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Abstract— We present a comparison of four optical flow
methods and three spatio-temporal filters for mobile robot
navigation in corridor-like environments. Previous comparisons
of optical flow methods have evaluated performance only in
terms of accuracy and/or efficiency, and typically in isolation.
These comparisons are inadequate for addressing applicability to
continuous, real-time operation as part of a robot control loop.
We emphasise the need for comparisons that consider the context
of a system, and that are confirmed by in-system results. To this
end, we give results for on and off-board trials of two biologically
inspired behaviours: corridor centring and visual odometry.
Our results show the best in-system performances are achieved
using Lucas and Kanade’s gradient-based method in combination
with a recursive temporal filter. Results for traditionally used
Gaussian filters indicate that long latencies significantly impede
performance for real-time tasks in the control loop.

I. I NTRODUCTION

For a number of years there has been interest in the use
of optical flow for vision-based mobile robot navigation.
Visual motion in flying insects has been shown to be an
important cue for navigational tasks such as centred flight
in corridors and the estimation of distance travelled [13].
This has motivated new biologically-inspired approaches to
mobile robot navigation using optical flow. Behaviours such
as corridor centring [11], docking [11] and visual odometry
[7] have all been demonstrated using visual motion for closed
loop control of a mobile robot. Despite encouraging results,
this paradigm has not been broadly adopted in mobile robot
research. A perceived lack of robustness in these techniques,
and the absence of a systematic approach to their development
are likely reasons for this. The choice of optical flow method
is an important case in point. The literature does not support
any systematic choice of method for mobile robot navigation.

Previous comparisons have assessed optical flow methods
on accuracy and/or efficiency, and only in isolation. Since
the first major comparison [6], researchers have attempted
to address real-world and real-time issues through synthetic
image sequences of higher complexity or simple real image se-
quences with ground truth [1] [10]. Accuracy/efficiency trade-
offs have also been examined in [4] over real and synthetic
image sequences. Gradient-based optical flow methods gen-
erally perform well in accuracy and efficiency comparisons.
These comparisons, however, do not adequately support a

choice of technique for mobile robot navigation. Gradient-
based methods use spatio-temporal image intensity derivatives,
and thus require spatio-temporal filters to pre-smooth the
image signal. Temporal filters differ in required frame support,
accuracy, and computation times, highlighting the importance
of their inclusion in optical flow comparisons. Previous studies
have not directly addressed in-system issues or the choice of
temporal filters for gradient-based methods. We emphasise the
need for comparisons of vision techniques that consider the
context of the system.

In this paper we present a comparison of optical flow
methods and temporal filters for mobile robot navigation. We
focus only on behaviours involving continuous motion such as
corridor centring and visual odometry. Continuous motion is
characterised by optical flow that is significantly larger than the
frame-to-frame changes in the flow on average. This excludes
behaviours such as station keeping, where frame-by-frame
changes may be larger in comparison with flow magnitude.
We aim to provide insight and recommendations for the
choice of flow techniques for robot navigation with continuous
motion. Three gradient-based methods are included: Lucas
and Kanade [8], Horn and Schunck [5], and Nagel [9], as
well as Camus’ correlation-based method [2]. Three temporal
filters are also included: Gaussian filtering, Simoncelli’s pre-
smoothing and derivative filters [12], and Fleet and Langley’s
recursive temporal filter [3]. We give an overview and theo-
retical comparison of these techniques before setting out our
methodology for comparison. We then present results from on
and off-board comparisons before giving our conclusions.

II. OVERVIEW AND THEORETICAL COMPARISON

Here we introduce the optical flow techniques for compari-
son and provide theoretical comparisons for robot navigation.
Refer to the cited references for full details.

A. Optical Flow Methods

1) Camus (correlation-based) [2]:Applies region match-
ing for spatial windows overn previous frames. The window
size sets the maximum detectable flow magnitude. The frame
support determines the granularity of sub-pixel velocities. We
include two versions, both using a 5x5 pixel spatial window:
Camus 2 (n = 2) and Camus 5 (n = 5).



