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Abstract— We present a mapping approach to road scene
awareness based on active stereo vision. We generalise traditional
static multi-camera rectification techniques to enable active
epipolar rectification with a mosaic representation of the output.
The approach is used to apply standard static depth mapping
and optical flow techniques to the active case. We use the
framework to extract the ground plane and segment moving
objects in dynamic scenes using arbitrarily moving cameras on
a moving vehicle. The approach enables an estimation of the
velocity of the vehicle relative to the road, and the velocity of
objects in the scene. We provide footage of preliminary results
of the system operating in real-time, including dynamic object
extraction and tracking, ground plane extraction, and recovery
of vehicle velocity.

I. I NTRODUCTION

The concept of safety through prevention and preparedness
is emerging as an automotive industry philosophy. TheSmart
Car project, a collaboration between the Australian National
University, National ICT Australia, and the CSIRO, focusses
its attention onDriver Assistance Systemsfor increased road
safety. One aspect of the project involves monitoring the driver
and road scene to ensure a correlation between where the
driver is looking, and events occurring in the road scene
[1]. The detection of objects on the road such as signs [2]
and pedestrians [3], and the location of the road itself [4],
form part of the set of observable road scene events that we
would like to ensure the driver is aware of, or warn the driver
about in the case that they have not noticeably observed such
events. In this paper, we concentrate solely on the use of
active computer vision as a scene sensing input to the driver
assistance architecture. In particular, we focus on object and
ground plane detection for subsequent use with higher level
classification processes such as pedestrian, vehicle, and sign
detection.

Stereo vision has become a viable sensor for obtaining
three-dimensional range information [5]. Traditionally, stereo
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sensors have used fixed geometric configurations effective
in obtaining range estimates for regions of relatively static
scenes. In reducing processor expense, most depth-mapping
algorithms match pixel locations in separate camera views
within a small disparity range, e.g.±32 pixels. Consequently,
depth-maps obtained from static stereo configurations are often
dense and well populated over portions of the scene around the
fixed horopter, but they are not well suited to dynamic scenes
or tasks that involve resolute depth estimation over larger scene
volumes.

A visual system able to adjust its visual parameters to
aid task-oriented behaviour – an approach labeledactive [6]
or animate [7] vision – can offer impressive computational
benefits for scene analysis in realistic environments [8]. By
actively varying the camera geometry it is possible to place the
horopter and/or vergence point over any of the locations of in-
terest in a scene and thereby obtain maximal depth information
about those locations. Where a subject is moving, the horopter
can be made to follow the subject such that information about
the subject is maximised. Varying the camera geometry not
only improves the resolution of range information about a
particular location, but by scanning the horopter, it can also
increase the volume of the scene that may be densely depth-
mapped. Figure 1 shows how the horopter can be scanned
over the scene by varying the camera geometry for a stereo
configuration. This approach is potentially more efficient and
useful than static methods because a small disparity range
scanned over the scene is less computationally expensive and
obtains more dense results than a single, unscannable, but large
disparity range from a static configuration.

In [9], we developed a framework for using existing static
multiple-camera algorithms, such as depth-mapping, on active
multi-camera configurations. The approach involved the use
of a three-dimensional occupancy grid for integrating range
information using active stereo. We have since improved
and extended this framework with the goal of detecting,
segmenting and localising objects in the road-scene. We show
how the framework enables 3D mass flow in the scene to
be calculated from standard optical flow algorithms on an



Fig. 1. Scanning the horopter over the scene: The locus of zero disparity
points defines a plane known as the horopter. For a given camera geometry,
searching for pixel matches between left and right stereo images over a small
disparity range defines a volume about the horopter. By varying the geometry,
this searchable volume can be scanned over the scene. In the first frame,
only the circle lies within the searchable region. As the horopter is scanned
outwards by varying the vergence point, the triangle, then the cube become
detectable.

active platform because the active rectification process we have
developed inherently removes the effect of camera motion. We
use this inherent benefit of the active rectification process to
determine the velocity of objects detected in the scene relative
to the vehicle and/or road at high frame rates. It is difficult to
depict the achievements of an active vision system in a printed
format, and for this reason, we have provided footage of the
system and its components in operation (see Section X).

