In this lecture we give precise *meaning* to formulae

- math stuff: sets, pairs, products, relations, functions
- PL connectives as truth-functions
- PL situations and truth-tables
- tautology, contradiction, contingency, consequence
- QL interpretations
Sets

- a set is several things considered together as one thing

- There are two ways of specifying a set:
 - List the items in it:
 - {Sydney, Toulouse, London}
 - {2, 3, 15, 328}
 - {}
 - Describe its members using a property:
 - The wheels on Greg's car
 - Students currently enrolled in Phil134
 - Goldfish currently enrolled in Phil134

- A set's members have no order:
 - {1, 2} = {2, 1}

- Things cannot be in the set more than once:
 - {1, 1} = {1}
Sets

- a set is several things considered together as one thing
- there are two ways of specifying a set:
Sets

- A set is several things considered together as one thing.
- There are two ways of specifying a set:
 - List the items in it.
 - Describe its members using a property.
a set is several things considered together as one thing
there are two ways of specifying a set:
 - list the items in it
 - \{Sydney, Toulouse, London\}
Sets

- a *set* is several things considered together as one thing
- there are two ways of specifying a set:
 - list the items in it
 - \{*Sydney*, *Toulouse*, *London*\}
 - \{2, 3, 15, 328\}
 - describe its members using a property
 - the wheels on Greg's car
 - students currently enrolled in Phil134
 - goldfish currently enrolled in Phil134
a set is several things considered together as one thing
there are two ways of specifying a set:
 - list the items in it
 - \{Sydney, Toulouse, London\}
 - \{2, 3, 15, 328\}
 - \{\}
 - describe its members using a property
 - the wheels on Greg's car
 - students currently enrolled in Phil134
 - goldfish currently enrolled in Phil134
 - a set's members have no order:
 - \{1, 2\} = \{2, 1\}
 - things can not be in the set more than once:
 - \{1, 1\} = \{1\}
Sets

- A set is several things considered together as one thing.
- There are two ways of specifying a set:
 - List the items in it
 - \{Sydney, Toulouse, London\}
 - \{2, 3, 15, 328\}
 - \{\}
 - Describe its members using a property
 - \{\}
Sets

- a set is several things considered together as one thing
- there are two ways of specifying a set:
 - list the items in it
 - \{Sydney, Toulouse, London\}
 - \{2, 3, 15, 328\}
 - \{\}
 - describe its members using a property
 - \{ the wheels on Greg’s car \}
Sets

- A set is several things considered together as one thing.
- There are two ways of specifying a set:
 - List the items in it:
 - \{Sydney, Toulouse, London\}
 - \{2, 3, 15, 328\}
 - \{\}
 - Describe its members using a property:
 - \{the wheels on Greg’s car\}
 - \{students currently enrolled in Phil134\}
Sets

- a set is several things considered together as one thing
- there are two ways of specifying a set:
 - list the items in it
 - \{ Sydney, Toulouse, London \}
 - \{ 2, 3, 15, 328 \}
 - \{ \}
 - describe its members using a property
 - \{ the wheels on Greg’s car \}
 - \{ students currently enrolled in Phil134 \}
 - \{ goldfish currently enrolled in Phil134 \}
• a set is several things considered together as one thing
• there are two ways of specifying a set:
 • list the items in it
 • \{\textit{Sydney, Toulouse, London}\}
 • \{2, 3, 15, 328\}
 • \{
 • describe its members using a property
 • \{ the wheels on Greg’s car \}
 • \{ students currently enrolled in Phil134 \}
 • \{ goldfish currently enrolled in Phil134 \}
• a set’s members have no order: \{1, 2\} = \{2, 1\}
Sets

- A set is several things considered together as one thing.
- There are two ways of specifying a set:
 - List the items in it:
 - \{Sydney, Toulouse, London\}
 - \{2, 3, 15, 328\}
 - {}
 - Describe its members using a property:
 - \{the wheels on Greg’s car\}
 - \{students currently enrolled in Phil134\}
 - \{goldfish currently enrolled in Phil134\}
- A set’s members have no order: \{1, 2\} = \{2, 1\}
- Things can not be in the set more than once: \{1, 1\} = \{1\}
Set operations and relations

