
Principal Flow for Tubular Objects with Non-Circular Cross-sections

Abstract

Various anatomical objects are tubular in shape. These
structures can be modeled by describing their curvilinear
path and the cross-sectional shape along the path. How-
ever, most research on tubular object segmentation has fo-
cused on vascular systems, and often assumes a circular
cross-section. These techniques are not readily applicable
to anatomy such as the cochlea, which has a non-circular
cross-sectional shape. We present the Principal Flow Filter,
which calculates the local flow vector along a tubular object
with a non-circular cross-section. It can be used to extract
the centerline orientation and thus track along the tube, and
as a basis for segmentation. We present results from gener-
ated data with a variety of cross-sectional shapes. The filter
is shown to rapidly and robustly converge to the true orien-
tation. We also analyse a CT scan of a human cochlea, with
promising results.

1. Introduction

A variety of anatomical structures are tubular in shape;
for example, the vascular system, the bronchi, the colon and
the cochlea. We are interested in modeling the cochlea and
analysing its shape, for which we need to track the cen-
terline and extract the cross-sections from Computed To-
mography (CT) data. The human cochlea resembles a shell,
while its cross-section resembles a cardioid (a rounded “B”)
that varies along its length. A model that captures cross-
sectional shape could be used in diagnosis by identifying
abnormalities, and also in surgery training and planning.

Several techniques exist for segmenting tubular objects
from volumetric data. Most have focused on vascular
networks, since these represent the most common tubular
structures in the body. However, most of these approaches
assume a circular or elliptical cross-section, and many as-
sume a constant cross-sectional radius. This is inadequate
to represent significant detail in many organs, where cross-
sectional shape can have great clinical significance.

We have developed the Principal Flow Filter to explicitly
deal with non-circular cross-sections. It calculates the flow

vector along a tube, and can be used to extract the center-
line, and thus track along the tube for segmentation.

This paper first discusses existing approaches to tubular
object segmentation. Then we present the Principal Flow
Filter and its design. We show the results from several gen-
erated data sets, as well as from a CT scan. Finally we
discuss how this filter can be used for full tubular object
segmentation.

2. Background

The intrinsic shape characteristics of a tubular object can
be described by two components: the centerline path and
the cross-section along the path. Binford [2] first proposed
the Generalised Cylinder (GC), a spatial curve defining the
path of the object, and a cross-section (typically circular or
elliptical) that can vary as a function of the path length. Zer-
roug and Nevatia [10] extended the GC model, describing
the Right Generalised Cylinder (RGC) which constrains the
cross-section to be orthogonal to the tangent of the path. We
employ the RGC model for this research.

Wang et al. describe a local intensity tracking algorithm
to extract the path of a cochlear implant electrode in vivo
[8]. The implant is metallic with a highly regular shape,
and appears with a circular cross-section in CT images. It
can easily be segmented by thresholding, since the inten-
sity of the electrode is far greater than the surrounding bone
and tissue. Principal Components Analysis (PCA) is ap-
plied to a local region, and the approximate centerline is
tracked along the eigenvector with the largest eigenvalue.
The orthogonal planes are extracted and the center of mass
used to calculate the next center point.

Flasque et al. present a technique for extracting vascu-
lar networks from pre-segmented 3D images [4]. The algo-
rithm extracts the centerline of the vasculature using a mov-
ing parallelepiped that tracks along the target tube. The rep-
resentation is based on a RGC, and uses an interpolated B-
spline for the centerline path, with cross-sections extracted
orthogonal to the centerline path. It appears that the center
of mass determines the centerpoint.

The two approaches above do not directly deal with the
problem of segmentation. A more complex approach is
taken by Aylward and Bullitt [1], who describe a technique
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for extracting the centerline of the vascular system. An in-
tensity ridge is obtained by treating an N-dimensional im-
age as a surface in N+1-dimensional space. The surface is
a height field, mapping image intensity to height. The al-
gorithm climbs image gradients and follows ridges along
the length of the tubular object, using a local Hessian to di-
rect the normal plane. It assumes the tube has a circular
cross-section, and explicitly tests that the aspect ratio of the
cross-section is not too elliptical. The local tubular radius is
incorporated into the representation.

