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Abstract— In this paper we present an original method
for Bayesian localisation based on particle approximation.
Our method overcomes a majority of problems inherent in
previous Kalman filter and Bayesian approaches, including
the recent Monte Carlo Localisation methods. The algorithm
converges quickly to any desired precision. It does not over-
converge in the case of highly accurate sensor data and
thus does not require a mixture-based approach. Also, the
algorithm recovers well from random repositioning. These
benefits are not hindered by computation which can be
performed in real time on low powered processors. Further,
the algorithm is intuitive and easy to implement. This
algorithm is evaluated in simulation and has been applied to
our entrant in the Sony Four Legged League of RoboCup,
where it has been tested over many hours of international
competition.

I. I NTRODUCTION

The pose of a mobile robot describes its location and
orientation within an environment. Keeping track of pose
is a general problem known aslocalisation. Traditional
algorithms required the initial robot location to be known
but there are an increasing number of problems which
cannot be solved with this restriction. As an extension,
global localisationalgorithms have the ability to deter-
mine the initial pose of the robot and recover from drastic
errors due to some external influence. The kidnapped robot
problem, where the robot is picked up and placed in
a random and unknown location, is considered a good
example of an external influence and a good test for any
global localisation algorithm.

A. Localisation Techniques

There are two main approaches to localisation. The
traditional approach is based on the Kalman filter [1]
where the state of a system is represented by a Gaussian
function. The state is incrementally updated given odo-
metric and landmark readings, also modelled by Gaussian
functions. The Kalman filter has been successfully applied
to many areas including localisation in robotics (e.g.,
[2]). The major limitation for localisation is the Kalman
filter’s inability to represent multiple solutions. Multiple
hypothesis can occur when limited sensor readings do not
yield enough information to arbitrate between two or more
possible poses.

To overcome this limitation, extensions combine mul-
tiple Gaussian distributions (e.g., [3]) and are able to

represent more than one hypothesised pose. The basic
Kalman filter equations are used to integrate odometry and
landmark information into aset of independent Gaussian
representations. Each Gaussian is weighted by a proba-
bility indicating the relative confidence that the robot is
at the associated location. Updating this set of Kalman
filters can become computationally expensive with a large
number of hypotheses. Since the environment and pose
are represented by a Gaussian, the algorithm does not
generalise to arbitrary distributions.

Most alternative techniques are Bayesian filters. They
employ a probability distribution, known as theprior
distribution, over the state space of robot pose. Given a
sensor reading, Bayes theorem is applied to determine the
posteriordistribution. The difference between these tech-
niques is the way the distribution is stored and maintained.
Grid based methods (e.g., [4]) quantise the state space
into cells with an associated probability. By its location
in the grid, each cell implicitly represents a distinct and
independent location in the state space and hypothesises
the actual pose of the robot. For large areas with fine
grained quanta this method is computationally slow and
increasing the size of the cells reduces the resolution.

Particle filters (e.g., [5], [6]) and most notably Monte
Carlo Localisation (MCL) [7], overcome efficiency prob-
lems by distributing particles over the approximated state
space in anon-uniformway. Each particle represents a
distinct pose by a state vector and a probability represent-
ing the relative confidence the robot is at this location.
The important difference to the multiple Gaussian Kalman
filter is that the state vector of a single particle is simpler
and more efficient to update than a Gaussian function,
allowing a larger number of particles to be used to approx-
imate a general probability distribution. Unlike uniformly
separated samples maintained with grid based methods,
particle filters allow concentration of computation in areas
where the robot is most likely to be.

While basic particle filters can globally localise a robot
and efficiently track its motion, they are subject to over-
convergence. The algorithm relocates particles with low
probabilities to regions of state space populated by parti-
cles with the highest probabilities. In the extreme case,
this leads to all particles occupying the same location
and the algorithm ignores contradicting sensor readings.



In less extreme cases, the algorithm is biased towards
sensor readings which confirm the current distribution. To
overcome this problem [8] takes basic MCL, explicitly
checks for over-convergence and resets, or re-samples, a
certain number of particles. While this eliminates the more
extreme cases of over-convergence, the algorithm still has
problems when the hypothesis is close to, but does not
precisely predict the correct location.