2) Horn and Schunck (Gradient-based) [5]:This method
combines the well known gradient constraint equation with a
global smoothness constraint by iteratively minimising:∫

D

(Ixu + Iyv + It)2 + λ2(||∆u||2 + ||∆v||2)dx, (1)

whereu andv are the horizontal and vertical components of
image motion. We initialise velocities using the last computed
flow field, allowing sufficient convergence in ten iterations.

3) Lucas and Kanade (Gradient-based) [8]:A model of
constant velocity is applied on small local neighbourhoods (ω)
of the image by minimising:∑

x∈ω

W 2(x)((∇I(x, t) · v) + It(x, t))2, (2)

whereW (x) denotes a window function. Thresholding eigen-
values of the least-squares matrix can be done to improve ac-
curacy however, we did not apply this in our implementation.

4) Nagel (Gradient-based) [9]:Second-order image inten-
sity derivatives are used to stop the application of Horn and
Schunck’s smoothness constraint over steep intensity gradi-
ents. Velocities are obtained through an iterative minimisation.
Our implementation feeds forward the previous flow estimate,
allowing faster convergence (we use ten iterations).

B. Temporal Filters

1) Gaussian Filtering:An isotropic Gaussian filter is ap-
plied in convolution for spatio-temporal pre-smoothing. Four-
point central differencing (4pcd) is then applied to estimate
derivatives. We include two Gaussian filters with standard
deviations 1.5 (Gaussian 1.5) and 0.5 (Gaussian 0.5).

2) Simoncelli’s Matched-Pair Filters [12]:Simoncelli pro-
posed a filter design for obtaining accurate multi-dimensional
derivative estimates using a small low-pass filter and derivative
filter. These are related by their simultaneous design and
applied as a matched pair through convolution. The imple-
mentation used for this paper employs a pre-smoothing step
(size three filter) before applying the 5-tap matched-pair filters.
We refer to this entire technique as the Simoncelli filter.

3) Recursive Temporal Filter [3]:Fleet and Langley pro-
posed a causal temporal filter that is applied recursively,
thereby implicitly carrying forward all past frames. Images
are filtered via a cascaded implementation of an ordern filter,
wheren is the number of cascades used. A time constant,τ−1,
gives the duration of temporal support. In this paper, we use
an order three filter (n=3, τ−1=1.25).

C. Theoretical Comparisons

We present a theoretical comparison of the above techniques
for robot navigation. We aim to highlight differences that may
assist evaluation and discussion in comparisons described later.

1) Accuracy: For angular accuracy, Lucas and Kanade is
the most accurate method. To achieve real-time performance
with Camus, quantisation error is necessarily high, suggesting
it is the least accurate method. Horn and Schunck, and
Nagel perform relatively poorly in accuracy comparisons over
complex scenes. This is due mainly to global smoothing

TABLE I

EFFICIENCY DATA FOR FLOW METHODS.

Method Time (ms)
Camus 2 460
Camus 5 1770
Lucas & Kanade 263
Horn & Schunck 105
Nagel 630

over regions where this assumption is violated. Nagel handles
such regions better via second order derivatives to guide the
application of global smoothing.

Reported results for the Simoncelli filter [12] show superior
accuracy to the Gaussian 1.5. The recursive filter has been
shown to be slightly less accurate on synthetic image se-
quences [3]. The Gaussian 0.5 will increase noise in derivative
estimates which is likely to effect on-board performance.

2) Efficiency: Table I and II show efficiency data for all
techniques1. Computation time of filters include time taken
to perform filtering and derivative estimation. Storage require-
ments represent the number of frames that are explicitly stored.
Latency indicates the frame delay in response.

