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Abstract. The literature on formal semantics for UML is huge and
growing rapidly. Most contributions open with a brief remark motivat-
ing the work, then quickly move on to the technical detail. How do we
decide whether more rigorous semantics are needed? Do we currently
have an adequate definition of the syntax? How do we evaluate propos-
als to improve the definition? We provide criteria by which these and
other questions can be answered. The growing role of UML is examined.
We compare formal language definition techniques with those currently
used in the definition of UML. We study this definition for both its con-
tent and form, and conclude that improvements are required. Finally, we
briefly survey the UML formalisation literature, applying our criteria to
determine which of the existing approaches show the most potential.

Many would argue that UML has no semantics [HR04,HS05], despite the
numerous subheadings with that title in the documents which define the lan-
guage [Obj06,Obj03,Obj05c,Obj05a]. Bran Selic [Sel04] counters these claims
by collecting and summarising the scattered material on semantics from the
main official document [Obj05c]. He also encourages theoreticians to study ways
of making the semantics more precise.

The only real disagreement here is over the usage of the word “semantics.”
This is the topic of Harel and Rumpe’s excellent article [HR04], and their position
is that “semantics” is a mathematical term:

Regardless of the exposition’s degree of formality, the semantic map-
ping M : L // S must be a rigorously defined function from the lan-
guage’s syntax L to its semantic domain S. Needless to say, an adequate
semantic mapping for the full UML does not exist.

Selic, we believe, takes “semantics” to be an ordinary English word. Calling
the prose from the official UML documents “semantics,” is just saying that
it describes the intended meaning of the models. The official UML documents
exhibit an appreciation of the distinction between ordinary and technical usages:

It is important to note that the current description is not a completely
formal specification of the language because to do so would have added
significant complexity without clear benefit.

The structure of the language is nevertheless given a precise specifi-
cation, which is required for tool interoperability. The detailed semantics
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are described using natural language, although in a precise way so they
can easily be understood. Currently, the semantics are not considered es-
sential for the development of tools; however, this will probably change
in the future. [Obj03, §8]

This quote sets the scene for our investigation. It notes that some degree of
precision is required to fulfil UML’s mission. It claims, with a little hesitation,
that this has been achieved without the use of rigorous mathematics. We will
argue that there is a need for improvements, which we will identify.

The task is not to invent a new language, but to improve the definition of
an existing one. The building industry has analogous situations. Sometimes a
building of cultural significance is found to be structurally lacking. The builders
will often suggest bulldozing it, and starting afresh, or making insensitive mod-
ifications like replacing a timber floor with concrete.

Too much of the UML formalisation literature takes the ham-fisted builder’s
approach to the problem, largely ignoring the existing definition, omitting large
parts of the language or suggesting significant changes to it. We propose instead a
minimal and sensitive adaptation of the existing definition to make it strong and
stable enough, and more suitable to its new usage in model driven development.
Like a good restoration architect, we should carefully consider the option of
leaving things as they are.

Throughout this paper, we state criteria by which UML definitions ought to
be evaluated. The first overarching criterion captures the conclusion just reached.

Criterion 0 An improved definition of UML should not change the language or
the definition any more than is needed to enable UML to fulfil its role.

In our first section we consider the task of defining a language, and in the
second, we show why the semantic part of the definition is important. The third
section examines the purpose of UML, and in the fourth we study two of the
more difficult aspects of the current UML definition. The fifth section evaluates
the existing definition of UML and the sixth briefly surveys the literature to
identify the most promising efforts to improve that definition. We conclude by
saying how we hope the future of UML semantics research will differ from its
past.

1 Defining Languages

Diagrams do not need to conform to some defined language in order to help
us communicate. People find it quite natural to express their ideas by drawing
pictures, as any survey of publications, presentation slides or white-boards will
verify. Most of these diagrams do not conform to any specified diagram type. If
they are part of a language, it is a natural language, like English1.

1 We will speak of “English” when we mean any arbitrary natural language such as
English, Occitan or Brazilian Portuguese.
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A description of a natural language is a scientific theory, which must be
judged by how well it predicts actual usage. Artificial languages on the other
hand, are defined. Usage which does not conform to the definition is incorrect.