Membership we write \(x \in \{x, y, z\} \) to say that \(x \) is in the set.
Set operations and relations

membership we write $x \in \{x, y, z\}$ to say that x is in the set

subset if every member of A is also in B we write $A \subseteq B$
Set operations and relations

membership we write \(x \in \{ x, y, z \} \) to say that \(x \) is in the set

subset if every member of \(A \) is also in \(B \) we write \(A \subseteq B \)

union we write \(A \cup B \) for the set containing everything in \(A \) and everything in \(B \)
Set operations and relations

- **Membership**: we write $x \in \{x, y, z\}$ to say that x is in the set
- **Subset**: if every member of A is also in B we write $A \subseteq B$
- **Union**: we write $A \cup B$ for the set containing everything in A and everything in B
- **Intersection**: we write $A \cap B$ for the set of things that are in both A and B
Set operations and relations

membership we write $x \in \{x, y, z\}$ to say that x is in the set

subset if every member of A is also in B we write $A \subseteq B$

union we write $A \cup B$ for the set containing everything in A and everything in B

intersection we write $A \cap B$ for the set of things that are in both A and B

subtraction $A - B$ is the elements from A that are *not* in B
Exercise: Set operations

Let $A = \{1, 2, 3\}$ and $B = \{true, false\}$. Which of the following are correct?

1. $\{2\} \subseteq A$
2. $2 \in B$
3. $\{2, 3\} \in (A \cup B)$
4. $2 \in (A \cap B)$
5. $2 \in (A - \{1, 3\})$
Ordered Pairs

- an ordered pair is two things in order:
 a first thing and a second thing
Ordered Pairs

- an ordered pair is two things in order: a first thing and a second thing
 - (15, “turnip”)
an ordered pair is two things in order: a first thing and a second thing

- (15, “turnip”)
- (Melbourne, true)
an ordered pair is two things in order: a first thing and a second thing
- (15, “turnip”)
- (Melbourne, true)

the order matters: (1, 2) \(\neq\) (2, 1)
Ordered Pairs

- an ordered pair is two things in order: a first thing and a second thing
 - (15, “turnip”)
 - (Melbourne, true)
- the order matters: \((1, 2) \neq (2, 1)\)
- the same thing can be in a pair twice: \((1, 1)\) is an ordered pair
Products

The product operation takes an ordered pair of sets, and gives a set of ordered pairs.
The product operation takes an ordered pair of sets, and gives a set of ordered pairs.

It is all the pairs with the first thing from the first set, and the second thing from the second set.
The product operation takes an ordered pair of sets, and gives a set of ordered pairs.

It is all the pairs with the first thing from the first set, and the second thing from the second set.

\[A \times B = \{ \text{ordered pairs } (a, b) \text{ where } a \in A \text{ and } b \in B \} \]

eg. \{Sydney, Paris\} × \{2, 4, 11\} = \{(Sydney, 2), (Sydney, 4), (Sydney, 11), (Paris, 2), (Paris, 4), (Paris, 11)\}
The product operation takes an ordered pair of sets, and gives a set of ordered pairs.

It is all the pairs with the first thing from the first set, and the second thing from the second set.

\[A \times B = \{ \text{ordered pairs } (a, b) \text{ where } a \in A \text{ and } b \in B \} \]

eg.

\[\{ \text{Sydney, Paris} \} \times \{2, 4, 11\} = \{(\text{Sydney, 2}), (\text{Sydney, 4}), (\text{Sydney, 11}), (\text{Paris, 2}), (\text{Paris, 4}), (\text{Paris, 11})\} \]
a relation is a subset of a product
Relations and Functions

- A relation is a subset of a product.
- A function $A \rightarrow B$ is a relation $\subseteq A \times B$ which has exactly one pair (a, b) for each $a \in A$.

Do not confuse the function arrow with the "if ... then ..." arrow. If f is a function $A \rightarrow B$ and $(a, b) \in f$ then we say $f(a) = b$.