The idea of re-sampling particles from the distribution
given by the sensor readings is improved upon in Mixture-
MCL [9], [10]. The dual of MCL takes the state vectors of
the particles from the distribution given by the sensor read-
ings. The probabilities of the particles are then adjusted in
proportion to the prior distribution. Although dual MCL
does not suffer from over-convergence, it is highly sus-
ceptible to noise. Mixture-MCL combines ordinary MCL
and dual MCL by randomly applying one or the other
algorithm to each particle. While this approach achieves
accuracy, noise immunity and is not subject to over-
convergence, dual MCL is complicated to implement and
Mixture-MCL requires substantially more computational
resources than the basic particle filters.

B. Particle Attraction Localisation

In this paper we present a simpler and original algorithm
based on particles: Particle Attraction Localisation (PAL).
All the traditional problems of globally locating and
tracking a robot are solved and it does not suffer from
over-convergence. Also, it yields a uniform distribution
over non-point regions in hypothesis space. The accu-
racy of PAL is proportional to that of sensor readings
while still retaining the ability to react to both small
errors in location and random repositioning. Furthermore,
PAL is an intuitive algorithm, easy to implement and
computationally efficient. The following sections describe
the model in general mathematical terms, give a specific
implementation of PAL and discuss detailed simulation
results and experiments with a Sony Aibo robot.

II. M ATHEMATICAL MODEL

Bayes theorem relates conditional probabilities:

p(x|χ) =
p(x)
p(χ)

p(χ|x), (1)

wherex andχ are probabilities of an event. For locali-
sation, we takex to be a proposed robot pose andχ an
observation. Also:

• p(x) is the prior probability of the posex;
• p(χ) is a normalisation constant;
• p(χ|x) is the probability of observationχ given the

robot is at posex (sensor model); and,
• p(x|χ) is the posterior probability of the original

posex.

The application of (1) in an iterative Bayesian filter
takes the posterior probability of one iteration to be the
prior probability of the next. This iterative use requires
successive observations to be independent of one another
— theMarkovassumption. For a more rigorous treatment
and derivation of the Bayes filter see [10].

A. Particle Representation

A generalised robot pose, including location and ori-
entation, can be represented by anm dimensional state
vector. For example, two spatial components and an
orientation (measured counterclockwise from the positive
x-axis), (x, y, φ). We use the notation||xi,xj || as the
distance between vectorsxi andxj .

PAL aims to approximate the robot pose in this space
with n particles. Each particle is represented by a state
vector xi = (xi1, xi2, . . . , xim) with an associated prob-
ability pi. Mathematically, we write the distribution as a
set of combined state vectors and probabilities (particles):
D = {〈xi, pi〉 | i = 1 . . . n}. Each state vector in the set
D represents a possible robot pose. The probability reflects
the confidence the robot has this pose. For then particles
to produce a consistent distribution,

∑n
i=1 pi = 1.

B. Update

When new pose information is obtained, it is incorpo-
rated into PAL as either static or dynamic information.
Static information forces aconstraint on the possible
pose. Dynamic information (e.g., odometry) refers to
a displacementwithin state space. For both static and
dynamic information, each particle is updated individually
by a transformation, consistent with the sensor reading and
takes the particle to a new position in the state space.

Along with static and dynamic transformations, the
distribution is also modified by neighbour repulsion. This
attempts to keep particles spread around the most rel-
evant regions in state space, explicitly avoiding over-
convergence. Repulsion also allows particles to diffuse
evenly over state space when few or no sensor readings are
made. This is an advantage over standard particle filters
which rely on random sampling.

The transformations are finalised with boundary check-
ing and normalisation, ensuring the validity of the poste-
rior distribution.

By updating in three phases, it is possible to apply
an update only when necessary, leading to efficient use
of computation. For example, if odometric readings are
available often but sensor readings are rare, then the
dynamic update transformation will be applied more often
than the static update. Note that there is no restriction on
the order of the applied transformations.

If T is a transformation,t the current iteration andt+1
the next, thenD is updated:

D(t+ 1) = T (D(t)). (2)



1) Static Information:The basic idea is to attract each
particle to the closest pose in state space consistent with
the static information. Bayes theorem is then applied to
update the confidence of each particle. For maximum
accuracy and convergence speed, static information should
be incorporated as often as it is available, although this is
not a strict requirement.