Sometimes the primary purpose of creating diagrams is not to communicate
ideas, but rather to generate or organise them. The “mind maps” technique
[Buz95] is one example. UML can be used in this way too. Building a UML
model can drive the collection of information about a problem domain, and
provide a convenient structure for organising that information. This role does
not, however, conflict with its status as a defined language.

The mind-map book provides guidelines for creating and reading these mind-
maps, which we might, very charitably, regard as a language definition. It is
certainly not a precise definition, nor is it intended to be, because precision
simply is not required. In a commentary attached to the amusing article “Death
by UML Fever” [Bel04], Philippe Kruchten implies that UML does not need to
be precisely defined.

UML is a notation that should be used in most cases simply to illus-
trate your design and to serve as as a general road-map for the corre-
sponding implementation.

UML can be used as documentation of code, but it is also intended as a means
of specifying a system. Model Driven Architecture (MDA) [MM03] calls for com-
plete systems to be generated automatically from UML models. If the language is
not precisely defined, the generated system may not be what the model creators
intended.

Computer programs are usually written as linear text, but compilers and
interpreters parse this text into a tree-like structure which is easier to process.
These structures are called the abstract syntax. Similarly, UML has an abstract
syntax which is processed by model transformation and code generation. The
relation in UML between concrete diagrammatic syntax and the abstract syntax
it represents, is complicated enough to be a potential source of error. Precisely
defining this relationship could simplify the creation of graphical model editors,
and facilitate animations [EHHS00, §6] and reverse engineering. The definition
should clearly delineate concrete syntax, abstract syntax and semantics, and it
should also specify the relationships between these parts. We therefore require
that

Criterion 1 A UML definition should unambiguously define

concrete syntax the diagrams and other notation
abstract syntax the UML models
notational conventions a unique model for each diagram collection
semantic domain the abstract systems which models “talk about”
semantics whether a given model is true of a given system
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2 Applied Semantics

Avoiding possible disagreements about whether or not a given system satisfies
a model is enough to motivate the semantic parts of Criterion 1. Model driven
development raises other questions whose answer depends on well defined se-
mantics.

Since the abstract syntax of UML is defined by a UML metamodel, we ac-
tually require a subset of the semantics to even know whether an alleged model
actually is a well-formed model.

We need it to be clear whether or not a given model is consistent. That is,
can some system satisfy this model? When we have separately modelled dis-
tinct aspects of an envisaged system, we need a system which satisfies all of the
aspect models. Model consistency includes: preservation of association multiplic-
ities and other invariants; satisfaction of pre-post-condition contracts by object
behaviours; satisfaction of use-case contracts by a model; safety properties (bad
things can not happen) and liveness properties (system does not get stuck).

If a model is made more concrete as a project progresses, we may wish to
determine whether the more concrete model is a refinement of the more abstract
one. Indeed, we may wish to establish once and for all that a certain model
transformation always produces a refinement of its input model. We tentatively
call such a model transformation sound. Refinement and soundness have various
mathematical definitions, but this is not the place to make these choices. Note
however that it is not enough to say that one model is a refinement when it adds
some detail, because we probably want to consider non-trivial model transfor-
mations like the famous class to database schema example [BRST05] to be a
kind of refinement.

We not only want these questions to have definite answers, but we would also
appreciate any tool support in finding these answers.

Criterion 2 A UML definition should settle the following questions:

model consistency is there a system which satisfies all these models?
model refinement is this model a refinement of that one?
transformation soundness does output model always refine input?

The definition should also support maximally automatic tools to help determine
the answers to these questions.

3 Working with Ideas

Bran Selic has wisely observed that “software development consists primarily of
expressing ideas” [Sel03]. A project attempts to improve some situation by intro-
ducing or modifying a system2. Ideas describing the situation must be expressed,
absorbed, discussed, analysed, tested, revised and agreed on. The system itself
must also be described, both at a high level, in terms of the ideas about the
2 I am indebted to Shayne Flint for this view of engineering
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situation, and at the low level, using ideas about specific technologies. The high
and low levels must agree, and all the ideas must be clear and free from confusion
and contradiction. Indeed, the part of software development that is not about
expressing ideas is mostly about generating, negotiating and translating them.

