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Abstract— Algorithms for classifying road signs have a high
computational cost per pixel processed. A promising approach
to real-time sign detection is to reduce the number of pixels to
be classified as being a particular sign to a minimum by some
form of sign detection on the image using less time expensive
algorithms. In this paper, we adapt the fast radial symmetry
detector to the image stream from a camera mounted in a car
eliminate almost all non-sign pixels from the image stream.
We then are able to apply normalised cross-correlation to
classify the signs. This method is suitable for circular signs
only; we apply it to Australian speed signs in this paper. Our
results show that it is robust to a broad range of lighting
conditions. Also, as the method is fast, there is no need to make
unrealistically strict assumptions about image structure.

I. INTRODUCTION

A key technological goal in road vehicles today is to
improve safety. One way this can be achieved is by cre-
ating systems within the vehicle that support the driver in
reacting to changing road conditions. In our research we are
particularly concerned with driver support systems. Systems
that support the driver in controlling the car, but keep the
driver in the loop. Within this area of driver support systems,
it is important to consider that roads are highly structured
environments, designed to simplify the driving task where
possible.

Sign recognition is an important task for a driver support
system. Signs giving information that is relevant to the local
conditions appear clearly in the environment, however, a
driver may not notice a particular sign due to distractions
or a lack of concentration. In this case it may be helpful to
make them aware of the information that they have missed.
An obvious question is how the system within the car can
perceive whether the driver is already aware of a particular
event. This is difficult to judge for many types of sign.
However, in this study we choose to address speed signs in
particular because, if the driver is aware of the sign they
should have adjusted their speed to a safe level. Thus, if
a system can monitor speed signs, and inform the driver
if they are currently driving too fast (or too slow), then
the driver will only gain information that they don’t know.
(Alternatively, the driver may have decided not to react to
the information, in which case it may not be a bad thing to
inform them anyway).

Road sign recognition research has been around since
the mid 1980’s. A direct approach is to apply normalised
cross correlation to the raw traffic scene image. This brute
force method is computationally prohibitive, but this can be

eased somewhat by approaches such as simulated annealing
[1]. Another method for controlling computation is to apply
templates to an edge image of the road scene [2]. The
method applies a distance to nearest feature transform to
smooth the matching space for coarse-to-fine matching, and
makes a hierarchy of templates to reduce the number to be
compared. However, this is still computationally intensive
and so unsuitable for an in the loop system.

Many approaches have introduced separate stages for
sign detection and classification of sign type (e.g., [3], [4],
[5], [6]). This is particularly used when a large number
of sign types are to be classified. We argue that this can
be an effective means of managing computation for even
a small number of sign types if the detection algorithm
has low computational cost, facilitating real-time operation.
In this manner, computationally intensive classification can
be performed on only a small fraction of the input image
stream, without requiring assumptions about where signs
may appear.

Colour segmentation is the most common method for the
detection stage. Typically, this is based on the assumption
that the wavelength that arrives at the camera from a traffic
sign is invariant to the intensity of incident light. This
assumption usually manifests in the statement that HSV
(or HSI) space is invariant to lighting conditions [6]. A
great deal of the research in this area exploits a detection
stage based on this assumption (e.g., [6], [7], [3], [5], [8],
[9], [10]), either finding the signs, or eliminating much of
the image from further processing. However, the camera
image is not invariant to changes in the chromaticity of the
incident light. Such variance may occur in changes between
conditions, such as direct sunlight, heavy cloud, smog, and
under headlights at night. Further, once we consider that an
imaging device must convert this wavelength to signals, the
invariance of HSV space to even the intensity of incident
light becomes problematic as the response to varying wave-
length and intensity of standard imaging devices is non-
linear and interdependent [11]. Further, as signs fade over
time the colour of the signs cannot be invariant. It may
be considered that HSV colour invariance is still sufficient
in typical conditions. However, as opposed to ideogram
based signs, speed signs only have narrow bands of colour,
only a few pixels wide at most if a wide field of view
is to be maintained. CCD sensors return an integration
over a small field of view. If more than one colour falls
on a CCD element, the colour is not easily predicted, see



Figure 1. Dealing with this problem could easily remove
the fast segmentation advantage of the two step approach
and requires further research.

