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Summary. We present a biologically inspired active vision system that incorpo-
rates two modes of perception. A peripheral mode provides a broad and coarse
perception of where mass is in the scene in the vicinity of the current fixation point,
and how that mass is moving. It involves fusion of actively acquired depth data
into a 3D occupancy grid. A foveal mode then ensures coordinated stereo fixation
upon mass/objects in the scene, and enables extraction of the mass/object using a
maximum a-posterior probability zero disparity filter. Foveal processing is limited
to the vicinity of the camera optical centres. Results for each mode and both modes
operating in parallel are presented. The regime operates at approximately 15Hz on
a 3GHz single processor PC.
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1 Introduction

The National ICT Australia (NICTA) Autonomous Systems and Sensing
Technologies (ASSeT) Smart Car project focusses on Driver Assistance Sys-
tems for increased road safety. One aspect of the project involves monitoring
the driver and road scene to ensure a correlation between where the driver is
looking, and events occurring in the road scene [11]. The detection of objects
in the road scene such as signs [19] and pedestrians [14], and the location of the
road itself [2], form part of the set of observable events that the system aims
to ensure the driver is aware of, or warn the driver about in the case that they
have not noticeably observed such events. In this paper, we concentrate on the
use of active computer vision as a scene sensing input to the driver assistance
architecture. Scene awareness is useful for tracking objects, classifying them,
determining their absolute position or fitting models to them.
4 National ICT Australia is funded by the Australian Department of Communica-

tions, Information Technology and the Arts and the Australian Research Council
through Backing Australia’s ability and the ICT Centre of Excellence Program.
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1.1 Research Platform

Fig. 1. Research platform. Left: Smart Car, and CeDAR mounted behind the wind-
screen (centre). Right: CeDAR, laboratory apparatus.

The Smart Car (Fig. 1, left), a 1999 Toyota Landcruiser, is equipped with
the appropriate sensors, actuators and processing hardware to provide an en-
vironment in which desired driver assistance competencies can be developed
[9]. Positioned centrally inside the front windscreen is an active stereo vision
mechanism. CeDAR, the Cable-Drive Active-Vision Robot [22], incorporates
a common tilt axis and two pan axes each exhibiting a range of motion of 90o.
Angles of all three axes are monitored by encoders that give an effective angu-
lar resolution of 0.01o. An additional CeDAR unit (Fig. 1, right) identical to
the unit in the Smart Car is used for initial visual experiments. Although it is
stationary and cannot replicate road conditions, it is convenient for algorithm
development such as that presented in this paper.

2 Active Vision for Scene Awareness

A vision system able to adjust its visual parameters to aid task-oriented be-
haviour – an approach labeled active [1] or animate [4] vision – can be ad-
vantageous for scene analysis in realistic environments [3]. Foveal systems
must be able to align their foveas with the region of interest in the scene.
Varying the camera pair geometry means foveal attention can be maintained
upon a subject. It also increases the volume of the scene that may be depth-
mapped. Disparity map construction using a small disparity search range that
is scanned over the scene by varying the camera geometry is less computa-
tionally expensive than a large static disparity search. A configuration where
fixed cameras use pixel shifting of the entire images to simulate horopter re-
configuration is more processor intensive than sending commands to a motion
axis. Such virtual shifting also reduces the useful width of the image by the
number of pixels of shift.

3 Bimodal Active Vision

We propose a biologically inspired vision system that incorporates two modes
of perception. A peripheral mode first provides a broad and coarse perception
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of where mass is in the scene in the vicinity of the current fixation point
(regardless of where that may be) and how that mass is moving. The images
are processed in their entirety. It does not, however, incorporate the notion of
coordinated gaze fixation or object segmentation. Once the peripheral mode
has provided a rough perception of where mass is in the scene, the foveal
mode allows coordinated stereo fixation upon mass/objects in the scene, and
enables extraction of the object or region of mass upon which fixation occurs.
We limit foveal processing resources to the region of the images immediately
surrounding the image centres.