II. OUTLINE

We begin by presenting the research platform (Section III)
and reviewing our background work on active rectification [9]
(Section IV) and occupancy grid representation of the scene
(Section V).

We introduce a space variant grid representation of the scene
(Section V-B), and methods to analyse the occupancy grid for
ground plane and object extraction (Section VI).

We present our approach to extracting three dimensional
scene motion (Section VII) and describe how the 3D flow
of mass in the scene can be used to extract the motion of
objects and the road while the cameras are in any geometric
configuration, or even moving. We describe how we use
this actively collated occupancy and velocity information to
segment and track objects (Section VIII).

Finally, we conclude with a summary of our present work,
and comment on future improvements and additions to the
system (Section IX).

III. R ESEARCHPLATFORM

A 1999 Toyota Landcruiser 4WD is equipped with the
appropriate sensors, actuators and other hardware to provide an
environment in which desired driver assistance competencies
can be developed [10]. Installed centrally inside the front
windscreen is an advanced active stereo vision mechanism.
CeDAR, the Cable-Drive Active-Vision Robot [11], incorpo-
rates a common tilt axis and two pan axes each exhibiting a
range of motion of90o. Angles of all three axes are monitored
by encoders that give an effective angular resolution of0.01o.
An important kinematic property of the CeDAR mechanism
is that the pan axes rotate about the optical centre of each
camera, minimising kinematic translational effects to reduce
complexity in the epipolar rectification process. Figure 2

Fig. 2. The research platform. Left: TheSmart Car(bottom) andCeDAR
mounted behind the windscreen (top); Right: CeDAR.

shows the CeDAR platform as it is mounted in the Smart
Car.

IV. A CTIVE RECTIFICATION

In [9] we described a rectification method used to actively
enforce parallel epipolar geometry[12] using camera geo-
metric relations, independent of the contents of the images.
The camera relations may be determined by any number of
methods. Visual techniques such as the SIFT algorithm [13]
or Harris corner detection [14] can be used to identify features
common to each camera view, and thereby infer the geometry.
We use a fixed baseline and encoders to measure camera
rotations. A combination of visual and encoder techniques
could also be adopted to obtain the camera relationships to a
more exacting degree - this is the focus of additional present
work within the project [15].

The rectification process, an extension of similar work
in [16], enables online epipolar rectification of the image
sequences and the calculation of the shift in pixels between
consecutive frames from each camera, and between the current
frames from the left and right cameras (in the case of a stereo
rig, though any number or configuration of cameras can be
used as long as the translations and rotations between cameras
are known). We have shown the effectiveness of the process
by using it to create globally epipolar rectified mosaics of the
scene as the cameras were moved. Figure 3 shows a snapshot
of online output from the mosaic process for a single camera.

The active rectification process yields the relationship be-
tween the left and right camera view frames in terms of
pixels, as well as rectifying the images. Therefore, all that
needs to be done to obtainabsolute disparities for a pair
of concurrent images from any geometric configuration is to
output a standard disparity map from the overlapping regions
of the current rectified left and right images, and offset all
disparities in the resulting disparity map by the pixel shift
between the current left and right images, as calculated by the
rectification process. It is then a simple matter to convert the
absolute disparities to absolute depths (see [9]) to yield range
data from active multi-camera configurations.



Fig. 3. Snapshot of online output of the active rectification process: mosaic
of rectified frames from right CeDAR camera. The full video sequence is also
available (Section X).

