning tree has been explored. This impli@$ST"| < |MST| + 2g|MST)|. Since ev-
ery edgee € P\ MST" is contained in a cycle of length at most + |MST|
and edges ilVST” \ MST' are of length|MST|, we can extend the claim: If an
edgee € P\ MST" is contained in a cycl& in P U MST", then the cycleC
has length at leag®2 + d)|e|. We iteratively define for every edge € P\ MST”

a cycleC, in the following way: In each step we choose an edge that hegetith
edges inMST" and edges to which a cycle has already been assigned cloaes a f
cycle. Note that for two distinct edgese’ € P\ MST” the associated cyclesS,
andC. are different. Every edge ifST" U P is contained in at most two such cy-
cles, since they form a set of distinct face cycles. For areedd® \ MST" one of
these cycles i€’.. In fact these cycles are exactly all face boundaries apam the
boundary of the outer face. Therefot® \ MST"| < 135 3 c p\ s [Ce — €] <

5 (2| MST"| +|P\ MST"|), and thug P\ (MST")| < (2/6)|MST"|. We conclude
that|P| < (14 2/6)|MST"| < (1 +2/5)(1 + 29)|MST|. Overall, we conclude that

Blocking; is 2(2 + 6)(1 + 2/0)(1 + 2g)-competitive on graphs of genys 0

Corollary 1. AlgorithmBlocking, is 16(1 4 2g)-competitive on graphs of genys

3 Alower bound construction

Our lower bound construction for AlgorithBlocking, relies on aase graphH with
specific bounds on girth and degree. Its existence is guegdiity the following lemma
which extends a classical construction of &d15].

Lemma 1. For all d,d € N there exists a connected bipartite graphwith minimum
degree at least, maximum degree at mazd, and a girth ofg > § + 2.

Let H be a connected bipartitevertex graph with average degree at legshax-
imum degree at mostd, and girth at least + 2 as given by Lemma 1. Suppose the
partition classes have size andn,. We fix orders(uy, ..., uy,,) and (vi, ..., vp,)
for the vertices in each of the bipartition classes. We tal\tertices in the bipartition
classes in-vertices and out-vertices, respectively. \Werdhe edges by the lexicograph-
ical ordering satisfyinqu, v} < {v/,v'} if v <’ or (v = v andu < u’).

In H we now replace each in-vertex and each out-vertex by a eelgadget and
collection gadget, respectively. Our final constructioh lnave edges with two types of
weights, namely 1 andv > 1. We call edges of weight heavyedges.

Description of the release gadget§&igure 1 depicts a release gadget of degree 4. In
general arelease gadget consists of two parts, which wiettalhd right part. A gadget
replacing a vertex of degrekconsists in the left part of vertices forming a path. Each
of these vertices is attached to a heavy (red) edge of weighat has an endpoint in
some collection gadget. The right part containgrtices forming a path. Each of these
vertices is incident with an attacheglease pattof lengthd — 1. The endpoints of these
paths are incident with a (blue) edge that ends in a collegiadget. The two parts are

Fig. 1. Release gadget of a degree 4 vertex. Fig.2.Collection gadget of a degree 5 vertex.

joined by acenter pathof length(§ + 1)w — d (depicted by a double edge) with unit-
weight edges. Finally, each part haklacking path(depicted as triple edges) of length
(0 4+ 1)w with unit-weight edges, by which it is connected to otheeask gadgets.

The crucial property of a release gadget is the followinge Téngth of the center
path is chosen such that tivth heavy edge may be blocked by the first edge ofitie
release path, but not by thieé+ 1)-st release path (both times counting from the left to
right). Once the exploration of a release path has beguralg@ithm will finish the
exploration of the entire release path before exploringathgr edges.

Thus, the-th heavy edge of the gadget is blocked, if one of the releattesp, . . . , i
has not yet been explored. If a release path has been coly@rptored, we also say
that the release has been triggered. Suppose in some rgbadpet all releases . . . i
have been triggered, but th¢h heavy edge is still blocked. This situation implies that
there is a path to some unit-weight boundary edge which #xigadget via another
heavy edge: Indeed, the blocking paths are sufficiently kmngrevent other release
gadgets from interfering with this fact. We will show lateat at the moment release
is triggered such paths exiting via heavy edges do not exist.