Relations and Functions

- a *relation* is a subset of a product
- a *function* $A \rightarrow B$ is a relation $\subseteq A \times B$ which has exactly one pair (a, b) for each $a \in A$
 - do not confuse the function arrow with the “if ... then ...” arrow
a relation is a subset of a product

a function $A \rightarrow B$ is a relation $\subseteq A \times B$ which has exactly one pair (a, b) for each $a \in A$

- do not confuse the function arrow with the “if ... then ...” arrow

- if f is a function $A \rightarrow B$ and $(a, b) \in f$ then we say $f(a) = b$
Exercise: functions

Let \(A = \{1, 2, 3\} \) and \(B = \{true, false\} \).
Which of the following are functions \(A \to B \):

1. \(\{(1, \text{true}), (1, \text{false})\} \)
2. \(\{(1, 2), (2, 3), (3, 1)\} \)
3. \(\{(1, \text{true}), (2, \text{false}), (3, \text{true}), (1, \text{false})\} \)
4. \(\{(1, \text{true}), (2, \text{false}), (3, \text{true})\} \)
5. \(\{(1, \text{true}), (3, \text{true})\} \)
Now we are ready to give precise meaning to our formal languages.

- recall that a statement is true or false depending on the situation
- so, a PL situation must make each PL formula true or false
- the situation only needs to give truth values for the atomic formulae, because the truth of compound formulae are determined by the truth of their components
- therefore, a PL situation is a function
 \(\{P, Q, R, \ldots\} \rightarrow \{true, false\} \)
Propositional connectives as truth functions

- “I am rich and she is poor” is true when “I am rich” is true and “she is poor” is true, otherwise it is false.
- If $P = “I am rich”$ and $Q = “she is poor”, then $P \& Q$ is true in a situation if P and Q are both true there, false otherwise.
- So, the meaning of $\&$ is the function $\{T, F\} \times \{T, F\} \rightarrow \{T, F\}$,
 $\{((T, T), T), ((T, F), F), ((F, T), F), ((F, F), F)\}$
- We can write this much more conveniently as a truth-table.
Truth tables

(careful: now A and B stand for PL formulae, not sets!)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth tables

*(careful: now *A* and *B* stand for PL formulae, not sets!)*

The truth-function for & is defined by this truth-table.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>A & B</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>

we have one row for each possible input
Truth tables

(careful: now A and B stand for PL formulae, not sets!)

The truth-function for $\&$ is defined by this truth-table.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A & B</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- we have one row for each possible input
- the value of the formula is written under its main connective
(careful: now A and B stand for PL formulae, not sets!)

The truth-function for $\&$ is defined by this truth-table.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A & B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T T T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T F F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F F T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F F F</td>
</tr>
</tbody>
</table>

- we have one row for each possible input
- the value of the formula is written under its main connective
- if A and B were atoms, say P and Q, the rows would be each possible situation
Truth tables as a validity test

Since a truth-table shows us the truth value for some formulae in every possible situation, we can use it to check validity of sequents.

For example, is $P \& Q$, $\sim P : Q$ a valid sequent?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>$P & Q$</td>
<td>$\sim P : Q$</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Now we can easily check: are there any situations in which every premise is true but the conclusion false? No, so the sequent is valid.
Truth tables as a validity test

Since a truth-table shows us the truth value for some formulae in every possible situation, we can use it to check validity of sequents.

For example, is \(P \& Q, \sim P, : Q \) a valid sequent?

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P & Q</th>
<th>,</th>
<th>~ P</th>
<th>: Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T T T T</td>
<td>F</td>
<td>T T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T F F T</td>
<td>F</td>
<td>T F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T F F T</td>
<td>T</td>
<td>F T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F F F F</td>
<td>T</td>
<td>F F</td>
<td>F</td>
</tr>
</tbody>
</table>

Now we can easily check: are there any situations in which every premise is true but the conclusion false? No, so the sequent is valid.
More on this next time, but briefly, a situation for QL is a set \mathcal{D} for the domain, a subset of the domain for each property letter, a relation $\subseteq \mathcal{D} \times \mathcal{D}$ for each binary relation letter..., and a member of \mathcal{D} for each name letter. Atomic formulae are true when the named things are in the named property or relation.
Exercises

Homework Assignment

Tomassi, Chapter 4
4.1 evens
4.2.1 (for the formulae you worked in 4.1) 4.3: 2, 4, 6