V. A N OCCUPANCY GRID REPRESENTATION OF THE

SCENE

A. Summary of Previous Work

Traditionally, somewhat sparse and noisy stereo depth data
has been used to judge the existence of mass at a location in the
scene. Decisions based directly on such unfiltered data could
adversely affect the sequence of future events reliant upon such
a decision. In previous use of stereo range data, only a few
attempts were made to strengthen or attenuate a belief in the
location of mass in the scene [17]. Occupancy grids can be
used to accumulate diffuse evidence about the occupancy of a
grid of small volumes of space from individual sensor readings
and thereby develop increasingly confident and detailed maps
of a scene [18].

As well as addressing the above issues, an occupancy
grid allows the integration of data according to a sensor
model. Each pixel in the disparity map is considered as a
single measurement for which a sensor model is used to fuse
data into the occupancy grid. Not only is uncertainty in the
measurements considered in the sensor model, but it is also
partially absorbed by the granularity of the occupancy grid.

We integrate the active stereo depth map range data into a
three-dimensional occupancy grid using a Bayesian approach
[19]. Depth maps are produced using a processor economical
SAD-based technique with difference of gaussian pre-filtering
to reduce the effect of intensity variation [5]. Figures 5 and 6
show example occupancy grid output.

B. Space Variant Grid Representation and Ray Tracing

At farther scene depths, pixel disparities correspond to
larger changes in scene depth. Accordingly, we have adopted
an occupancy grid configuration that exhibits cell sizes that
increase with depth. Cell cube edge lengths correspond to the
effect of a specific amount of pixels of disparity at that depth.

Fig. 4. Occupancy grid configuration

For example, 10 pixels of disparity at 1m scene depth yields
a cell size much smaller than 10 pixels of disparity at 50m
scene depth.

This approach significantly reduces the number of cells at
larger depths where high depth resolution is not available
anyway, improving processor performance. It also increases
resolution in the grid at nearer depths where we are more
interested in an accurate estimation of the location of objects.

The space variant occupancy grid formulation reduces ray
tracing computations associated with sensor model integra-
tion of range measurements. At 1m depth, a slice through
the occupancy grid contains a fixed number of cells in the
horizontal direction and another fixed number of cells in the
vertical direction. At any other depth, the number of vertical
and horizontal cells in the slice are the same respectively,
with the central cells aligned with the origin at the location of
the sensor. This means that a ray emanating from the origin
and passing through a cell at 1m with slice coordinates (x,y)
also passes through all other slices at coordinates (x,y). This
configuration means that ray-tracing through the occupancy
grid for sensor integration becomes trivial. Figure 4 shows the
construction of the occupancy grid and rays of cells emanating
from the origin.

Updates to the grid occur at a frequency high enough for
us to effectively analyze dynamic scenes through the use of
a decay rate applied to all cell certainties. Propagation of
uncertainties according to measured cell velocities would mean
that the reliance upon high frequency updating and decay
could be alleviated (uncertainty propagation is present work,
see Section IX).

VI. A NALYSIS OF THE OCCUPANCY GRID

A. Ground Plane Extraction from the Occupancy Grid

Our approach to ground plane extraction is similar to that
of a v-disparity analysis [20]. Essentially, we look at the
occupancy grid from the side to produce an accumulator image



Fig. 5. Online snapshot of occupancy grid construction. Left: view from left
camera. Right: occupancy grid; the two semi-transparent vertical planes show
the near and far bounds on the region in which a depth response is possible,
given the current camera geometry and disparity search range (±16 pixels).

Fig. 6. Online snapshot of occupancy grid construction with colour texturing
of cell front faces.

plotting the number of occupied cells at a particular height
and depth in the occupancy grid. A Hough transform [21] is
then used to find the most dominant line in this density side
view of the occupancy grid. We search for the line within
reasonable bounds of where the road is likely to be to reduce
the computational expense of the Hough transform. In this
manner, we are able to extract a planar approximation to the
location of the ground plane in terms of altitude and attitude.
The assumption is that the sensor is, under most circumstances,
situated at a roll angle that is parallel to the road, and that the
road is planar, so that we do not consider the roll of the road
relative to the sensor. The granularity of the occupancy grid
is such that small violations of this assumption are somewhat
absorbed. Any systematic misalignment can be removed by
calibration. Figure 8 shows an image from the online output
of the occupancy grid, including location of the ground plane.