A novel approach was introduced by Frangi et al. [5] for
the analysis of vascular structures in MRA data. The cen-
terline is first extracted using a deformable model or snake
[6], then the vessel wall is extracted. A multi-scale filter
based on the local Hessian is used to drive the attracting
force toward the intensity ridge of the centerline, and a lo-
cal discriminant function that enhances tubular profiles is
used to guide tracking. A B-spline models the centerline of
the tube, and a deformable surface models the vessel wall.
The surface is initialised with a circular cross-section and
then deformed to fit the wall.

Yim et al. [9], present an analysis of and extensions to
Frangi’s tubular co-ordinate system. However this approach
requires the user to manually specify points to form the cen-
terline, and so does not address centerline extraction.

Krissian presents a multi-scale approach to vascular seg-
mentation [7]. This also employs a RGC model, and uses
the eigenvectors of the local Hessian to guide the extraction.

Nearly all the approaches described above utilise a lo-
cal Hessian to guide tracking along the tube by following
the principal eigenvector. This presupposes that the tube
exhibits a Gaussian intensity profile with a local maximum
at its center (such as described in [5]); ie. a nearly circu-
lar cross-section. Objects with non-circular cross-sections
do not have a Gaussian intensity profile with a single local
maximum at the center, hence these approaches are not well
suited to this class of problem.

3. Method

Consider a volumetric data set of a tubular object. At a
given point P , we wish to obtain the local flow orientation
V (ie. the tangent to the implicit centerline). The image
gradient will be strongest along the tube walls, normal to
the tube surface (Figure 1a). If we consider a sufficiently
narrow region of the tube (Figure 1b), the vectors will tend
to be approximately coplanar, oriented toward the center. If
we take a large number of cross-products of pairs of gradi-
ent vectors (Figure 1c), we can compute the mean orienta-
tion and thus the local flow vector. Given this flow vector,
we can compute the orthogonal cross-sectional plane and
then the centerline, leading to an iterative segmentation that
tracks along the tube. Considering only the tube walls ob-

Figure 1. Tubular object: (a) centerpoint of
cross section, (b) narrow section of tube with
flow vector, (c) pair of gradient vectors and
their cross-product

viates the need for a local intensity maxixmum along the
centerline, and thus non-circular cross-sections can be pro-
cessed.

Let I be the original volumetric image. The algorithm is
manually initialised by specifying a starting point P0 inside
the tube, and orientation V0, pointing approximately along
the tube. This defines the initial Volume of Interest (VOI)
R, of dimensions ρ×ρ×δ, with P at its center and oriented
such that V defines the new Z-axis. We apply the Laplacian
operator ∇ to obtain the image gradient ∇R in the resam-
pled volume. This gradient will be strong along the walls,
and the gradient vectors will generally be oriented in ap-
proximately the same plane, pointing toward the center of
the tube. We randomly sample N gradient vectors vn from
∇R, thresholding the gradient magnitude (above some ε) to
reject noise:

V = {v : vi = S(∇R), i ∈ [0, N ], ‖vi‖ > ε} (1)

where S is a pseudo-random sampling function. We then
take the vector cross-product of all pairs from V :

C = {c : ci = vm × vn, ∀m, n ∈ [0, M ], m 6= n} (2)

The average orientation of this set C of cross-products
will point along the tube. We project these flow vectors
into a 2D space Θ using the angles of c in the XZ and Y Z

planes (see for example Figure 4):

Θ =

{

(txz, tyz) :
txz = arctan(cx, cz)
tyz = arctan(cy, cz)

}

, t ∈ R2 (3)