High level languages have contributed enormously to development produc-
tivity [Bro87], but ideas expressed in Fortran or Java are still far from the re-
quirements level ideas of the human beings for whom a system is built. It is
well known that requirements are not fully known, understood or agreed on at
the beginning of a project, and that they will change before project completion.
Hence effective software development requires the most direct possible coupling
between the thoughts of the stakeholders and their expression in implementation
languages.

When a skilled programmer writes code for her own purposes, this coupling
is perfect. The jewels of computer programming are usually formed in this way.
Extreme programming and other agile processes seek to couple high and low
level ideas by constant face-to-face communication between stakeholders and
programmers, and frequent delivery of useful code to stimulate feedback. These
forms of idea coupling depend heavily on individuals. For large projects and
organisations, it is desirable for the coupling of ideas to be systemic. This can
be achieved by establishing model transformation and code generation chains.

We agree with Steve Cook that “. . . for a language to be usable to drive an
automated development process, it is essential for the meaning of the language to
be precise” [HS05]. Without an agreed precise meaning, an automatic translators
interpretation of a model might differ from that of the stakeholders. Then the
delivered system might be unsatisfactory, even dangerous. The definition of UML
should therefore provide a reference for those who build model translators.

Criterion 3 UML and friends should enable people to reach agreement on, and
to directly express ideas about:

problem domains telecommunications, finance, logistics, . . .
implementation platforms linux cluster, enterprise Java, . . .
translation between these representations

The definition should enable tools to agree with people about what these expres-
sions mean.

We prefer to speak of “direct expression” rather than “raising the level of
abstraction.” A highly abstract expression of ideas might still be far from the
stakeholders understanding, and thus not particularly useful.

A widespread agreement between users and toolmakers about the meaning
of UML would enable trade in models and transformations. This would in turn
greatly reduce the cost of developing systems. Brooks [Bro87] notes that the
ability to buy software rather than build it has contributed greatly to reducing
software cost. Organisations whose needs can not be met by direct purchase of
software might one day be able to purchase models and transformations which
can be assembled to satisfy those requirements much more cheaply than “ground
up” development.



6

4 The Definition of UML 2.0

UML 2.0, we have observed, is not defined in the way artificial language experts
normally do business. How then is it defined? In this section we will take a
brief look at the small mountain of documentation [Obj06,Obj03,Obj05c,Obj05a]
which defines UML. These documents will be collectively referred to from here
on as the definition.

4.1 Metamodelling, Metacircularity and Reflection

The long and complicated story that is UML’s definition begins with the “In-
frastructure Specification” [Obj03]. This gives a UML model called the “In-
frastructure Library,” which “contains all the metaclasses required to define
itself” [Obj03, §7.2.8]. The Meta Object Facility (MOF) [Obj06] builds on the
infrastructure library to create a metamodelling language used to define UML
[Obj05c]. This definition of UML proper begins by including the infrastructure
library.

This technique, of using a modelling language to define a modelling language
is called metamodelling.

Metamodelling need not be circular. A metamodelling language with an in-
dependent definition can properly define the abstract syntax of a modelling
language. The UML definition describes its usage of metamodelling as metacir-
cular [Obj03, §8.1], because it uses a UML subset to define UML. Without an
independent definition of the metamodelling language though, the “meta” seems
like an unwarranted euphemism.

Because the metamodelling language used to define the abstract syntax of
UML is a subset of UML, that abstract syntax inhabits the semantic domain of
the language. Having the syntax inside the semantics is also required in order to
make sense of one of UML’s notions of instantiation. Consider a model with a
class C and an instance specification : C. Although it would be redundant in this
situation, we join the instance specification to the class with an �instanceOf�
arrow. Fix a semantic mapping i (interpretation) which takes the instance spec-
ification to an instance, and the class to a set of instances. The situation then
can be depicted as shown in Figure 1.

c C∈
//

:C

c

i

��

:C C
�instanceOf� // C

C

i

��
c

C

instanceOfTypelllllllll

66lllllllll

Fig. 1. Semantics of Instantiation
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Ignoring the instanceOfType arrow for a moment, we have a neat separation
between syntax on the top line, and semantics on the bottom. So we see that the
�instanceOf� notation in a UML diagram corresponds to “element of” (∈) in
the system state.