A given sensor readingχ is represented as a constraint
sχ(x) = 0 on a state vectorx. The form of sχ can
range from a precise location to a set of independent
parameterised locations. For example, if our robot is facing
the only elevator in the building, then it is at a unique
location. The constraint would besχ(x, y, φ) = (x, y, φ)−
(lx, ly, lφ + π) where (lx, ly, lφ) is the location of the
elevator. The distance and bearing to a wall would lead to
a constraint with a continuum of solutions.

Given a constraintsχ, we determine a new intermediate
state vector for each particle denotedx′

i(t+1). This pose
must satisfy the constraint and be the closest pose to the
previousxi(t) as defined by the distance metric. Formally:

• sχ(x′
i(t+ 1)) = 0; and,

• ||x′
i(t+ 1), xi(t)|| is minimised.

For the elevator example, there is only one solution,
thusx′

i(t+ 1) = (lx, ly, lφ +π). The requirement that the
distance to the old pose be minimised is necessary only to
decide among multiple solutions. If the robot detected a
wall, thenx′

i(t+1) would be equated with the location of
the wall closest to the old posexi(t). After determining
x′

i(t+1) for each particle, its pose is revised to a weighted
average of the original pose and this intermediate pose:

xi(t+ 1) = Ax′
i(t+ 1) + (I − A) xi(t), (3)

whereI is an identity matrix andA a diagonalm ×m
damping matrix. The entries ofA lie between zero and
one inclusive and depend on the environment. They allow
different damping in each dimension of state space and
prevent particles responding too rapidly to sensor noise.
Noise can be reduced further by making damping depen-
dent on the confidence of a particle — more confident
particles move less.

Bayes theorem in the form of (1) is applied to update the
confidence of each particle (α is a normalisation constant):

pi(t+ 1) = α pi(t) p (χ|xi(t)) (4)

2) Dynamic Information:Dynamic information spec-
ifies a discrete change in robot pose. Conceptually, the
pose of each particle is updated as though that particle had
moved in such a way as to produce the given information.
Dynamic information is commonly specified in local robot
space,d, and thus requires a transformation to the global
space for each particle,d′

i. The update transformation for
a particle is then:

xi(t+ 1) = xi(t) + d′
i (5)

For example, consider an odometric reading that indi-
cates our robot has moved forward a distancef (in its own
coordinate system). Each particle has a local coordinate
frame defined byφi. A particle facing along the positive
x-axis will be updated by increasingxi by f . No change
is made to the probability values of the particles. They are
all updated equally and there is no reason for one to be
more confident due to motion. A constant factor modelling
a decrease in confidence would just be normalised out.
Some Bayesian localisation methods (e.g., [4], [7], [9],
[10]) blur the distribution when incorporating odometric
reading. Our method makes up for this with neighbour
repulsion.

3) Neighbour Repulsion:Using only the preceding two
update methods leads to all particles converging to the
same state vector — the proposed robot location. With all
particles in the same state, they all behave in the same
way, leading to a distribution of effectively one particle.
This problem is known as over-convergence and [10]
details one way of preventing it. With neighbour repulsion,
we propose an alternative. The main aim is to keep the
particles a certain distance from each other by repelling
their closest neighbours. There are two parameters:

• λ > 0 : characteristic distance between two neigh-
bours. A larger value leads to larger separation.

• η ≥ 0 : repulsion power per iteration. A larger value
results in faster spreading of particles.

Given an initial distancer between two neighbours, we
determine the desired increase in their distance,∆r, as:

∆r = ηe−r/λ (6)

Note that ∆r is non-negative and falls rapidly asr
becomes greater thanλ.

Since no external information used in the neighbour
repulsion update phase, it is important that it does not
change the proposed robot location. The maximum re-
mains invariant under neighbour update if the particle
with the largestpi is skipped when repelling neighbours.
To keep the average of the entire distribution invariant it
is sufficient to ensure a pair of particles keeps the same
average.

ri =
∆r

1 + pi/pj

rj =
∆r

1 + pj/pi

(7)

The magnitude by which each particle is repelled is
specified by (7), with direction along the line joining the
two particles. Ifn̂ij is a unit vector pointing from particle
i to particlej then the repulsion is:

xi(t+ 1) = xi(t) + rin̂ji

xj(t+ 1) = xj(t) + rjn̂ij
(8)



Again, no change is made to the individual particle
probabilities. The distribution is kept consistent with the
scalingri andrj dependent on the probabilities of the two
neighbours.

The neighbour repulsion update should be applied at a
constant rate, reflecting the temporal nature of the repul-
sion. This also facilitates the adjustment of the parameters
λ andη, independent of the number of sensor readings.