Another approach to detection is a priori assumptions
about image formation. At its simplest, one can assume
that the road is approximately straight, so large portions
of the image can be ignored as signs will not appear
in them. Combined with colour segmentation, Hsu and
Huang [10] look for signs in only a restricted part of
the image. However, such assumptions can break down on
curved roads, or with bumps such as speed humps. A more
sophisticated approach is to use some form of detection to
facilitate scene understanding, and thus eliminate a large
region of the image. For example, Piccoli et. al [7] suggest
large uniform regions of the image that correspond to the
road and sky, and thus only looking in the region along side
the road and below the sky where signs are likely to appear.
However, this will not be adequate in more difficult road
scenes, such as shown in Figure 4 (b). They also suggest
ignoring one side of the image as signs will only come up
on one side. This is inadequate for multi-lane highways,
and throwing away information in scenes such as Figure 4
(a).

(a)

(b)

Fig. 1. A typical detected candidate sign (a) at input image size, and (b)
close-up. The outer circle and numbers are narrow. Despite its consistent
appearance as a small image to our eyes, it contains few pixels that could
be said to be red, black, or even white.

We propose a new efficient method for sign detection: the
fast radial symmetry detector [12]. It is applicable to signs
with a circular feature, a significant subset of signs. Many
shape detectors are non-robust because they require closed
shapes. Robust techniques such as Hough circle detection
[13] are slow to compute over large images. The fast radial
symmetry detector can be run as a detector at frame rate.
All Australian speed signs have a red circle on a white

background with black numbers. We are able to eliminate
the vast majority of false positives by considering only
radially symmetric regions, that are stable across several
images, have a high count of pixels in ratio to the radius.

This has now reduced the locations that are possible for
signs to occur to very few. The typical next stage is cross-
correlation. However, now there are very few pixels where
templates must be applied. Further, for cross-correlation,
scale is a problem, typically requiring multiple templates
at different resolutions. However, from the radius returned
from the fast radial symmetry detector we know the approx-
imate scale of the template.

This paper presents an application of the radial symme-
try operator to visual speed sign recognition. It identifies
possible candidate speed signs in an image stream from
a video camera mounted within the car looking along
the road. This information can then be compared against
the vehicle’s speedometer, and passed onto the driver if
it appears that they have not reacted to the change of
conditions. Our approach exploits the structured nature of
the road to facilitate fast processing. We also demonstrate
how this operator can be combined with cross-correlation
on candidates to yield classification.

II. SPEED SIGN RECOGNITION

There is much possible variation in the appearance of
a speed sign in an image. Throughout the day, and at
night time, lighting conditions can vary enormously. A sign
may be well lit by direct sunlight, or headlights, or on the
other hand it may be completely in shadow on a bright
day. Further, heavy rain may blur the image of the sign.
Ideally, signs have clear colour contrast, but over time they
can become quite faded, but still be quite clear to drivers.
Although signs appear by the road edge, this may be far
from the car on a multi-lane highway - to the left or right, or
very close on a single lane exit ramp. Further, although signs
are generally a standard distance above the ground, they can
also appear on temporary roadworks signs at ground level.
With this nature, it is not simple to restrict the possible
viewing positions of a sign within the image. By modelling
the road [14], it may be possible to dictate parts of the image
where a sign cannot appear, but road modelling has its
own computational expense, and, as discussed previously,
colour-based methods are not robust.

However, the roadway is well structured. Under Aus-
tralian law speed sign appearance is highly restricted: a
particular size, and must be a white sign with black numbers
surrounded by a red circle. Unless the sign has been tam-
pered with, signs will appear approximately orthogonally
to the road direction. Finally, signs are always placed to
be easily visible, so the driver can easily see them without
having to look away from the road. In this paper we assume
that the signs are vertical along side the road, however, with
minor accidents, signs can occasionally appear tilted.

This algorithm searches for near circular features. As
a legal speed sign must have a red circle around it, and



signs almost always appear in the orthogonal direction to
the road, provided our camera points in the direction of
vehicle motion, the surface of signs will be approximately
parallel to the image plane. On a rapidly curving road it
may be that the sign only appears parallel to the image
plane briefly, but this will be when the vehicle is close to
the sign, so it will appear large in the image. If we are
processing images at around the standard frame rate, and
we are able to recognise a sign reliably from only a small
number of frames then generally we are safe to assume that
the sign is approximately parallel to the image plane.

A. Candidate detection

The fast radial symmetry detector [12] is a variant on the
circular Hough transform that executes in order kp, where
p is the number of pixels, and k is the number of discrete
radii that are searched. This is as opposed to the traditional
circular Hough transform that executes in order kbp. For
the traditional circular Hough transform, each edge pixel
votes on all circles over a discrete set of radii k that could
pass through that edge pixel. The factor b comes from the
a discretisation into a number of bins on the gradient of
circular tangents that could pass through this point. The fast
radial symmetry detector eliminates the factor b by taking
the gradient of the edge point directly from the output of
the Sobel edge detector. In this way, the computation of the
radial symmetry detector is reduced by a factor of b, but
also the resulting circle map is simplified by a dimension.
This makes it suitable for real time use, 13.2 ms for a 240
x 320 image [12].