It will be clear later that when a release gadget is enteredhi® first time, this
happens via the blocking path to the right of the gadget. Aésg this for now, we can
require that the online algorithm traverses the gadget fight to left, without entering
the release paths: Indeed, whenever there is a choice ardgeg ef equal weight, we
can adversarially choose the edge that is traversed next.

Description of the collection gadget&igure 2 depicts a collection gadget of degree 5.
In general a collection gadget consists of a left and a right. -or a gadget replacing
a vertex of degred, the left part has one vertex of degrééncident withd paths of
length 2. The ends of these paths are incident with heavy égges emanating from
release gadgets. The right part of a collection gadget owaertices inducing a path.
Each vertex on the path is adjacent to another vertex wtgelf is incident with a (blue)
edge emanating from a right part of a release gadget. Thoekibp paths (triple edges)
of length(d + 1)w join the parts with each other and with other collection gadg

We will see that when a collection gadget s first entered,lthippens via the block-
ing path to the left. We can then require adversarially thaionline algorithm traverses
from the left part directly to the right without exploringetteft part. Then, on entering
a vertex in the right, it deviates from the main path to explie respective blue edge.
We will argue that the algorithm will then return via a copeading heavy edge. It

Fig. 3. The assembly of the gadgets: A base graplileft), and the resulting graph with linked
replacement gadgets (right) showing release gadgets amtbpollection gadget at the bottom.

then backtracks and subsequently explores the next vefrtee oight part, and so on.
Before leaving the gadget to the right, the gadget has bempletely explored.

Assembly of the gadgets according to the base grEphTo assemble the gadgets
using the base grapH (see Figure 3), we join the release gadgets according to the
order of in-vertices along the blocking paths (triple lin€ehe same is done with the
collection gadgets, with respect to the order of out-vesdid he right blocking path of
the last (rightmost) release gadget is connected to a simgtex, the starting vertex,
that we add to the graph. The left blocking path of the firdtrfiest) release gadget and
the first (leftmost) collection gadget are joined by two atideljacent vertices.

The (red and blue) edges that run between the gadgets conetspthe edges ifi.
Heavy (red) edges of weight run from a left part of a release gadget to a left part of a
collection gadget. Blue edges of weight 1 run from a right p&a release gadget to a
right part of a collection gadget.

In the lexicographical order of the edges defined above, werirfor each edge
of H a heavy (red) edge and a blue edge. To insert a heavy edgespondng to
the edge(u,v) of H, we connect the leftmost unused vertex in the left part of the
release gadget correspondingitwith the leftmost unused vertex in the left part of the
collection gadget ob. To insert the blue edge, we connect the leftmost unusedwigrt
the right part of the release gadget correspondingweéth the leftmost unused vertex
of the right part of the collection gadget of

Inserting the heavy edges in this ordering has the conseguhbat the ordering of
the edges is exactly the ordering of their end vertices irtthiection gadgets from left
to right. Furthermore, within each release gadget, theyhedges from left to right are
also in the lexicographic order.

The tour traversed by the algorithnBeginning at the starting vertex, we may require
adversarially that the algorithm first traverses all redegeadgets without exploring any
release path. Then, via the two additional vertices on tfietlee leftmost collection
gadget is entered from the left, and the exploration coesnato its right part. Sub-
sequently release paths are triggered, one at a time. Irolloeving we prove that the
algorithm traverses all heavy edgesfof The lexicographic order defined on the edges
is the order in which these edges are traversed. All of thentraversed from a release
gadgetto a collection gadget. The blue edges, each usédderta traversal of a heavy
edge, are traversed from a collection gadget to a releasggegdiecall that due to the

length of the center path connecting the right and left pbat i@lease gadget, a heavy
edge is blocked, unless its corresponding release has tiggered.