4) Update Finalisation: After an update transforma-
tion, a particle state may become invalid due to a physical
obstacle or the edge of state space. In both cases the
posterior probability of the particle,pi(t + 1), is set
to a small number,ε, ensuring the particle does not
influence the hypothesised robot pose. If the statex(t+1)
represents the location of some obstacle then it is left
as is. This allows particles to “move through walls” and
find the correct robot location. Ifx(t+ 1) is found to lie
outside the environment, it is brought back to the nearest
valid location. After checking for validity, probabilities
are normalised and the new set of particlesD(t + 1)
represented bypi(t+1) andxi(t+1) replaces the old set
D(t), as defined by (2).

III. I MPLEMENTATION

We augment the general algorithm presented above with
an implementation for a robot in a two dimensional plane
with an orientation(x, y, φ). Each particle is specified with
a state vectorxi = (xi, yi, φi) and a probabilitypi.

The distribution of the particles maintained by PAL is
an estimate of robot pose. However, in some situations
we may be forced to give a point estimation of robot
location. We consider two simple approaches:maximum
– take the statexi of the particle with the largestpi; and
average– take the weighted average over all the particles
with

∑n
i=1 pixi. Both methods predict the same location

when the particles have converged. If the distribution has
multiple hypotheses, the average will generally give a
result at none of these. The maximum will choose the
most probable location and although it might be incorrect,
it is the best that can be done in an ambiguous situation.

A. Landmarks

We develop a static update procedure for a landmark
with a known global location(lx, ly). We assume the
landmark sensor determines the relative rangeR and
bearingψ from the robot. The information from a sensor is
then a 4-tuple:(lx, ly, R, ψ). In 3-dimensional state space
this produces a helical constraint which we approximate
with independent constraints on(xi, yi) andφi (θi is the
angle the particle makes with the x-axis and the landmark):

x2
i + y2

i −R2 = 0
φi − (θi + π − ψ) = 0

(9)

Using these constraint equations, we now determine the
intermediate state vector for each particle,x′

i(t+1). This
satisfies the given constraints and is close toxi(t). The
explicit components are:

x′i(t+ 1) = lx +R cos θ
y′i(t+ 1) = ly +R sin θ
φ′i(t+ 1) = θi + π − ψ

(10)

We introduce parametersar and aφ for radial and
angular damping respectively. Then substituting (10) into
(3):

xi(t+ 1) = ar(lx +R cos θ) + (1 − ar)xi(t)
yi(t+ 1) = ar(ly +R sin θ) + (1 − ar)yi(t)
φi(t+ 1) = aφ(θi + π − ψ) + (1 − aφ)φi(t)

(11)

Applying (11) to each particle attracts the distribution
to the observed landmark. The posterior probabilities are
found using (4).

B. Odometry

A local robot space odometric readingd = (dx, dy, dφ)
is transformed to global space for an individual particle
by a rotationφi(t):

d′ix = dx cos(φi(t)) − dy sin(φi(t))
d′iy = dx sin(φi(t)) + dy cos(φi(t))
d′iφ = dφ

(12)

The pose of each particle is updated by application of
(5) usingd′

i defined by (12). This transformation is relative
to the individual particle orientation and will generally
lead to different particles moving in different directions
for the samed. This is the desired behaviour since the
distribution has the capacity to represent more than one
independent possible robot pose.

C. Neighbour Repulsion

Implementation of neighbour repulsion is relatively
straight forward. Ideally, repulsion should be computed for
every possible pair of particles, anO(n2) computation. In
order to reduce this, each particle has a small number of
exclusive neighbours with which it performs the repulsion
update. Each particle also maintains an iterator which cy-
cles through those particles not in its exclusive neighbour
list. When the iterator comes to a particle which is closer
than one in the neighbour list a replacement is made. This
method aims to keep computation of neighbour repulsion
to the particles which are closest to each other.

IV. EXPERIMENTAL RESULTS

The performance of PAL was tested extensively in
simulation using ArSim1 and on a Sony Aibo robot. PAL

1ArSim is available at http://www.cs.mu.oz.au/robocup.