The operation instanceOfType, defined in MOF for the metaclass Element,
“returns true if this element is an instance of the specified Class. . . ” [Obj06,
§13.3]. The arrow in Figure 1 marked with this name, indicates an Element,
Class pair where the operation returns true. The operation crosses the syn-
tax/semantics divide. To make sense of such reflective notions, we not only re-
quire the syntax to be in the semantic domain, we actually need each syntactic
model to be present in every system state which satisfies it.

Element is a superclass of everything in UML, and of most things in MOF.
However this instanceOfType operation is only present in the MOF version. The
superstructure explicitly disowns such reflective ideas: “The [action] semantics
are also left undefined in situations that require classes as values at runtime”
[Obj05c, §11.1]. A distinction is sometimes drawn between “runtime semantics”
and “repository semantics” [Obj05c, §6.3]. We do not consider it necessary or
desirable to support two distinct semantic definitions for what is essentially
the one language. It would add work, and potentially lose the benefits of tool
reuse between metamodel and model levels. The differences arise because the
metamodels, as we have just seen, are slightly different. We therefore require
semantics that can account for reflective operations, even though the current
definition chooses to ignore them at runtime.

We summarise our findings in the following criterion. Although the last two
points entail their predecessors, we list them to provide a range of “compliance
levels” (in the style of [Obj05c, §2.2]).

Criterion 4 The definition of UML should satisfy

unity common semantics for repository and runtime
self-containment semantic domain contains abstract syntax
reflection model contained in each of its instances

4.2 Varieties of Variation

The UML definition contains a great number of “semantic variation points.”
These are places where the semantics are explicitly undefined, or where a range of
possibilities are allowed. Chapter 18 of [Obj05c] describes the profiles mechanism
of UML, which allows subsets and extensions of UML to be defined. Model driven
development may also call for domain specific languages which can interoperate
with UML models. Finally, UML 2.0 is only the latest of many revisions of the
language, and will not be the last. For all these reasons, we require semantics
which are flexible.

Criterion 5 The definition of UML must enable the language to be adapted and
extended. In particular, it requires a “semantic envelope” [Sel04] which enables
precise treatment of:
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semantic variation points
profiles
domain specific languages interoperable with UML
later versions of UML

5 The UML Definition Evaluated

Having established the properties that a definition of UML ought to have, we
turn now to the existing definition and ask, is it any good? We begin with a
perfect score on Criterion 0, since no definition can be more faithful to the
current definition than the current definition.

Criterion 1 can be summarised by saying that any proposed “definition” of
UML should actually define it. Debates on whether or not a given diagram is
a correct UML diagram, whether a system satisfies a given model and so on,
should be easily resolved by referring to the definition. Indeed, if the definition
was clear and understandable, these debates would seldom occur. That is to say,
satisfying Criterion 3 on enabling agreement, is probably our best indication
of whether Criterion 1 has been met. We therefore consider Criterion 3 before
returning to Criteria 1 and 2.

UML does not fulfil Criterion 3 so well as we could hope, because users are
not currently able to easily reach agreement about the meaning of a model.

. . .many people are confused about what these [UML] concepts . . . really
mean and how to understand and use them [HR04]

Developers can waste considerable time resolving disputes over usage
and interpretation of notation. [BF98]

We have had similar experiences when attempting to extract the precise meaning
of a diagram from groups of experienced UML practitioners: diverse interpreta-
tions each received vigorous support. Debate continues at the OMG over funda-
mental matters such as the semantics of associations and their ends [Obj, Issue
#5977][Mil06]. It seems fair to conclude that there is not widespread agreement
about the meaning of UML models.

It is not valid to infer from this that the definition lacks precision, because the
lack of agreement could be the result of the definition being difficult to under-
stand. This would be unfortunate, since it explicitly strives for understandability,
even at the cost of some precision [Obj03, §8] (quoted on Page 1). To us, it seems
more plausible that the definition is neither precise nor understandable.

