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Abstract

A maximum a posterior probability zero disparity filter (MAP ZDF) ensures coordi-
nated stereo fixation upon an arbitrarily moving, rotating, re-configuring hand, per-
forming marker-less pixel-wise segmentation of the hand. Active stereo fixation per-
mits real-time foveal hand tracking and segmentation over a large visual workspace,
allowing investigation of unrestricted natural human gesturing. Hand segmentation
is shown to be robust to lighting conditions, defocus, hand colour variation, fore-
ground and background clutter including non-tracked hands, and partial or gross
occlusions including those due to non-tracked hands. The system operates at ap-
proximately 27fps on a 3GHz single processor PC.
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1 Introduction

Humans interact with each other efficiently using mutually understood words,
gestures and actions. Intelligent artificial systems that gather information from
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the observation of a human subject can facilitate natural, intuitive and efficient
human-computer interactions (HCI). They can also impact positively on the
versatility and acceptance of the system amongst users. HCI systems can be
used to understand gestured or spoken instructions and to direct attention
intelligently. They may advance the development of intuitive interfaces and
automated systems that interact with humans for task-oriented or assistive
behaviors.

HCI systems have countless applications. In particular, systems that focus on
non-invasive, marker-less hand gesture recognition form an important branch
of visual HCI systems that are changing the way we communicate with com-
puters. For example, stereo sensing and 3D model fitting have been combined
to achieve visual gesture interfaces for virtual environment interactions [29].
Nevertheless, the pervasiveness of computer vision methods in the field has
often been hindered by the lack of real-time, robust algorithms. Limitations
in visual workspace size have also meant that observed human subjects must
deliberately confine their hand motion, such that natural gesturing may be
compromised.

We focus on robust, real-time localisation and segmentation of hands during
natural gesturing to facilitate gesture recognition for use with HCI systems.
Actual gesture discrimination is beyond the scope of this paper.

1.1 Existing Methods

When tracking objects such as hands under real-world conditions, three main
problems are encountered: ambiguity, occlusion and motion discontinuity. Am-
biguities arise due to distracting noise, mismatching of the tracked objects
and the potential for multiple hands, or hand-like distractors, to overlap the
tracked target. Occlusions are inevitable in realistic scenarios where the sub-
ject interacts with the environment. Certainly, in dynamic scenes, the line of
site between the cameras and target is not always guaranteed. At usual frame
rates ( 30fps), the motion of dexterous subjects such as a hand can seem er-
ratic or discontinuous and motion models designed for tracking such subjects
may be inadequate.

Existing methods for marker-less visual hand tracking can be categorised ac-
cording to the measurements and models they incorporate [14]. Regardless
of the approach, hand gesture recognition usually requires a final verification
step to match a model to observations of the scene.
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1.1.1 Cue-Based Methods

In terms of cue measurement methods, tracking usually relies on either in-
tensity information such as edges [15,6,27,9], skin colour, and/or motion seg-
mentation [42,21,17,26], or a combination of these with other cues [24,38,39]
or depth information [19,42,30,3]. Fusion of cues at low levels of processing
can be premature and may cause loss of information if image context is not
taken into account. For example, motion information may occur only at the
edges of a moving object, making the fused information sparse. Further, for
non-spatial cue-based methods, occlusions from other body parts – such as
the face or another hand – may become indistinguishable from the tracked
hand.

Mean Shift and Cam Shift methods are enhanced manifestations of cue mea-
surement techniques that rely on colour chrominance based tracking. For real-
time performance, a single channel (chrominance) is usually considered in the
color model. This heuristic is based on the assumption that skin has a uni-
form chrominance. Such trackers compute the probability that any given pixel
value corresponds to the target color. Difficulty arises where the assumption
of a single chrominance cannot be made. In particular, the algorithms may fail
to track multi-hued objects or objects where chrominance alone cannot allow
the object to be distinguished from the background, or other objects.

The Mean Shift algorithm is a non-parametric technique that ascends the gra-
dient of a probability distribution to find the mode of the distribution [13,10].
Particle filtering based on color distributions and Mean Shift was pioneered
by Isard and Blake [18] and extended by Nummiaro et al. [28]. Cam Shift was
initially devised to perform efficient head and face tracking [8]. It is based on
an adaptation of Mean Shift where the mode of the probability distribution is
determined by iterating in the direction of maximum increase in probability
density. The primary difference between the Cam Shift and the Mean Shift
algorithms is that Cam Shift uses continuously adaptive probability distribu-
tions (recomputed each frame) while Mean Shift is based on static distribu-
tions. More recently, Shen has developed Annealed Mean Shift to counter the
tendency for Mean Shift trackers to settle at local rather than global maxima
[37].