Lemma 2. The heavy (red) edges are traversed in the lexicographieravfithe edges
of the base graph. Whenever a release is triggered, the sporeding heavy edge.
becomes unblocked and is explored subsequently.

Proof. Inductively we assume that all release paths that corresipoedges that appear
earlier thare,. in the ordering of edges have been completely explored, bknelease
paths that appear later thapare completely unexplored.

A heavy weight edge can only be blocked by an edge of weighhdis;[for a heavy
edge to be blocked, there has to be a path of length at ffigst)w — 1 to a boundary
edge of weight 1. To show the claim, we show that no such pastseior edge:,..

To do so, we analyze where a hypothetical boundary edge of syath may be
situated in the graph. Observe that the length of blockingpériple edge) is chosen
such that they cannot be traversed to reach a boundary etlge widistance ofd +
1)w — 1. Thus, only two possibilities have to be ruled out:

1. There is a path to a boundary edge that can be reached b} afdahgth(1 +
0)w — 1, which traverses a center path (double edge).

2. There is a path to a boundary edge that uses heavy edgesthbuwise is com-
pletely contained in left parts of gadgets.

To rule out Possibility 1, observe that any path that usesublédine to cross from
a left part of a release gadget to a right part, and then usemalete release path is
longer thar(d+1)w—1. Moreover, since release paths are either completely segbtar
the corresponding heavy edge has by induction not beereteggfor every unexplored
edge in the right part of a release gadget, all explored hedgges in the left part are
further away thargd + 1)w — 1.

To rule out possibility 2, note that the only boundary edges@ight 1 situated in
the left part of a gadget are contained in the currently usdidation gadget. All other
left parts of gadgets have been completely explored or nplbead at all. Thus, any
path staying in the left parts of the gadgets that leads taiadbary edge in the left part
of the currently used collection gadget will, together with project to a cycle in the
graphH. Since the girth of{ is at least) + 2, the path has to use at least- 1 heavy
edges and is thus of length more th@nt 1) - w.

We have shown that the heavy edgebecomes unblocked when its release is trig-
gered. The algorithm thus explores returns to the release path ofdp backtracks,
and continues to trigger the release corresponding to tkisheavy edge. O

Theorem 2. For noé € R doesBlockings have constant competitive ratio.

Proof. Consider a graph that is obtained from the replacementeartitn from a base
graphH onn vertices with minimum degre€ maximum degree at mogt, and girth
at leasty + 2 (Lemma 1). Including blocking paths, the number of unitgigiedges
in a release gadget corresponding to a vestekdegreei(v) is O(d(v)?) + O(dw) C
O(d?) 4+ O(sw). This bound also holds for collection gadgets. Thus, fordikethe
resulting graph has a minimum spanning tree of §¢ed?) + O(nw). SinceBlocking

Algorithm 2 Exploration algorithnhDFS(G, u, w)

Input: A partially explored graph=, a vertexu of G that is visited for the first time, and a
weightw € R>q U {oo}.

1: while there is aw’ < w such thatw’ occurs incomp(G<,,, u) butcomp(G <, ,u) is not
completely exploredo

2: hDFS(G,u,w")

3: end while

4: choose a minimal spanning treecoinp(G <., w) and order all vertices according to a depth
first search in this spanning tree

. while there is a boundary edde’, y') of weightw with ' € comp(G <., u) do

let (u',y") be a boundary edge of weight with v’ € comp(G<w,u) such thatu’ is

minimal with respect to the ordering eémp(G <., u)

traverse a shortest pathgb

hDFS(G, vy, w)

: end while

. traverse a shortest pathito

o Ul

©

=
o

traverses all heavy edges (Lemma 2), it incurs a cost(@fw). By choosingd large
in comparison to all constants involved and then choositarge in comparison to the
constants and? the competitive ratio becomes arbitrarily large. a

4 Graphs with a bounded number of distinct weights

We describe a constant competitive algorithm for a boundeaer of distinct weights.