The quote from the UML definition argues that a mathematical approach
involves too much work, and is not necessary to get the job done. Whether or
not Greek letters and other fancy symbols are employed, precise definitions of
abstract ideas are mathematical. If we choose to ignore the accumulated wisdom
of the mathematical discipline, and define things our own way, we commit the
same error as “hackers” who refuse to follow established software engineering
practice. Like the hackers, we are likely to get ourselves into the kind of trouble
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that the experts know how to avoid. One simply does not find disagreements
about the meaning of definitions in mathematics, but after almost 10 years even
the basics of UML are still in dispute.

Turning to Criterion 2, one could hardly hope to settle questions of model
consistency, refinement and transformation soundness without true definitions of
the relevant concepts. It should not surprise us then that Stephen Mellor finds a
lack of support for model consistency testing in the current definition [HS05]. He
claims that the definition fails to detect the apparent inconsistency of his small
example model. We conclude then that the definition rates poorly on Criteria 1,
2 and 3.

Criterion 4, on reflection, is really a detail of Criterion 0, since it records
what is entailed by the definition. Criterion 5 on flexibility, is only challenging
for a rigorous definition. “Semantic variation points” offer perfect flexibility.
Interpretation of the metamodel diagrams by object-oriented folk-law is sufficient
for current tools, which only manipulate the syntax. Without adequate support
for the other criteria though, these benefits are of little use.

To achieve a definition which satisfies our criteria then, we may have to tol-
erate a little mathematics. The next section surveys some of the work applicable
to this task.

6 The UML Formalisation Literature

Since the current definition does not satisfy the requirements, we would like an
improved definition for UML. The new definition should agree with the cur-
rent one, including its reflective metamodelling approach, it should define the
semantics sufficiently to enable automated checking of consistency, refinement
and soundness, and it should be flexible and understandable. We now take a
brief look at some work related to improving the definition of UML, in the light
of our criteria.

Kim, Carrington and Burger [KC00,KBC05] give explicit translations be-
tween Object-Z and class diagrams. In the earlier work, the syntax of both
languages is expressed in Object-Z, and the translation is also defined there. A
metamodel of Object-Z is provided for the benefit of modellers unfamiliar with
this formal language. In the later work, the metamodels define the syntax, and
the translation is defined using a dedicated model transformation language. Un-
fortunately, even this recent work only addresses a subset of the class diagram
fragment of UML. The work aims to enable formal verification of UML models,
but as yet we have no demonstration nor descriptions of specific techniques.

Model Driven Architecture [MM03] aims to enable the simultaneous use of
many languages, each with syntax defined in MOF, by using model transforma-
tions between these languages. The real contribution of [KBC05] is in recognising
that formal languages can also participate in this way. Definitive formal seman-
tics could be provided by a Z (or Object-Z or dynamic logic or . . . ) metamodel
and UML to Z model transformation. This would enable tool integration, and
provide insight into the formalism for the more advanced modellers. Attempts to
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directly translate diagrams into formal languages usually ignore the metamodel
definition of the language, and thus violate Criterion 0.

Bruel and France [BF98] advocate an integration of UML and formal meth-
ods, in which a UML class diagram is translated into the formal specification
language Z. The Z specification is then manually refined, adding details not
expressible using class diagrams. The rules and guidelines for semi-automatic
translation, they hope, will give insights for developing a more precise semantics
for UML.

Rasch and Wehrheim [RW03] also advocate integration of a formal language,
in this case Object-Z, into the development process. The Object-Z specification
manually derived from the class diagram also specifies the class operations. The
class is further constrained by a protocol state-machine, which together with
the Object-Z schema, is translated into CSP. The choice of CSP, which is even
less readable than Z, seems to be motivated mostly by the availability of a
model checker3 which they aim to use for consistency testing. They consider
several notions of consistency and study which of these are preserved under CSP
notions of refinement. We are not convinced that the intended semantics of the
UML fragment are captured by this translation. It is also not clear that the
CSP notions of refinement are applicable. We see little hope that modellers and
transformation authors will become familiar with both Object-Z and CSP.

The association end annotation {unique} is the subject of a recent con-
troversy [Obj, Issue #5977]. Dragan Milicev [Mil06] proposes semantics which
reconcile the apparently conflicting parts of the UML definition. These semantics
concern associations, their ends and the read, create, and destroy link actions.
In an appendix to the report, Milicev gives an example model to illustrate the
controversy, and expresses his semantics for it in Z. This is intended merely as a
precise statement of the proposal explained in the body of the paper. However,
this is the most convincing example we have seen of using Z to express dynamic
aspects of UML. It is also a good example of why Z will never be widely used
by developers: it is not easy to read.