The human vision system provides the motivation for bimodal perception.
Humans find it difficult to fixate on unoccupied space. Empty space contains
little information; we are more concerned with interactions with objects or
mass. Additionally, the human visual system exhibits its highest resolution
around the fixation point, over a region of approximately the size of a fist at
arms length. The periphery, despite being less resolute, is very sensitive to
salient scene features such as colourful or moving objects [21]. For resolute
processing, humans centre objects detected in the periphery within the fovea.

3.1 Peripheral Perception

We first provide an overview of the process required to rectify epipolar geom-
etry for active stereo image pairs. Rectified pairs are then used to construct
depth maps which are incorporated into an occupancy grid representation of
the scene. We also describe how the flow of mass in the occupancy grid is
estimated. These techniques provide a coarse 3D perception of mass in the
scene.

Active Rectification and Depth Mapping

In [7] we described a rectification method used to actively enforce parallel
epipolar geometry [15] using camera geometric relations. Though the geomet-
ric relations can be determined by visual techniques (see [20]), we use a fixed
baseline and encoders to measure camera rotations. We have shown the ef-
fectiveness of the rectification process by using it to create globally epipolar
rectified mosaics of the scene as the cameras were moved (Fig. 2). The mosaic
process allows the use of any static stereo algorithms on an active platform by
imposing a globally static image frame and parallel epipolar geometry. Here,
we use the process for active depth-mapping. Depth maps are constructed us-
ing a processor economical sum of absolute differences (SAD) technique with
difference of Gaussians (DOG) pre-processing4 to reduce the effect of intensity
variations [5].

4 DOG is an approximation to the Laplacian of Gaussian.
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Fig. 2. Online output of the active rectification process: mosaic of rectified frames
from right CeDAR camera.

A Space Variant Occupancy Grid Representation of the Scene

Occupancy grids can be used to accumulate diffuse evidence about the oc-
cupancy of a grid of small volumes of space from individual sensor readings
and thereby develop increasingly confident maps [10]. Occupancy grids per-
mit Bayesian integration of sensor data. Each pixel in a disparity map is a
single measurement for which a sensor model is used to fuse data into the
3D occupancy grid. The occupancy grid is constructed such that the size of
a cell at any depth corresponds to a constant amount of pixels of disparity
at that depth. It is also constructed such that rays eminating from the origin
pass through each layer of the occupancy grid in the depth direction at the
same coordinates [7]. Fig. 3 (left) shows an example snapshot of occupancy
grid construction.

As described in [8], the velocities of occupied cells in the 3D grid are cal-
culated using an approach similar to that of [16]. This approach estimates 2D
optical flow in each image and depth flow from consecutive depth maps. The
mosaics remove the effect of camera rotations so that SAD based flow estima-
tion techniques can be used to determine the vertical and lateral components
of scene flow (Fig. 3, centre). We are able to assign sub-cell sized motions
to the occupied cells in the occupancy grid. The occupancy grid approach
was used to coarsely track the location and velocity of the ground plane and
objects in the scene [8] (Fig. 3, right) at approximately 20Hz.

3.2 Foveal Perception

We begin by assuming short baseline stereo fixation upon an object in the
scene. We can ensure fixation on an object by placing it at the vergence point
using saliency based attention mechanisms5. We want to find the boundaries
of the object so we can segment it from its background, regardless of the type
5 Gaze arbitration combines 2D visual saliency operations with the occupancy grid

perception. However, visual saliency and gaze arbitration are not within the scope
of this paper.
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Fig. 3. Peripheral perception. Left: left camera image (top) and occupancy grid
representation of mass in the scene with surface rendering (bottom). Centre: left
camera image (top) and 3D mass flow vectors (bottom). Right: left camera image of
road scene (top) and occupancy grid representation showing ground plane extraction
(bottom).

of object or background configuration. Analogous to human vision, we define
the fovea as approximately the size of a fist held a distance of 60cm from the
camera. For our cameras, this corresponds to a region of about 60x60 pixels.