To better explain our adaptation of the fast radial sym-
metry detector, we include a description, largely taken from
[12]. For a given pixel, p, the gradient, g, is calculated using
an edge operator that yields orientation, such as Sobel. If
this pixel lay on the arc of a circle, then its centre would
be in the direction of the gradient, at the size of the radius.
To achieve lighting invariance, we apply the discrete form
of the detector. The location of a pixel that will gain a vote
as a potential centre is defined:

p+ve
= p + round

(

g(p)

||g(p)||
n

)

, (1)

where n ∈ N is the radius, and N is the set of possible radii.
In our application to sign detection, this is defined by our
expectations about the apparent sign size. (A negative image
is defined similarly, facilitating constraining the operator to
find only dark light circles, or light dark only.) A vote image
is defined based on these orientation votes as:

On(p+ve) = On(p+ve) + 1 (2)

The vote image is defined as:

F̂n(p) = sgn(Õn(p))

(

|Õn(p)|

kn

)α

, (3)

where α is the radial strictness parameter, and kn is a
scaling factor that normalises On across different radii.
Also,

Õn(p) =

{

On(p), ifOn(p) < kn,

kn, otherwise.
(4)

To obtain the radial symmetry image, F̂n is convolved
with a Gaussian. There are several images produced by the
transform. Each radii of N votes into a separate image.
There is also a full transform image that averages all the
symmetry contributions over all radii considered:

S =
1

|N |
Σn∈NSn. (5)

See [12] for full details.
In order to adapt the transform for the sign detection

case, we apply it to only to radii that are practical for
detecting speed signs in traffic images, this is between five
and nine pixels on our images. A circle with a small number
of pixels as its radius may well constitute a speed sign,
however, there will not be enough pixels present to discern
what the sign says, and so there is no point in further
processing. We should wait until the sign is close enough to
be recognised. Further, in normal driving conditions a sign
will never appear closer to the camera than several metres.
Given a camera of approximately known focal length, we
can impose an upper limit on the possible radius of circles
that we are interested in. In our system these limits were
empirically derived based on sample road images. As the
majority of circle pixels will be detectable even on heavily
heavily degraded signs, we require that a large percentage of
any candidate circle is covered by edge pixels with gradients
that indicate the same centre. The fading of signs tends to
be fairly even, so it is likely either most pixels will be
above the detection threshold, or almost none will be. This
restriction eliminates partially circular false positives.

To detect the signs, we search the full transform image,
Equation (5), for values above a threshold defined as the
required number of pixels for the smallest radius. We then
check all the individual radii images, Equation (3), to find if
any are above the threshold of edge pixels for that radius. It
could be that a high vote in Equation (5) results only from
a collection of accidental votes from several contributing
radii. If a particular radius is above the threshold, then this
is a possible circle candidate.

Further consistency checking can be performed over time.
A circle must appear for at least two concurrent frames, it
cannot have changed radius by more than two pixels during
that time, and it must not move by more than 20 pixels in the
image. It may be possible to model car motion in predicting
the new location of the image where the sign should appear.
However, one would have to assume a smooth straight road,
which is quite restrictive, or include feedback of steering
direction, which is complex, but may contribute further.

We track up to three candidates in any single image, and
given temporal consistency, may find up to three candidates.



The output is the region of the image in which the candidate
appears, a radius, representing the scale of the candidate,
and a centre point of the candidate.

B. Classification

To demonstrate that the symmetry operator can combine
effectively with classification, we applied normalised cross-
correlation from the Intel Integrated Performance Primatives
library. We made a template of the sign text from a close by
sign, and scaled it down by linear interpolation across all
colour channels to all expected radii N , to form a total of
eight templates for each sign. At run-time, the appropriate
subset of templates was chosen based on the radius found
from the operator. Other authors have scaled the actual input
image [7], but scaling the templates can be performed a
priori giving better performance, provided the scale of the
input candidate is known.

As the sign is assumed to be vertical and parallel to
the image plane, no scaling or rotation of the template
is necessary. Also, as the centroid is isolated, it was only
necessary to apply cross-correlation over a 5x5 window.
Thus, for each candidate, we only apply cross-correlation
to 5x5x3xs pixels, where 3 is the number of radii we allow,
and s is the number of possible speed signs. For many signs
s could be reduced by the use of hierarchical templates. The
base templates used for 40 and 60 signs are shown in Figure
2.