Definition 3. For any graphG, weightw, and vertex, let comp(G<,,, u) be the con-
nected component of the subgraph(éfcomprised of all edges of weight at maest
containingu. The graphcomp(G <., u) is defined similarly.

Our algorithmhierarchical depth first searcthDFS), defined in Algorithm 2, explores
comp(G<., u) for any weightw € R>oU{oo}, which is provided as a parameter. The
algorithm is based on BFS in the graphcomp(G<.,, u). However, whenever a new
vertex of this componentis encountered, it first expleresp(G <., u). The algorithm
then intuitively simulate®FS in the graph&/comp(G <., u). HereG/H denotes the
graph obtained front by contracting the subgraph of GG to a single point. To ensure
that the total length traversed withfii = comp(G <., u) is not too large, the boundary
edges leaving{ are explored according to a specific order. This order isiobthby
computing a depth first search on a minimum spanning treeab (G <, u).

The computation ofomp(G <., 1) can be reduced to recursive calls of the algo-
rithm itself with parameters smaller thandue to the following basic observation:

Lemma 3. The componentomp(G«,,, u) is completely explored if and only if there
is no boundary edge of weight smaller tharwith an end-vertex iRomp(G <, u).

To explore the entire graph starting in vertexve call Algorithm 2 a®DFS(G, s, 00),
whereG; is the partially explored graph in which ondyhas been visited so far.

10

Theorem 3. hDFS is 2k-competitive on graphs with at masdistinct weights.

Proof. We first prove that all vertices are explored. To prove thisuitfices to show
thathDFS(G, s, w) explorescomp(G <, s). We show this by induction. Suppose there
remains a boundary edde, v) with v unexplored after the caiDFS(G, s, w), and
suppose this boundary edge is containeddmp(G<,,, s). By induction (u,v) has
weightw. But v has been explored, thus there is a vegjewhich was explored in
a call with parametetv, such that this call caused to be explored. But then the
callhDFS(G, y, w) causes to be explored, which gives a contradiction.

Let MST be a minimum spanning tree 6f. To show2k-competitiveness, we show
that for eachw < oo the sum of all traversals made in calls with parameies at
most2| MST|. For this it suffices to show: IF" is a sub-forest of7 that contains edges
of weight at mostv such that for each vertexthe graphcomp(F<,, v) is a minimum
spanning tree otomp(G <., u), thenF is contained in @ minimum spanning tree(éf
Finally note that the outer call with parameter= oo does not incur any costs. 0O

For graphs with arbitrary weights, we adapt the algorithnrdiynding each edge
weight to the nearest power 8fand simulating the exploration on this altered graph.
This yields a competitive ratio @ (log(n)) for graphs withn vertices.

5 Concluding remarks

Our main result is a non-trivial graph construction whichyas that AlgorithnBlock-
ing does not have constant competitive ratio on arbitrary ggaphis answers a long-
standing open question. Nevertheless, the result doesnetally rule out online algo-
rithms with constant competitive ratio. In particular, @enstruction involves only two
distinct types of weights, and thus, our new AlgorithBFS has constant competitive
ratio. However, at present, there is no candidate for anrigthgno that may achieve a
constant competitive ratio on general graphs. Of courswistgahat no such algorithm
exists might require a construction even more complicated the one presented in
this paper. For such result it might be helpful to use the ttaat one can equivalently
consider the exploration model in which the label of a veiseanly revealed upon ar-
rival at the vertex. This can be seen by replacing each véxex star with edges of
small weight, and linking the previous neighbors to the puggtices of the star.

References

1. S. Albers and M. R. Henzinger. Exploring unknown enviremts. SIAM J. Compuf.
29(4):1164-1188, 2000.

2. Y. Asahiro, E. Miyano, S. Miyazaki, and T. Yoshimuta. \igd nearest neighbor algo-
rithms for the graph exploration problem on cycl&#. Process. Letf.110(3):93-98, 2010.

3. G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, andTelamo. Algorithms for the
on-line travelling salesmarlgorithmicg 29(4):560-581, 2001.