B. Object Segmentation from the Occupancy Grid

An object in the occupancy grid is considered to be a
group of 26-connected cells located above the ground plane
(see Figure 10). We use a 3D raster scan to uniquely label
connected components.

VII. 3D SCENE FLOW

The velocities of cells in the occupancy grid are calculated
using an approach similar to that of [22]. First, optical flow

Fig. 7. A snapshot from an online sequence showing 3D vectors representing
mass flow in the scene. The complete video sequence is available for viewing
(Section X).

in each of the camera view frames is calculated to determine
the x and y components of cell flow. Next, consecutive depth-
maps are subtracted to provide the z component. Because we
are calculating flow in image space, we are able to assign
sub-cell sized motions per frame (velocities) to cells in the
occupancy grid.

Optical flow between consecutive images from a camera
is calculated using a simple, but fast flow estimation. The
rectification and mosaic construction process described earlier
allows the removal of camera rotations and translations so that
a standard SAD-based flow estimation can be used [5]. As
the location of the current and previous frame in the mosaic
from a single camera is known, we calculate optical flow on
the overlapping region of consecutive frames in the mosaic.
In the same manner, the overlapping regions of consecutive
depth-maps are subtracted to obtain the depth flow in the z
direction [22].

The flow vectors are binned into bin sizes corresponding to
the image frame width of a cell in the occupancy grid. The
average flow for each bin is then determined. For example,
if the cell sizes in the occupancy grid were chosen such that
the edge length of occupancy grid cubes corresponded to 10
pixels of disparity at a particular depth (as described earlier),
then adjacent bins would contain the average of flow vectors
for adjacent 10 by 10 regions in the flow images.

Having determined the x,y and z components of each bin-
sized region of pixels in the image, these components are
then overlaid upon the occupancy grid using ray tracing. We
look along a ray in the occupancy grid that corresponds to a
particular bin of pixels in the image until an occupied cell is
found. The velocity components of the bin are then assigned
to that occupied cell. Figure 7 shows online output of 3D flow.

A. Object Segmentation from Scene Flow

After an occupancy grid – and subsequently a flow grid –
has been calculated, we segment objects in the flow grid in
a manner similar to that of the occupancy grid. A 3D raster
scan labels adjacent 26-connected cells whose velocities are
similar. We use information about the location of the ground
plane from the previous step to limit the search for objects to
the region above the ground plane. Essentially, if a cell has a



Fig. 8. Online ground plane extraction from the occupancy grid. Inset
shows view from left camera. Detection of the cyclist, light pole, and trees in
the background are also evident on the occupancy grid. The complete video
sequence is available for viewing (Section X).

Fig. 9. Vehicle velocity according to unfiltered 3D flow data.

non-zero flow assigned to it, and its velocity is not significantly
different to an adjacent cell with a non-zero velocity, it is
assigned the same unique object identity as that cell.

B. Vehicle Motion from Scene Flow

We wish to infer the motion of the vehicle relative to
the road from an analysis of the flow grid. Preferrably, the
analysis would not consider regions of the scene that are
likely to be moving in a manner dissimilar to that of the
road. Hence, we only consider regions in the vicinity of the
ground plane to extract the vehicle velocity. Histograms of the
velocity components of all the cells adjacent to the previously
detected ground plane are constructed. At present, we use the
histogram mean and associated 95% confidence interval as a
measurement of the vehicle velocity. Once the velocity of the
vehicle relative to the road has been calculated, we can remove
the velocity of the vehicle from calculations of the velocity of
objects in the scene.

Fig. 10. Online object segmentation. Inset shows image acquired by right
camera. The hand (blue) is segmented from the chair (burgundy) because it
is moving. The complete sequence is available for viewing (Section X).