(a) (b)

Fig. 2. The base templates used, these were scaled down in size to
match to multiple sizes. (Note that these are enlarged in this figure for
better visibility.)

III. RESULTS

Fig. 3. The ANU/NICTA Intelligent Vehicle. The cameras are mounted
where the rear view mirror would be.

(a) (b)

Fig. 4. Some sample images with speed signs present. The quality of
sign and the lighting varied within our sequences, along with the scale of
the sign that appeared. Also, more than one sign may appear in a single
image.

The system was run over several raw image sequences
taken from the ANU/NICTA intelligent vehicle, see Fig-
ure 3. The sequences come from cameras mounted in a
binocular head mounted approximately in the position of the
rear-view mirror. All images used in the experiments were
taken of signs on public roads around Canberra, including
on campus. Some of the sequences were taken at frame rate
while driving at around the speed limit, while others were
taken while stationary on the road in front of the signs.
Several sample signs from those used in our experiments
are shown in Figure 4 and 5. As can be seen, there is
great variation in the appearance of the signs, including
their scale in the image, lighting, and the deterioration of
the sign viewed due to weather conditions.

The radial symmetry detector was run over a total of
1107 frames from the camera. From this sequence 152
sign candidates were detected. Of these 90% were correctly
detected. This is quite a good number from a fast early
classification stage. It is not simple to say how many false
negatives were reported, certainly there were a number of
cases where a speed sign was not found, but some of these
cases the sign is poor enough that no sign should have been
reported, or small. For most scenes, as the sign approached,
it was detected many times before it passed out of view,
this would give classification a good chance to correctly
classify the sign. For the clear scenes, it was detected for
most frames where it appeared. An exception occurred in a
sequence when it was raining, here no sign was detected.
Some of the input image stream was taken under quite
difficult conditions including shadowing and rain. Some
difficult successful examples are shown in Figure 5. Note
that (c) would be a difficult image image for any detectors
that rely on uniform colour regions to reduce computation
by eliminating the sky or road. Figure 6 shows some images
where a sign was present, but not detected.

The outputs of the classifier were not very helpful in
discriminating candidates from non-candidates. Many non-
candidates still produced reasonably high correlation values
with the templates. However, the class they were classified
into was random. Our results indicate that requiring a
classification to be consistent for several frames would



eliminate many of these false positives.

(a) (b)

(c) (d)

Fig. 5. Some images where candidate detection was difficult, but a
candidate was found.

To demonstrate that the radial symmetry operator was
capable of being used efficiently in concert with the stan-
dard cross-correlation, we ran the two together as a system.
Each candidate that was returned was individually evaluated
for being either a 40 sign or a 60 sign. From 126 valid
candidates 96% were correctly classified. Of these, unfor-
tunately, only 75% of the 25 40 signs returned as candidates
were correctly classified. Note that classification is not the
emphasis of this paper, so the performance was not tuned. It
does clearly demonstrate, however, that the radial symmetry
operator can be combined effectively with cross-correlation
to classify roadsigns in real time.

A. Real-time results

The full system was implemented in c++ and set up to
run directly from a camera, or captured sequence to test
the real-time performance. It was found that for a 320x240
image the full detection and classification was able to run
at 20Hz. This was only with 40 and 60 signs, however, it
would scale well to more signs as the time taken to run a
single template against a candidate was ≤ 1ms.

IV. CONCLUSION

Detection using the fast radial symmetry detector has
been demonstrated to be highly successful, with only 10%
false positives over many varied scenes, and a total of
1107 input images. It would be desirable to throw away
these false positives before proceeding to classification.
Additional detector phases could be introduced after radial
symmetry detection. These methods can have some greater
computational expense at this stage, as they would only
operate on a tiny fraction of the input data.

(a) (b)

(c) (d)

Fig. 6. Images where a candidate was present, but not detected: in (a)
and (c) the sign is self-shadowed on a bright day, and so is too dark for
adequate contrast for edge detection, (b) is too small, the sign was detected
in a subsequent image, slightly closer to the vehicle, and, (d) the faded
sign produces insufficient contrast for edge detection.

The performance of the classifier on candidates produced
from by the detection phase demonstrated that the detector
can be effectively included in a classification system. The
classification results could be improved through tuning, and
requiring temporal consistency of classification.

V. FURTHER WORK

Classifying 40 and 60 signs, we have just proved the
concept. The system needs to be able to recognise the full
range of speed signs that can occur on the Australian road.
It would be interesting to further develop other detectors
that are capable of finding signs with other shapes, such as
stop signs and give-way signs.
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