Algebraic specification extended with “generalised labelled transition sys-
tems” is used by Gianna Reggio, Maura Cerioli and Egidio Astesiano to for-
malise parts of UML in [RCA01] and earlier papers by the same authors. They
do this by translating UML diagrams into the language Casl-LTL, though they
emphasise that the particular language is immaterial. This work explicitly aims
for a way of giving useful formal semantics to the whole of UML, and as the title
suggests, they take seriously the idea that the different diagrams combine to
specify a single system. However they ignore the fact that the official definition
already interprets the variety of diagrams into a single abstract syntactic entity,
the model. The authors note the expressive demands made by UML’s dynamic
diagrams.

It is worth noting that to state the behavioural axioms we need some
temporal logic combinators available in Casl-Ltl that we have no space

3 Note that this is not a tool intended for checking UML models. “Model” here is a
technical term from symbolic logic, meaning interpretation.
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to illustrate here. The expressive power of such temporal logic will also
be crucial for the translation of sequence diagrams. . .

Indeed, Z and its derivatives would face similar difficulties. A later paper [AR02]
by Astesiano and Reggio studies UML consistency from their algebraic point of
view, and also uses a metamodel to describe the formal language being used.

The Object Constraint Language (OCL) [Obj05a] is very much like the lan-
guages of traditional symbolic logic, and at least two groups have attempted to
make it precise by translating it into well understood systems of logic, intending
to enable theorem proving about models. Brucker and Wolff [BW02] use higher
order logic (HOL) as implemented in the generic interactive theorem prover Is-
abelle. Beckert, Keller and Schmitt [BKS02] use first order logic. OCL 2.0 has a
third truth value “undefined” and allows collections of collections, so first order
logic will probably not suffice to formally define it. Neither group make use of
the OCL metamodel in their translations. Beckert’s group offer different, equiv-
alent translations optimised for readability or for automated theorem proving
respectively. With a foundation as suggested in these works, OCL itself could
be the target formal language for a model transformation defining the semantics
of UML. This would probably require additions to the current limited temporal
operators of OCL though.

The OCL formalisation of Beckert and Schmitt [BKS02] is used in their the
KeY project [ABB+05]. This is a tool for the deductive verification of Java-Card
programs using a specialised dynamic logic [Bec01]. This logic is implemented in
a generic theorem prover integrated with the Together modelling tool, and thus
provides a practical platform integrating UML modelling and formal methods.
Although this work is not aimed at improving the definition of UML, it is in-
structive. The deductive rules symbolically execute the Java-Card program, and
thus give a clear and precise account of the language semantics. The rules could
even provide educational interactive animations of the language.

Unlike Java-Card, UML is non-deterministic and has no main procedure, but
it is conceivable that one could develop such a dynamic logic for UML. The logic
would have rules for each of the UML actions. This would define model dynamics,
and the meaning of each of the diagrams could be expressed by translation into
the dynamic logic language. It would also enable deductive verification of UML
models. In its traditional form, dynamic logic is even less readable than Z. But
a UML specific logic could use OCL notation for its static parts, whilst the
program parts would be written using the yet to be fixed standard UML action
language.

Wieringa and Broerson [WB97] use a formal language derived from dynamic
logic to give formal semantics for parts of UML class and state machine dia-
grams. As in earlier work by Wieringa, a “methodological analysis” leads the
authors to diverge radically from the official definition: a system is a black box,
which responds instantly to external stimuli. It is not possible for example to
make sense of a sequence diagrams in such a system. This might be a useful
interpretation of UML for requirements engineering, as these authors see it, but
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from our perspective, it is inventing a new language rather than providing a
better definition of the existing one.

We take this opportunity to mention our own work [O’K06], which uses stan-
dard dynamic logic to give precise semantics to a UML subset with class, state
machine and sequence diagrams, and send and receive actions. Tableau theorem
proving techniques are employed to test model consistency. Other work on se-
quence diagrams require every occurrence to be made explicit in the diagram,
whereas our formalisation allows hidden occurrences in between the explicit ones.
This raises the level of abstraction, appropriately ignoring details that the se-
quence diagram author does not care about. This work makes no attempt to
handle visibility and polymorphism issues. Standard dynamic logic is probably
not suitable for a full UML fomalisation, as it lacks higher order expressions and
parallel composition.