Camus achieves low execution time if the search area is
small. This yields low maximum detectable flow with high
quantisation error. These constraints are significantly restric-
tive, requiring high frame rates and sufficiently low forward
velocity to reduce flow. Nagel is the slowest gradient-based
method with second-order derivatives adding significantly
more overhead compared with first-order methods. Of the tem-
poral filters, the Gaussian 1.5 requires the largest explicit frame
support and frame delay. Given the near equivalent accuracy of
the Simoncelli and recursive filters to the Gaussian 1.5, their
reduced delay should improve in-system performance.

3) Robustness:The constraints imposed on Camus suggests
it would be the least robust. High quantisation error increases
Camus’ sensitivity to noisy motion fluctuations. The large
temporal support of the Gaussian 1.5 and recursive filter
(implicitly), suggests these should be less sensitive to such
noise. The Simoncelli and Gaussian 0.5 filters may exhibit
higher sensitivity due to their reduced frame support.

Nagel may lack robustness due to high noise sensitivity
in second order derivative estimation and latency. However,
Nagel, and Horn and Schunck are well suited to near constant
ego-motion in planar environments (such as corridors) due
to their use of global smoothness constraints. Lucas and

1Times taken on an Intel x86 866 MHz machine.

TABLE II

EFFICIENCY DATA FOR TEMPORAL FILTERS.

Time (ms) Support Latency
Filter 1st order 2nd order (frames) (frames)

Gauss 0.5 116 237 9 4
Gauss 1.5 170 288 15 7
Recursive 110 177 3 3
Simoncelli 106 209 7 3



Kanade should exhibit sufficient robustness, with relatively fast
execution time and accurate flow estimation.

4) Responsiveness:Camus has no frame delay and so
should exhibit high responsiveness to environmental change.
However, Camus is dependent upon flow not exceeding maxi-
mum detectable levels. Of the gradient-based methods, Nagel
should be the least responsive due to high execution time and
second order derivative estimation.

The recursive filter, unlike the Gaussian and Simoncelli fil-
ters, implicitly carries forward all past frames. This may inhibit
the filter’s immediate response to image motion changes. Less
frame support should reduce temporal cohesion to a shorter
time period, thereby increasing responsiveness to change. This
suggests the Simoncelli and Gaussian 0.5 filters should be the
most responsive filters. However, increased noise levels may
also be experienced, resulting in a reduction or loss of signal
due to noise levels overwhelming the flow field.

III. M ETHODOLOGY

In this section we present two navigational behaviours
implemented for this comparison: corridor centring, and vi-
sual odometry. We outline the methodology and performance
indicators used in our comparison of optical flow techniques.

A. Corridor Centring

Corridor centring, inspired by observations in honeybees
[13], can be achieved by differencing average flow magnitudes
in the outer thirds of the image from a forward looking camera:

θ = τl − τr, (3)

whereτl and τr are the average flow magnitudes in the left
and right peripheral views respectively.θ can be directly used
for directional control.

Given constant motion and a straight corridor, the flow
field response should exhibit consistent average flow mag-
nitude. The robot should be free of short period directional
oscillation resulting from noise introduced through the robot’s
ego-motion. Frequent and current flow updates are needed to
maintain behaviour stability. Long period directional oscilla-
tion through reduced responsiveness is the likely side effect of
such latencies. Off-board comparisons over an image sequence
depicting near constant motion of the camera can examine
temporal cohesion. On-board trials in a static corridor can
demonstrate the level of stability in robot directional control.

B. Visual Odometry

Distance travelled can be estimated by accumulating image
motion in the peripheral regions of the image over time. At a
discrete timet, the visual odometer,dt, is given by [7]:

dt =
t∑ 4

[ 1
τl

+ 1
τr

]
. (4)

Odometry estimates will vary in different environments for
the same distance. In the same environment, however, the
estimate should be repeatable. To compare methods, variance
in average distances travelled can be examined for multiple

Fig. 1. Frame and flow field (GT) for boxed region from side wall sequence.

on-board trials in the same environment. On-board trials are
subject to oscillatory directional control, lateral drift, and envi-
ronmental changes. To account for such in-system influences,
off-board performances can also be examined.