4. B. Awerbuch, M. Betke, R. L. Rivest, and M. Singh. Piecehgraph exploration by a
mobile robot.Inf. Comput, 152(2):155-172, 1999.

11

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

20.

R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlireac8img in the plandnformation
and Computation106(2):234—252, 1993.

. M. A. Bender and D. K. Slonim. The power of team explorati®wo robots can learn

unlabeled directed graphs. Rroceedings of FOC$®ages 75-85, 1994.

. P. Berman. On-line searching and navigationOhline Algorithms: The State of the Art

volume 1442 oL ecture Notes in Computer Scienpgages 232—241. Springer, 1998.

. M. Betke, R. L. Rivest, and M. Singh. Piecemeal learning@ofunknown environment.

Machine Learning18:231-254, 1995.

. A. Borodin and R. El-Yaniv.Online Computation and Competitive Analysi€ambridge

University Press, 1998.

X. Deng and C. H. Papadimitriou. Exploring an unknownpgréextended abstract). In
Proceedings of FOC$®ages 355-361, 1990.

A. Dessmark and A. Pelc. Optimal graph exploration witlgpod mapsTheoretical Com-
puter Science326(1-3):343-362, 2004.

C. A. Duncan, S. G. Kobourov, and V. S. A. Kumar. Optimaisteained graph exploration.
ACM Trans. Algorithms2:380—402, July 2006.

M. Dynia, J. Kutylowski, F. der Heide, and C. SchindekrauSmart robot teams exploring
sparse trees. IRroceedings of MFCS/olume 4162 oL NCS pages 327-338, 2006.

M. Dynia, J. Lopuszanski, and C. Schindelhauer. Whytoheed maps. IRroceedings of
SIROCCQvolume 4474 ot NCS pages 41-50, 2007.

P. Erés. Graph theory and probabilit¢anad. J. Math.11:34-38, 1959.

R. Fleischer and G. Trippen. Exploring an unknown grédfibiently. In Proceedings of
ESA volume 3669 of NCS pages 11-22, 2005.

P. Fraigniaud, L. Gasieniec, D. R. Kowalski, and A. P€lollective tree exploratiorNetw,
48:166-177, October 2006.

P. Fraigniaud, D. licinkas, and A. Pelc. Impact of men®irg on graph exploration capa-
bility. Discrete Applied Mathematic456(12):2310-2319, 2008.

S. Gal.Search GamesAcademic Press, 1980.

L. Gasieniec and T. Radzik. Memory efficient anonymoaplyiexploration. IiProceedings
of WG volume 5344 o NCS pages 14-29, 2008.

G. Gutin and A. P. PunneiThe Traveling Salesman Problem and Its VariatioBpringer,
2002.

C. A.J. Hurkens and G. J. Woeginger. On the nearest neighle for the traveling salesman
problem.Operations Research Lette32(1):1-4, 2004.

B. Kalyanasundaram and K. Pruhs. Constructing conngetiburs from local information.
Theor. Comput. Sgi130(1):125-138, 1994.

S. Kwek. On a simple depth-first search strategy for exmiaunknown graphs. IRroceed-
ings WADSvolume 1272 oL NCS pages 345-353, 1997.

S. Miyazaki, N. Morimoto, and Y. Okabe. The online grappleration problem on restricted
graphs.IEICE Transactions on Information and Systei92.D(9):1620-1627, 2009.

P. Panaite and A. Pelc. Exploring unknown undirectegbtgga Journal of Algorithms
33(2):281-295, 1999.

C. Papadimitriou and M. Yannakakis. Shortest pathsawuitlh map.Theoretical Computer
Science84(1):127-150, 1991.

N. Rao, S. Kareti, W. Shi, and S. lyengar. Robot navigdtiainknown terrains: Introductory
survey of nonheuristic algorithms. Report ORNL/TM-1240&k Ridge Nat. Lab., 1993.
D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis Il. Afyaisaof several heuristics for the
traveling salesman problensIAM J. Comput.6(3):563-581, 1977.

12