For humans, the boundaries of an object upon which we have fixated
emerge effortlessly because the object is centred and appears identical in our
left and right eyes, whereas the rest of the scene usually does not. For synthetic
vision, the approach is the same. The object upon which fixation has occurred
will appear with identical pixel coordinates in the left and right images, that
is, it will be at zero disparity. For a pair of cameras with suitably similar
intrinsic parameters, this condition does not require epipolar or barrel distor-
tion rectification of the images. Camera calibration, intrinsic or extrinsic, is
not required.

ZDF Formulation

A zero disparity filter (ZDF) is formulated to identify objects that map to
image frame pixels at the same coordinates in the left and right fovea. Fig. 5
shows example ZDF output. Simply comparing the intensites of pixels in the
left and right images at the same coordinates is not adequate due to incon-
sistencies in (for example) saturation, contrast and intensity gains between
the two cameras, as well as focus differences and noise. A human can easily
distinguish the boundaries of the object upon which fixation has occurred
even if one eye looks through a tinted lens. Accordingly, the regime should be
robust enough to cope with these types of inconsistencies. One approach is to
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Fig. 4. NCC of 3x3 pixel regions at same coordinates in left and right images.
Correlation results with higher values shown more white.

correlate a small template in one image with pixels in the same template in
the other image. Fig. 4 shows the output of this approach. Bland areas in the
images have been surpressed (set to 0.5) using DOG pre-processing. This is
because untextured regions will always return a high NCC response whether
they are at zero disparity or not. The output is sparse and noisy. The palm
is positioned at zero disparity but is not categorised as such. To improve re-
sults, image context needs to be taken into account. For this reason, we adopt
a Markov Random Field [13] (MRF) approach. The MRF formulation defines
that the value of a random variable at the set of sites (pixel locations) P
depends on the random variable configuration field f (labels at all sites) only
through its neighbours N ∈ P . For a ZDF, the set of possible labels at any
pixel in the configuration field is binary, that is, sites can take either the label
zero disparity (f(P ) = lz) or non-zero disparity (f(P ) = lnz). For an obser-
vation O (in this case an image pair), Bayes law states that the a-posterior
probability P (f | O) of field configuration f is proportional to the product of
the likelihood P (O | f) of that field configuration given the observation and
the prior probability P (f) of realisation of that configuration:

P (f | O) ∝ P (O | f) · P (f). (1)

The problem is thus posed as a MAP optimisation where we want to find
the configuration field f(lz, lnz) that maximises the a-posterior probability
P (f | O). In the following two sections, we construct the terms in Eq. 1.

Prior P (f)

The prior encodes the properties of the MAP configuration we seek. It is
intuitive that the borders of zero disparity regions co-incide with edges in the
image. From the approach of [6], we use the Hammersly-Clifford theorem, a
key result of MRF theory, to represent this property:

P (f) ∝ e−
P

C VC(f). (2)

Clique potential VC describes the prior probability of a particular realisation
of the elements of the clique C. For our neighbourhood system, MRF theory
defines cliques as pairs of horizontally or vertically adjacent pixels. Eq. 2
reduces to:

P (f) ∝ e
−

P
p

P
q∈Np

Vp,q(fp,fq )
. (3)

In accordance with [6], we assign clique potentials using the Generalised Potts
Model where clique potentials resemble a well with depth u:
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Vp,q(fp, fq) = up,q · (1− δ(fp − fq)), (4)

where δ is the unit impulse function. Clique potentials are isotropic (Vp,q =
Vq,p), so P (f) reduces to:

P (f) ∝ e

−
P
{p,q}∈εN

8><>:2u ∀fp 6= fq,

0 otherwise. (5)

VC can be interpreted as a cost of discontinuity between neighbouring pixels
p, q. In practice, we assign the clique potentials according to how continuous
the image is over the clique using the Gaussian function:

Vc =
e−(∆IC)2

2σ2
, (6)

where ∆IC is the change in intensity across the clique, and σ is selected
such that 3σ approximates the minimum intensity variation that is considered
smooth.

Note that at this stage we have looked at one image independently of the
other. Stereo properties have not been considered in constructing the prior
term.