Although very successful in tracking the vicinity of a known chrominance,
Shift methods are not designed for direct target segmentation and background
removal (for classification enhancement). In terms of output, they provide an
estimation of a tracked target bounding box, in the form of an estimate of the
0th and 1st moments of the target probability distribution function. They are
also not typically capable of dealing with instantaneous or unexpected changes
in the target colour model (such as, for example, when a hand grasps another
object such as a mug or pen). They do not incorporate spatial constraints when
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considering a target in a 3D scene, and are not inherently intended to deal with
occlusions and other ambiguous tracking cases (for example, a tracked target
passing in front of a visually similar distractor). In such circumstances, these
trackers may shift between alternate subjects, focus on the center of gravity
of the two subjects, or track the distracting object rather than the intended
target. To alleviate this, motion models and classifiers can be incorporated,
but they may rely upon weak and restrictive assumptions regarding target
motion and appearance.

1.1.2 Spatiotemporal Methods

Spatial techniques use depth information and/or temporal dynamic models to
overcome the occlusion problem [42,21]. The use of spatial (depth) information
can introduce problems associated with multiple camera calibration, and depth
data is notoriously sparse, computationally expensive, and can be inaccurate.
Spatiotemporal continuity is not always a strong assumption in terms of hand
tracking models. At frame rates, hand motion may appear discontinuous since
the hands can move quickly and seemingly erratically, or undergo occlusion
by other body parts. Methods such as Kalman filtered hand tracking [20] that
are strongly reliant upon well-defined dynamics and temporal continuity may
prove inadequate. Traditional segment-then-track (exhaustive search methods,
e.g. dynamic template matching) approaches are subject to cumulative errors
where inaccuracies in segmentation affect tracking quality, which in turn affect
subsequent segmentations.

Hands are part of an articulated entity (the human body), so model-based
methods incorporating domain knowledge can be used to resolve some of the
ambiguities. Joint tracking of body parts can be performed with an exclusion
principle on observations [33,25] to alleviate such problems. A priori knowledge
such as 2D hand models may be used [26,17]. Alternatively, a 3D model of the
hand and/or body may be used such that skeletal constraints can be exploited
[42,30,9]. 2D projections of deformable 3D models can be matched to observed
camera images [15,27]. Unfortunately, these methods can be computationally
expensive, do not always resolve projection ambiguities, and performance de-
pends heavily upon the accuracy of complex, subject dependent, articulated
models and permitted motions.

1.1.3 Zero Disparity Methods

Methods exist that do not require a priori models or target knowledge. In-
stead, the target is segmented using an un-calibrated semi-spatial response
by detecting regions in images or cue maps that appear at the same pixel
coordinates in the left and right stereo pairs. That is, regions that are at
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zero disparity 2 . To overcome pixel matching errors associated with gain dif-
ferences between left and right views, these methods traditionally attempt to
align vertical edges and/or feature points.

Rougeaux [34,35] investigated the use of virtual horopters 3 to test whether
the tracked subject was moving away from or towards the cameras. One of
the stereo pair images (e.g. the left image) was virtually shifted horizontally
by a single pixel to the left (by purging the leftmost column of pixels) and
then to the right (by adding an extra column at the left of the image), and the
zero disparity response determined between each new image and the unaltered
(right) image, for both cases. The virtual shift that yields largest zero disparity
response area was deemed the correct tracking direction, and the cameras were
then verged or diverged accordingly such that the horopter best aligned with
the tracked subject.

Oshiro applied a similar edge extraction method to foveal log-polar cameras
[31]. Yu used a wavelet representation to match broader image regions [43].
Rougeaux later revisited the approach, combining the edge-based ZDF with
optical flow for broader segmentation [36]. Rae combined edge-based tech-
niques with additional aligned point features such as corners, symmetry points
and cue centroids [32].

Unfortunately, these methods do not cope well with bland subjects or back-
grounds, and perform best when matching textured sites and features on tex-
tured backgrounds. The zero disparity class of segmentation forms the base
upon which we develop our approach.

1.2 Overview

We aim to ensure coordinated active stereo fixation upon a hand target, and to
facilitate its robust pixel-wise extraction. We propose a biologically inspired,
conceptually simple method that segments and tracks the subject in paral-
lel, eliminating problems associated with the separation of segmentation and
tracking. The method inherently incorporates spatial considerations to disam-
biguate between, for example, multiple overlapping hands in the scene such
that occlusions or distractions induced by non-tracked hands do not affect
tracking of the selected hand. As we shall see, the method does not rely on
imposing motion models on the commonly erratic trajectory of a hand, and

2 A scene point is at zero disparity if it exists at the same image frame coordinates
in the left and right images
3 The horopter is the locus of zero disparity scene points that would project to
identical left and right image coordinates if that scene point was occupied by a
visual surface.
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Fig. 1. CeDAR, active vision apparatus.

can cope with gross partial occlusions. In this regard, the three common prob-
lems of ambiguity, occlusion and motion discontinuity are addressed. Despite
using stereo vision, the approach does not require stereo camera calibrations,
intrinsic or extrinsic. The method utilises dynamic stereo foveal scene analysis,
and we choose an active implementation that has the benefit of increasing the
volume of the visual workspace.