A real image sequence with ground truth allows a quantita-
tive comparison. If the distance measuredt is repeatable, we
expect it to differ by only a scale factor,s, from a ground
truth visual odometergt. This scale factor should remain
approximately constant over time such that:

s =
gt

dt
=

gt−1

dt−1
= .. =

g1

d1
. (5)

IV. OFF-BOARD COMPARISONS ANDRESULTS

Off-board comparisons used a real image sequence (Fig-
ure 1). This depicts a wall moving in a near parallel direction
to the optical axis of the camera. The velocity of the wall’s
motion is approximately 5mm per frame. Wall motion is
subject to small fluctuations throughout the sequence. Ground
truth flow fields were generated for the entire sequence by
calibrating the camera and employing a projective warping
technique described in [1]. We present these experiments and
results below.

A. Corridor Centring

Figure 2 shows average flow magnitudes obtained for each
technique across the sequence. No latencies are accounted for.
This allows a direct comparison of flow magnitude consis-
tency across the sequence. All methods exhibit variance in
flow magnitude in-line with ground truth. All gradient-based
methods perform similarly, exhibiting superior consistency to
Camus. Camus 2 and 5 both exhibit high sensitivity to small
motion changes.

Figure 3 presents average flow magnitudes for all temporal
filters with no delays accounted for. Due to space constraints,
only results for Lucas and Kanade are shown, however, all
gradient-based methods showed similar responses for the
same filters. The choice of filter was found to significantly
effect performance. The most temporally cohesive responses
were achieved using the recursive and Gaussian 1.5 filters.
The Simoncelli filter performs slightly worse with marginally
sharper fluctuations. This is most evident between frames 19
and 20, and frames 28 to 30. The Gaussian 0.5 exhibited the
sharpest fluctuation between frames.

It is important to also consider frame delays in these results.
Figure 4 shows the same data with frame delays included. The
larger temporal delay of the Gaussian 1.5 response is clearly
evident against all other filters.



Fig. 2. Average flow magnitudes for all flow methods without latencies.

TABLE III

V ISUAL ODOMETRY ERROR ANALYSIS.

Method Filter av(s) σ(s) σ(sav)
Camus 2 – 1.04 0.06 0.11
Camus 5 – 0.97 0.06 0.13
H & S Gauss 1.5 1.04 0.10 0.12
Nagel Gauss 1.5 1.00 0.11 0.12
L & K Gauss 1.5 1.06 0.10 0.12
L & K Gauss 0.5 0.87 0.14 0.14
L & K Recursive 1.07 0.09 0.11
L & K Simoncelli 1.03 0.11 0.13

B. Visual Odometry

Visual odometry comparisons were conducted using the
same side wall sequence. At each frame, the average flow
magnitude was added to the accumulating visual odometer.

Table III shows average scale factor errors (av(s)) and
standard deviations (σ) of scale factor errors for each technique
when compared with ground truth. Scale factor errors were
calculated using the value of the ground truth visual odometer
at each corresponding odometer update.

According to (6),s should ideally remain constant for the
distance estimate to be accurate. All methods and filters, with
the exception of Camus, exhibit similar levels of deviation

Fig. 3. Average flow magnitudes for all temporal filters without latencies.

from their average scale factor error (av(s)). Camus shows sig-
nificantly less variance in scale factor error. The last column in
Table III shows variances of scale factor error when calculated
from the straight line approximation to the ground truth visual
odometer (sav). All techniques yield similar results. More
variation in results is seen across the temporal filters, though
results remain close. The recursive filter shows marginally less
variance ins. The Gaussian 0.5 exhibits the most deviation
over the sequence on both metrics.