Likelihood P (O | f)

This term describes how likely an observation O matches a hypothesized con-
figuration f and involves incorporating stereo information for assessing how
well the observed images fit the configuration field. It can be equivalently
represented as:

P (O | f) = P (IA | f, IB), (7)

where IA is the primary image and IB the secondary (chosen arbitrarily) and
f is the hypothesized configuration field. In terms of image sites P (pixels),
Eq. 7 becomes:

P (O | f) ∝
∏
P

g(iA, iB , lP ), (8)

where g() is some symmetric function [6] that describes how well label lP fits
the image evidence iA ∈ IA and iB ∈ IB corresponding to site P (it could,
for instance, be a Gaussian function of the difference in observed left and
right image intensities at P ; we evaluate this instance – Eq. 11 – and propose
alternatives later).

Energy minimisation

We have assembled the terms in Eq. 1 necessary to define the MAP optimi-
sation problem:
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P (f | O) ∝ e
−

P
p

P
q∈Np

Vp,q(fp,fq ) ·
∏
P

g(iA, iB , lP ). (9)

Maximising P (f | O) is equivalent to minimising the energy function:

E =
∑

p

∑
q∈Np

Vp,q(fp,fq
)−

∑
P

ln(g(iA, iB , lP )). (10)

Optimisation

A variety of methods can be used to optimise the above energy function in-
cluding, amongst others, simulated annealing and graph cuts. For active vision,
high-speed performance is a priority. At present, a graph cut technique is the
preferred optimisation technique, and is validated for this class of optimisa-
tion as per [18]. We adopt the method used in [17] for MAP stereo disparity
optimisation (we omit their use of α–expansion as we consider a purely binary
field). In this formulation, the problem is that of finding the minimum cut on
a weighted graph:

A weighted graph G comprising of vertices V and edges E is constructed
with two distinct terminals lzd, lnzd (the source and sink). A cut C = V s, V t

is defined as a partition of the vertices into two sets s ∈ V s and t ∈ V t.
Edges t, s are added such that the cost of any cut is equal to the energy of
the corresponding configuration. The cost of a cut |C| equals the sum of the
weights of the edges between a vertex in V s and a vertex in V t.

The goal is to find the cut with the smallest cost, or equivalently, com-
pute the maximum flow between terminals according to the Ford Fulkerson
algorithm [12]. The minimum cut yields the configuration that minimises the
energy function. Details of the method can be found in [17]. It has been shown
to perform (as worst) in low order polynomial time, but in practice performs
in near linear time for graphs with many short paths between the source and
sink, such as this [18].

Robustness

We now look at the situations where the ZDF performs poorly, and provide
methods to combat these weaknesses. Fig. 5a shows ZDF output for typical
input images where the likelihood term has been defined using intensity com-
parision. Output was obtained at approximately 25Hz for the 60x60 pixel
fovea on a standard 3GHz single processor PC. For this case, g() in Eq. 8 has
been defined as:

g(iA, iB , f) =

{
e−(∆IC )2

2σ2 ∀f = lz

1− e−(∆IC )2

2σ2 ∀f = lnz

(11)

The variation in intensity at corresponding pixel locations in the left and
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Fig. 5. Foveal perception. The left and right images and their respective foveas are
shown with ZDF output (bottom right) for each case a-f. Result a involves intensity
comparision, b involves NCC, and c DOG NCC for typical image pairs. Result d-f
show NDT output for typical images d, and extreme conditions e,f.

right images is significant enough that the ZDF has not labeled all pixels
on the hand as being at zero disparity. To combat such variations, NCC is
instead used (Fig. 5b). Whilst the ZDF output improved slightly, processing
time per frame was significantly increased (∼ 12Hz). As well as being slow,
this approach requires much parameter tuning. Bland regions return a high
correlation whether they are at zero disparity or not, and so the correlations
that return the highest results cannot be trusted. A threshold must be chosen
above which correlations are disregarded, which also has the consequence of
disregarding the most meaningful correlations. Additionally, a histogram of
correlation output results is not symmetric (Fig. 7, left). There is difficulty
in converting such output to a probability distribution about a 0.5 mean, or
converting it to an energy function penalty.