Figure 9 shows a preliminary plot of the vehicle velocity
as determined by unfiltered 3D flow data. Only the flow in
the z-direction (directly towards the cameras) is considered.
Although the velocity of the vehicle was not logged, the
fluctuation of the velocity about 30km/h fits well with the fact
that the vehicle was driving in a designated 40km/h zone on
the ANU campus. The data velocity from flow was determined
for the same sequence of footage as that shown in Figure 8.

VIII. T RACKING OBJECTS

Tracking an object initially involves finding object corre-
spondences in consecutive frames. Data associated with each
object in the occupancy grid includes its mass and centre of
gravity. Objects segmented in the flow grid also include addi-
tional velocity information. By considering each object in the
current frame and comparing the data associated with it to each
object in the previous frame, we are able to determine likely
object correspondences over time. The velocity information
enables us to distinguish, for example, a person moving in
front of a parked car. Fig 10 shows a hand that has been
segmented from a chair using velocity information, despite
being in contact with the chair and being labelled as the same
object in the occupancy grid segmentation.

IX. CONCLUSION

A. Summary

We have presented a method for active epipolar rectification
that has been shown to allow static stereo algorithms – such
as disparity mapping and optical flow – to operate on an
active stereo platform. We have presented a framework for
active depth mapping with a robot-centered occupancy grid
representation for data integration and filtering. We have been
able to analyze the 3D occupancy grid representation of the
scene to extract objects and an estimate of the location and
attitude of the road.



We have incorporated image based calculations of scene
flow into the grid representation of the scene to enable sub-
cell velocity estimations of mass detected in the scene. We are
able to use this flow information to further segment objects in
the scene, and to estimate the velocity of the vehicle relative
to the road.

We are able to detect and segment moving or stationary
objects in dynamic scenes (see Figure 10 and corresponding
video footage) using moving cameras on a moving platform.
Preliminary, unfiltered results show promise for the approach
with increased accuracy and efficiency expected to come.

B. Future Work

Presently, our approach has not incorporated methods to
filter parameters important to the rectification process. Noisy
angular readings are to be refined by a combination of filtration
and integration with image-based methods to extract the cam-
era geometry to a more exacting degree. Already, work near
completion involves the incorporation of SIFT techniques to
extract angles. In addition to improved geometry calculations,
the location and velocity of the ground plane and objects
detected in the scene are to be filtered rather than used at
face value.

Certainties are currently integrated into the occupancy grid
from observations of the current scene state with the use of a
decay rate to reduce these certainties over time to allow the
analysis of dynamic scenes. Since we determine probability
estimates of the current location of mass in the scene, as
well as the likely velocity of that mass in three dimensions,
we speculate that propagation of uncertainties within the
occupancy grid according to their estimated velocities will
yield increased certainty in the location of mass, reduce the
reliance an decay rate.

In addition to improving the accuracy of the system, future
work involves its use as an input for road scene understanding.
At present, objects are segmented from the scene using the
3D occupancy and flow approach, and we are already able to
map these segmented objects back into image space to obtain
their image frame profile. Objects are thus extracted from
their surroundings and background. This extraction process
is expected to assist higher level tasks such as classification
of objects in the scene.

The ability to obtain an awareness of the scene regardless
of the geometry of the active head is the first step towards
experiments in fixation and gaze arbitration. Our approach
enables information about the scene to be gathered regardless
of the geometry of the cameras, and for an increased,
scannable volume of the scene. Actively tracking objects and
retaining an awareness of other objects in the scene such
that attention can be shifted between regions of the scene
according to priority is the next step in our work towards
artificial vision. Our work enables such gaze arbitration
experimentation in realistic environments.

X. FOOTAGE

It is difficult to depict the achievements of an active vision
system in a printed format. For this reason, we have published
footage of the system in operation at:

http://www.rsise.anu.edu.au/∼andrew/ivs05
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