C. Discussion

Gradient-based methods appear more suitable for corridor
centring. They exhibit responsiveness to flow magnitude vari-
ance, but a resistance to small fluctuations. Camus showed
high sensitivity to these fluctuations, suggesting it would not
perform as well in the control loop. The recursive filter and
Gaussian 1.5 filter both showed near equivalent consistency.
Reduced latency with the recursive and Simoncelli filters
suggests better in-system performances from these.

Visual odometry results suggest no clear distinctions be-
tween techniques. Table III shows both versions of Camus
giving significantly lower variances ins. Camus’ sensitivity to
motion fluctuations gives it a higher correlation with ground
truth, explaining the strong performance on this metric. This
high sensitivity is likely to impede distance estimates due
to motion fluctuations caused by robot ego-motion. Temporal
filters yield less sensitivity to motion fluctuations, and so are
likely to produce more repeatable distance estimates when the
underlying motion is smooth and continuous.

V. ON-BOARD COMPARISONS ANDRESULTS

All techniques were integrated into the robot control soft-
ware, running on an Intel x86 866MHz PC with radio link
to a mobile robot. A forward-facing on-board camera was
tethered to the PC. Frames from the camera were sub-sampled
to 192x144 pixels, with a frame rate of 12.5 frames/sec. Robot
tracking was achieved using a calibrated overhead camera.

Fig. 4. Average flow magnitude for all temporal filters with temporal delay.



Fig. 5. Sample on-board frame and flowfield (L&K rec).

TABLE IV

ON-BOARD CENTRING AND VISUAL ODOMETRY RESULTS.

Method Filter centring flow avg dist std dev
error (cm) updates (cm) (avg dist)

Camus 2 – 8 34 253 6
Camus 5 – 11 10 269 12
L & K Gauss 0.5 4 38 217 7
L & K Gauss 1.5 6 35 220 10
L & K Simoncelli 5 38 212 6
L & K Recursive 3 45 231 3
H & S Gauss 0.5 7 64 231 12
H & S Gauss 1.5 9 55 231 13
H & S Simoncelli 8 65 227 6
H & S Recursive 5 75 220 8
Nagel Gauss 0.5 6 19 267 12
Nagel Gauss 1.5 6 19 227 8
Nagel Simoncelli 7 20 215 12
Nagel Recursive 8 19 203 8

A. Corridor Centring

Trials were conducted for each method and filter using
a straight corridor, approximately 2.5 meters in length. The
width of the corridor was approximately 60 cm. Only di-
rectional control was used, with forward velocity kept con-
stant at 0.15m/s for all trials. For each filter, a hand-
tuned proportional control scheme was used for directional
control. Figure 5 shows a sample on-board frame and flow
field. Table IV shows average deviations from corridor center
(centring error) for each method-filter combination. Figures 6
and 7 show typical path plots for each method and each filter
(with Lucas and Kanade) respectively. Table IV clearly shows
Lucas and Kanade with the recursive filter to be the strongest
combination. This is also confirmed in overhead path plots.
Horn and Schunck behaved similarly but generally slightly
worse with the same filters. Nagel and Camus struggled to
maintain stability of control, both registering failed attempts
(not included in Table IV results). Camus 5 performed the
worst, showing a lack responsiveness to the approaching wall.

Of the filters, best overall results were achieved by the
recursive filter which maintained a centred path and no
observed oscillation. The Simoncelli filter also performed
comparatively well with first-order gradient-based methods.
Centring errors for these filters show a significant drop in
performance with Nagel, while the Gaussian filters maintain
reasonably similar results for all methods. Path plots for the
Gaussian 1.5 showed the largest amplitude of oscillation in the
corridor. The Gaussian 0.5 showed less oscillation, however it
registered numerous fails in the corridor.

Fig. 6. Typical on-board centring performances for all methods.