To combat the thresholding problem with the NCC approach, the images
can be pre-processed with a DOG kernel. The output using this technique
(Fig. 5c) is good, but is much slower than all previous methods (∼ 8Hz)
and requires yet more tuning at the DOG stage. It is still susceptible to the
problem of non-symmetric output.

We prefer a comparator whose output histogram resembles a symmetric
distribution, so that these problems could be alleviated. For this reason we
chose a simple neighbourhood descriptor transform (NDT) that preserves the
relative intensity relations between neighbouring pixels, but is unaffected by
brightness or contrast variations between image pairs.

In this approach, we assign a boolean descriptor string to each site and
then compare the descriptors. The descriptor is assembled by comparing pixel
intensity relations in the 3x3 neighbourhood around each site (Fig. 6). In its
simplest form, for example, we first compare the central pixel at a site in the
primary image to one of its four-connected neighbours, assigning a ’1’ to the



10 Andrew Dankers, Nick Barnes, and Alex Zelinsky

descriptor string if the pixel intensity at the centre is greater than that of its
northern neighbour and a ’0’ otherwise. This is done for its southern, eastern
and western neighbours also. This is repeated at the same pixel site in the
secondary image. The order of construction of all descriptors is necessarily
the same. A more complicated descriptor would be constructed using more
than merely four relations6. Comparison of the descriptors for a particular site
is trivial, the result being equal to the sum of entries in the primary image
site descriptor that match the descriptor entries at the same positions in the
string for the secondary image site descriptor, divided by the length of the
descriptor string.

Fig. 7 shows histograms of the output of individual neighborhood compar-
isions using the NCC DOG approach (left) and NDT approach (right) over a
series of sequential image pairs. The histogram of NDT results is a symmetric
distribution about a mean of 0.5, and hence is easily converted to a penalty
for the energy function.

Fig. 5d shows NDT output for typical images. Assignment and comparision
of descriptors is faster than NCC DOG, (∼ 25Hz) yet requires no parameter
tuning. In Fig. 5e, the left camera gain was maximised, and the right cam-
era contrast was maximised. In Fig. 5f, the left camera was defocussed and
saturated. The output remained good under these artificial extremes.

Fig. 6. NDT descriptor construction, four comparisons.

3.3 Bimodal Results

Fig. 8 shows a snapshot of output of the foveated and peripheral perception
modes operating in parallel. The coarse peripheral perception detects mass
near the (arbitrary) point of gaze fixation. Then the foveal response ensures
gaze fixation occurs on an object or mass by zeroing disparity on peripher-
ally detected mass closest to the gaze fixation point. By adjusting the camera
geometry, the system is able to keep the object at zero disparity and cen-
tred within the foveas. Bimodal perception operates at approximately 15Hz
without optimisation (threading and MMX/SSE improvements are expected).

6 Experiment has shown that a four neighbour comparator compares favorably (in
terms of trade-offs between performance and processing time) to larger descrip-
tors.
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Fig. 7. Histograms of individual NCC DOG (left) and NDT (right) neighborhood
comparisions for a series of observations.

Fig. 8. Bimodal operation. Left: left (top) and right (bottom) input images. Right:
Foveal perception (top) and peripheral perception (bottom). Foveal segmentation
enhances the coarse perception of mass in the scene.

4 Conclusion

A bimodal active vision system has been presented. The peripheral mode
fused actively acquired depth data into a 3D occupancy grid, operating at ap-
proximately 20Hz. The foveal mode provides coordinated stereo fixation upon
mass/objects in the scene. It also enables pixel-wise extraction of the object
or region of mass upon which fixation occurrs using a maximum a-posterior
zero disparity filter. The foveal response operates at around 25Hz. Bimodal
perception operates at approximately 15Hz on the 3GHz single processor PC.

Obtaining a peripheral awareness of the scene and extracting objects
within the fovea permits experimentation in fixation and gaze arbitration.
Prioritised monitoring of objects in the scene is the next step in our work
towards artificial scene awareness.
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