(a) (b) (c) (d) (e)
Fig. 1. Actual results after a number of iterations showing robot (large circle), particles (small dots) and landmarks (edge circles). (a)
Initially the particles are evenly distributed reflecting the complete lack of knowledge of the location. (b) After observing the middle
right landmark, the particles gather in an arc. (c) Two landmarks have been observed, uniquely locating the robot. (d) The robot does not
make any observations for a while and the particles spread out. (e) Representation of multiple hypotheses in a symmetric environment.
Given that diagonally opposite beacons are the same, PAL handles this situation well.

was implemented from the equations derived in Section III
and the results are presented in the following sections.

A. Simulation

ArSim simulates a differential drive robot with odom-
etry and a landmark detector. The environment was
modelled after the standard Sony Four Legged League
RoboCup field with six unique landmarks. The landmark
detector has a 120◦ field of view and a uniformly dis-
tributed noise model in bearing and range. Odometry has
a similar noise model.

The simulated robot was driven around the field, and
observed and processed landmark readings and odometry
every iteration. Fig. 1 shows a series of instances of PAL
localising the robot. The gathering of particles in an arc
(Fig. 1b) is desirable, since only one beacon is visible.
Furthermore, the particles are evenly distributed along this
arc. In the Sony Four Legged League the landmarks are
unique and so the correct robot location can be deduced by
observing two landmarks. In contrast, Fig. 1e shows PAL
representing multiple hypotheses when there is a large
amount of symmetry in the environment.

Fig. 2 shows the ability of PAL to promptly recover
from the kidnapped robot situation and converge to a low
error (measured as Cartesian distance between actual and
estimated location). Note that both before and after the
kidnapping the sensors on the robot had two landmarks in
range, allowing unique identification of location.

Fig. 3a shows that anincreasein the number of particles
leads to adecreasein the convergence time — consistent
with alternative particle filters. Fig. 3b shows the effect
of radial damping on convergence time and hypothesis
error. With a larger damping factor there is a larger
average hypothesis error but the convergence time is less.
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Fig. 2. The kidnapped robot problem. After 60 iterations the
robot is transported to an unknown location. The PAL algorithm
recovers promptly.

Thus convergence speed is traded for average error when
selecting the damping factor.

The average error in the hypothesis increases with an
increase in sensor noise, as shown in Fig. 3c. While the
error is not monotonic as sensor noise increases, it does
show a linear relationship in contrast to the exponential
increase in [10].

B. Legged Robots

PAL was applied to a Sony Aibo ERS-210 as used in the
Sony Four Legged League RoboCup competition in 2002.
We claim that the application of the PAL algorithm in
this domain was competitive and in many cases superior
to the opposing implementations of Kalman filters and
MCL algorithms. The algorithm performed flawlessly in
countless hours of practice matches and competition,
placing our team fourth out of nineteen in the world.
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Fig. 3. (a) Iterations for hypothesis to converge within a small radius of actual location versus number of particles. (b) Effect of radial
damping on convergence speed (solid curve) and average hypothesis error (dashed curve). (c) Average radial error versus sensor noise.

Odometry from the robot was calculated by counting
steps and multiplying by the length of each step. Sensor
readings are taken from visual identification of landmarks,
for which distance estimation has up to 30% error for long
range landmarks. The robot was programmed to move to
17 known positions using localisation and wait while the
actual position was measured. The field is 2.9 meters by
4.4 meters and we obtained a 5.8% error in horizontal and
2.5% error in vertical position. There was no measurable
error in bearing.

V. CONCLUSION

In this article we presented an original method for
general global robot localisation called Particle Attraction
Localisation. A probability distribution of the robot pose
is stored as a set of particles. The particles are updated in
three distinct ways:

• Static information provides a constraint on the state
space which attracts the particles and updates their
probabilities according to Bayes theorem.

• Dynamic information moves each particle through
the state space as specified by the sensors.

• Neighbour repulsion keeps the distribution spread
evenly about the hypotheses to prevent over-
convergence and cope with ambiguous situations.

After an update, boundary checking and normalisation are
applied to the posterior distribution to ensure its validity.
These procedures can be carried out in a straight forward
and efficient manner leading to high precision localisation.

A full implementation of the abstract model was given
for a robot in 3-dimensional state space with position
vector(x, y, φ). This was then shown to behave correctly
in a simulated environment and in application to a Sony
Aibo robot in the four-legged league of RoboCup.

This new algorithm shows some promising features and
there are many areas in which research can continue, in-
cluding improvements in response to false positive sensor
readings. We will also examine the performance of PAL
for visual tracking problems.
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