B. Visual Odometry

On-board visual odometry trials were conducted using a
straight corridor and centring behaviour for directional control.
Five trials were conducted for each filter and method. In each
trial the robot moved down the corridor until the accumulated
visual motion exceeded a preset threshold.

Table IV shows odometer (flow) updates, average distance
travelled, and variances for each filter. The best results were
achieved by Lucas and Kanade with the recursive filter. No-
tably, update frequency varies significantly between methods,
with better performances coinciding with higher update counts.

C. Discussion

Gradient-based methods generally performed well. Nagel,
however, registered fails with all filters, a likely result of slow
execution time causing delay in response. The Gaussian 1.5
filter produced long phase, high amplitude oscillatory control
in the corridor. Comparing this with the Simoncelli and
recursive filters suggests that the larger temporal delay of the
Gaussian 1.5 filter is a likely cause for its instability. The poor
performance of Camus in corridor centring also confirmed
off-board results. Camus 5 was the slowest executing of all
methods and so lacked update frequency. Camus 2, while
significantly faster, also appeared to lack stability in control.

To further examine Camus’ poor performance, frames from
the on-board camera were captured and buffered while the
robot was manually driven through the corridor. The plotted

Fig. 7. Typical on-board centring performances for all filters with L&K.



Fig. 8. Peripheral flow magnitude difference for plotted course of robot.

path of the robot is given in Figure 8. Camus was then run in
the system with the buffered frames replacing the camera feed.
At each iteration of the control loop, peripheral average flow
magnitude differences (i.eτl − τr) were logged to examine
responses to the approaching wall. These are also shown in
Figure 8, along with the responses logged when using the
same sequence with Lucas and Kanade. A significant lack
of response is shown by Camus when the robot is close to
collision. Peak responses shown by Lucas and Kanade indicate
that flow is greater than 2 pixels/frame, exceeding Camus’
spatial support. Camus requires increased update frequency to
achieve stable control and avoid this problem.

Visual odometry results suggest the best choice is Lucas
and Kanade with the recursive filter. Techniques with high fre-
quency updates generally performed better. The Gaussian 0.5
and Camus 2 both performed better than expected, a likely
result of higher update frequencies and reduced delay. In
some cases the Gaussian 0.5 out performed the Gaussian 1.5.
The larger temporal delay of the Gaussian 1.5 appears to
have caused larger oscillation in the corridor, thereby effecting
distance estimation. Camus 5 and Nagel appear to be impeded
by low frequency odometer updates, causing over-estimation
of target distance. Oscillatory directional control may also have
effected visual odometer accuracy. The strong performance of
the recursive filter supports this, exhibiting little oscillation in
control and high update frequency. The strong performance
of less accurate techniques indicates a trade-off of compu-
tation speed and accuracy in real-time performance. A loss
of accuracy in flow estimation for increased response time
can improve overall system performance. This highlights the
importance of in-system comparisons for these techniques.

VI. CONCLUSION

In this paper, we have presented results for the comparison
of optical flow methods and temporal filters for mobile robot

navigation. We have emphasised the need for comparisons of
vision techniques that consider the context of a system. Results
were presented for on and off-board trials of two navigational
behaviours: corridor centring and visual odometry.

Over all comparisons conducted, the strongest performances
were achieved using Lucas and Kanade and the recursive filter.
Strong in-system performances were also achieved using Horn
and Schunck, and the Simoncelli filter. Camus showed a lack
of robustness and responsiveness to large flow. With reduced
image size and higher frame rates, Camus should perform
better. Nagel’s slow execution time appeared to reduce respon-
siveness in directional control and impede visual odometry.

The recursive filter appears to be the strongest performing
filter when integrated into the control loop. Short latency and
large implicit temporal support appear to be the reasons for
this. For behaviours like docking where responsiveness is of
higher priority, the Simoncelli filter might be the better choice.
The Gaussian 1.5 filter oscillated significantly more than others
in on-board trials, a likely result of its large temporal delay.
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