The aim of this development is to show that the upward closed sets (upsets) of a preorder are a topology.

theory PreorderTopology = closure:

Let \subseteq be a preorder (reflexive and transitive relation) on a set X. We call a subset $A \subseteq X$ a \subseteq upset if anything bigger than something in A is also in A. Symbolically, A is an upset iff $\forall x, y. x \in A \subseteq y \rightarrow y \in A$. Then the set $T = \{A. A$ is a \subseteq upset$\}$ is a topology over X.

locale preorder = var X + var R +
assumes on-carrier:
 $\forall x y. R x y \rightarrow x \in X \land y \in X$
and reflexive:
 $\forall x \in X. R x x$
and transitive:
 $\forall x \in X. \forall y \in X. \forall z \in X. R x y \land R y z \rightarrow R x z$
fixes upset
defines upset $A \equiv \forall x y. x \in A \land R x y \rightarrow y \in A$

Why is a finite intersection of upsets an upset? Let F be a finite family of upsets, and x be in the intersection, and y be bigger than X. Then x is in all the upsets in F, so y is too, so y is in the intersection.

lemma (in preorder) finite-intersection:
 assumes 1: $F \subseteq \{A. A \subseteq X \& \upset A\}$
 and 3: $F \neq \{\}$
 shows $\bigcap F \in \{A. A \subseteq X \& \upset A\}$
proof (simp only: mem-Collect-eq, intro conjI)
from 1 and 3 show $\bigcap F \subseteq X$ by auto
show upset ($\bigcap F$)
proof (unfold upset-def, intro allI impl, elim conjE)
 fix x and y
 assume 4: $x \in \bigcap F$
 and 5: $R x y$
 from 4 have $\forall A \in F. x \in A$
 by auto
 have $\forall A \in F. y \in A$
 proof
fix \(A \)

assume 6: \(A \in F \)

with 1 have 7: upset \(A \) by auto

from 4 and 6 have \(x \in A \) by auto

with 5 and 7 show \(y \in A \)

by (unfold upset-def) blast

qed

thus \(y \in \bigcap F \)

by auto

qed

qed

Why is a union of upsets an upset? Anything \(x \) in the union is in one of the members \(A \) of the family, so anything \(y \) bigger than \(x \) is in \(A \) and hence in the union.

lemma (in preorder) arbitrary-union:

assumes 1: \(F \subseteq \{ A. A \subseteq X \ &\ upset A \} \)

shows \(\bigcup F \in \{ A. A \subseteq X \ &\ upset A \} \)

proof (simp only: mem-Collect-eq, intro conjI)

from 1 show \(\bigcup F \subseteq X \) by auto

show upset \((\bigcup F) \)

proof (unfold upset-def, intro allI impl, elim conjE)

fix \(x \) and \(y \)

assume 2: \(x \in \bigcup F \)

and 3: \(R \ x \ y \)

from 1 and 2 obtain \(A \)

where 4: \(x \in A \)

and 5: \(A \in F \)

by auto

from 1 and 5 have upset \(A \)

by auto

with 3 and 4 have \(y \in A \)

by (unfold upset-def) blast

with 5 show \(y \in \bigcup F \)

by auto

qed

qed

theorem (in preorder) upset-topology:

assumes \(X \neq \{ \} \)

shows topological-space \(X \ \{ A. A \subseteq X \ &\ upset A \} \)

proof (intro topological-space.intro)

let \(?T = \{ A. A \subseteq X \ &\ upset A \} \)

show \(X \neq \{ \} \).

show \(\forall A \in ?T. A \subseteq X \)

by auto

from on-carrier

show \(X \in ?T \)

qed
by (simp only: upset-def mem-Collect-eq) auto

show \{\} \in ?T
 by (unfold upset-def) auto

from finite-intersection

show \(\forall F. F \subseteq ?T \land \text{finite } F \land F \neq \{\} \rightarrow \bigcap F \in ?T\)
 by auto

from arbitrary-union

show \(\forall F. F \subseteq ?T \rightarrow \bigcup F \in ?T\)
 by auto

qed

end