A cluster in this plot indicates strong support for the av-
erage orientation. However, minor variations in the shape,
combined with sampling artifacts and other noise sources,
introduce a fairly high degree of noise. We employ the
RANSAC algorithm [3] to robustly calculate the flow vec-
tor cn with the greatest support from C. The support for
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each flow vector is calculated using a Euclidean distance
function in Θ. The mean orientation is calculated from the
support set, which is projected back into the original coor-
dinate frame of the volume I to give v′. The Principal Flow
Vector is thus given by:

Ft =
Ft−1 + v′

‖Ft−1 + v′‖
(4)

The parameter selection for ρ is determined by the data
acquisition parameters and the expected maximum cross-
sectional width of the tube. The δ parameter should be se-
lected as inversely proportional to the maximum curvature
of the tube; empirical results suggest a good range is be-
tween 5 and 9.

4. Results

First, volumetric test data was generated at a resolution
of 503 voxels, containing tubes with a variety of cross-
sectional shapes: circular, a figure-8 and a clover-leaf shape
(see Figure 2). The Flow Filter was initialised with the point
P approximately in the center of the tube, and the orien-
tation V approximately 34◦ deviated from the known true
orientation. The algorithm was run for 20 iterations each.
Figure 3 shows the filter converging to known the true ori-
entation in less than 10 iterations for each case. The cal-
culated Principal Flow Vector is within 1◦ of true (circular:
0.75◦, eight: 0.33◦, clover: 0.69◦).

The 2D projection of the flow vectors is shown in Fig-
ure 4 for the clover data set, for iterations 1 and 20. In the
first iteration, there is a certain amount of noise, but still a
strong cluster just left and below center (0,0). By the last
iteration, there is very little dispersion as the Principal Flow
Vector is almost directly aligned along the tube.

Tests were also carried out on a CT scan (512 × 512 ×
114) of a human temporal bone. The algorithm was ini-
tialised inside the basal turn of the right cochlea, and run
for 100 iterations. The calculated flow vector is shown in
Figure 5 superimposed over front and side projections of
the cochlea CT data. The algorithm converged quickly, and
oscillated about a band of 1◦ (as can be seen in Figure 7).
In the absence of ground truth from this clinical data, visual
inspection indicates the result closely matches the expected
orientation. Full medical validation will be performed in the
next series of tests.

5. Conclusion

We have presented a novel approach to calculating tubu-
lar flow, a critical step enabling automated segmentation of
tubular objects. The approach has been demonstrated on
test data with a variety of cross-sectional shapes, as well

Figure 2. Volumetric test data was generated
(at low resolution) with (a) circular, (b) figure-
8 and (c) clover-leaf cross-sections.
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Figure 3. The flow vector converges to true
for three different shaped cross-sections.
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Figure 4. Flow vectors from the clover test
data projected into 2D space, after the (a) first
and (b) the last (20th) iteration. The dashed
lines show the calculated mean orientation in
each axis.
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Figure 5. Front and side projection of human
cochlea, showing calculated flow vector.
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Figure 6. Projection plots for cochlea CT, over
several iterations.
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Figure 7. Convergence to reference with
Cochlea CT data: mean jitter is <1◦.

as on a section of a clinlcal CT data. It has proven robust
with respect to initialisation, recovering from a significant
starting divergence. It can robustly handle unusual cross-
sections, such as may appear in anatomy. Encouraging re-
sults were also shown from the human cochlea.

This technique enables the full-scale tracking and extrac-
tion of tubular objects. Given the Principal Flow Vector, we
can extract the orthogonal plane and derive the centerline
from the center of mass of the tube. The shape of the cross-
sections along the tube can be analysed to detect abnormal-
ities, and also to build an atlas of shape variation. Ongoing
research is using this approach to track along and fully seg-
ment the human cochlea.

Thanks to Dr Stephen O’Leary, the Department of Oto-
laryngology at The University of Melbourne, and the Radi-
ology unit at the Royal Victorian Eye and Ear Hospital.
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