The first plausible demonstration of deductive verification of UML models
is given by Arons, Hooman, Kugler, Pnueli and van der Zwaag, in [TAKP+04].
The semantics are not described in this paper, but are derived from those of
[DJPV03]. That paper gives formal semantics to a small executable subset of
UML intended for real-time applications, using Pnueli’s “symbolic transition sys-
tems.” Much of the considerable complexity of that work comes from the need
to model hard real-time systems, which makes us wonder whether the general
modelling community might get by with something simpler. The abstract syntax
of the official definition is ignored, and a traditional formal syntax is given for the
selected UML subset. The later deductive verification work uses a temporal logic
embedded into the higher order logic of the PVS interactive theorem prover. A
model given by a class diagram and state machine diagrams with some actions,
is automatically translated from .xmi form into PVS sources. Issues of consis-
tency are deliberately avoided, since deductive verification of liveness properties
and safety properties are challenging enough at this stage. Several strong as-
sumptions are made about the execution semantics, which are not present in the
official definition. Deductive verification is not required for most applications of
UML, but supporting formal proof demonstrates that a definition is precise and
unambiguous, which we have demanded in Criterion 1. This formalisation uses
a language with both temporal and higher order features, so it is not subject to
many of the limitations we have identified for other approaches. Most of our cri-
teria are not addressed by this work however. Most urgently, we need techniques
to check consistency, and we need the meaning of models to be understood by
non-technical modellers and end users.

Several workers [ZHG05,EHHS00] employ graphs and graph transformations
[BH02] to give formal semantics to UML. In this way, a system state can lit-
erally be an object diagram, which is clearly much easier to understand than
the usual logico-mathematical offerings. The graph transformation rules, which
define the system dynamics, can be given using UML collaboration diagrams
[EHHS00]. Metamodels are usually static, consisting of only class diagrams. If
we included collaboration diagrams in the metamodelling language, we could
view metamodels as specifications of graph transformation systems. Thus we
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can define semantics for a modelling language by providing a model transforma-
tion from the modelling language to the metamodelling language! This would
be a significant change to MOF, but seems well motivated and could win sup-
port. Unfortunately the specific metamodel proposed in [EHHS00] depends on
the Object metaclass in 1.x UML metamodels. This is widely accepted to have
been confused, and has been removed in UML 2.0. Model consistency from a
graphical point of view is considered in [EHHS02]. Graph transformation offers
the attractive prospect of a common language for practical software engineers
and academic theoreticians. This combination of rigour and understandability,
we believe, is the key to satisfying all our Criteria. The present author will be
reading more about graph transformation.

All the work we have discussed takes part of UML and translates it into
another language with formal semantics. An alternative would be to use English
and elementary mathematics to define the semantics4. This approach would
allow us to use specific formalisms for specific tasks, whilst avoiding their ex-
pressive limitations when defining the semantics. It is easy to adapt an En-
glish/mathematical text, but this does not automatically integrate the new in-
terpretation with existing tools. An alternative is to directly define semantics for
a core of UML, then translate the remainder of the language into this by model
transformation. This seems to be the intention of the OMG’s current request for
proposal on an executable UML foundation [Obj05b].

Model transformation from UML to a language with precise semantics seems
the most promising method for improving the definition of UML. The formal
language must be able to express temporal and higher order concepts, handle
scoping and polymorphism, and admit automated consistency checking. Perhaps
the most challenging requirement though, is that it should enable people to
better understand UML models.

7 Conclusion

Too much of the work on UML semantics looks like a technical answer which is
glad to have found a good practical question. We have asked what that question
actually is, and refined it in the form of criteria for an improved definition. It
is our hope that future work will explicitly address the larger task of improving
the definition of UML. Our criteria might serve as goalposts for formalisation
work, or as targets for demolition by more worthy replacements. Either way, it
is a step towards the more desirable situation where a practical question seeks
a technical answer.
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