We proceed by introducing the visual apparatus (Section 2). We motivate
the active approach, in consideration of biological influences (Section 3). We
present hand segmentation under the assumption that the hand is at the
stereo fixation point. We formalise the approach as an energy minimisation
problem and present an optimisation method used to solve the segmentation
problem (Section 4), addressing issues of segmentation robustness. The hand
tracking algorithm is then presented (Section 5). We present results (Section
6), and tracking performance and quality are evaluated (Section 7), including
presentation of our results alongside those of other techniques for comparison.
We finish with a brief discussion (Section 8) and conclusion (Section 9).

2 Platform

CeDAR (Fig. 1), the Cable-Drive Active-Vision Robot [40], is the experimen-
tal apparatus. It incorporates a common tilt axis and two independent pan
axes separated by a baseline of 30cm. All axes exhibit a range of motion of
greater than 90o, speed of greater than 600os−1 and angular resolution of 0.01o.
Syncronised images with a field of view of 45o are obtained from each cam-
era at 30fps at a resolution of 640x480 pixels. Images are down-sampled to
320x240 resolution before hand tracking processing occurs.
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Fig. 2. Scanning the horopter over the scene: the locus of zero disparity points
defines a plane known as the horopter. For a given camera geometry, searching for
pixel matches between left and right stereo images over a small disparity range
defines a volume about the horopter. By varying the geometry, this measurable
volume can be scanned over the scene. In the first frame, only the circle lies within
the searchable region. As the horopter is scanned outwards by varying the vergence
point, the triangle, then the cube become detectable, and their spatial location
becomes known.

3 Active Vision for Task-Oriented Behaviors

A vision system able to adjust its visual parameters to aid task-oriented behav-
ior – an approach labeled active [2] or animate [5] vision – can be advantageous
for scene analysis in realistic environments [4]. In terms of spatial (depth) anal-
ysis, rather than obtaining a depth map over a large disparity range (as per
static depth mapping), active vision allows us to consider only points at or
near zero disparity for a given camera geometry. Then, by actively varying
the camera geometry, it is possible to place the horopter and/or fixation point
over any of the locations of interest in a scene and thereby obtain relative
local spatial information about those regions. Where a subject is moving, the
horopter can be made to follow the subject. By scanning the horopter over
the scene, we increase the volume of the scene that may be measured. Fig. 2
shows how the horopter can be scanned over the scene by varying the camera
geometry for a stereo configuration. This approach is potentially more efficient
than static spatial methods because a small (or zero) disparity search scanned
over the scene is less computationally expensive than a large and un-scanable
disparity search from a static configuration.

Foveal systems are able to align the region around the centre of the image
(where more resources are allocated for processing) with a region of interest
in the scene such that attention can be maintained upon a subject. Active sys-
tems increase the visual workspace while maintaining high subject resolution
and maintaining a consistent level of computation. Indeed, much success has
come from studying the benefits of active vision systems [35]. Alternatively,
pseudo-active configurations are possible where either fixed cameras use hori-
zontal pixel shifting of the entire images to simulate horopter reconfiguration,
or where the fovea is permitted to shift within the image. Although feasible
for the operations presented herein, relying on such virtual horopter shifting
of the entire images reduces the useful width of the images by the number
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of pixels of shift and dramatically decreases the size of the visual workspace.
Target contextual information is also reduced where a target moves away from
the optical centers of the static cameras such that its surroundings cannot be
seen. Valuable processing time could also be compromised in conducting whole
image shifts or in re-configuring the fovea position. Both virtual horopter and
virtual fovea approaches are simply methods to simulate true active stereo
vision.

Introspection of human vision provides motivation for coordinated foveal fix-
ation. Humans find it difficult to fixate on unoccupied space. Empty space
contains little information; we are more concerned with interactions with ob-
jects or surfaces and direct our gaze accordingly. The human visual system
exhibits its highest resolution at the fovea where higher-level cognition such
as object recognition has been shown to operate [41]. The extent of the fovea
covers a retinal area of approximately the size of a fist at arms length [41],
conceptually in line with task-oriented interactions with the real world.

We limit foveal processing resources to the region of the images immediately
surrounding the image centres. The region beyond the fovea is considered only
for an estimate of where the foveas are to fixate next (for tracking purposes).
For the resolution of our cameras, the fovea corresponds to a region of about
60x60 pixels and an approximate area of 0.5m2 at 2m distance. Actively mov-
ing this region over the scene facilitates a large visual workspace.

For humans, the boundaries of an object upon which we have fixated emerge
effortlessly because the object is centred and appears with similar retinal cov-
erage in our left and right eyes, whereas the rest of the scene usually does
not. For synthetic vision, the approach is the same. The object upon which
fixation has occurred will appear with identical pixel coordinates in the left
and right images, that is, it will have zero disparity. For a pair of cameras with
suitably similar intrinsic parameters, this condition does not require epipolar
or barrel distortion rectification of the images. Camera calibration, intrinsic
or extrinsic, is not required.

4 Hand Segmentation

4.1 MAP ZDF Formulation

We begin by assuming short baseline stereo fixation upon the hand. A zero
disparity filter (ZDF) is formulated to identify the projection of the hand
as it maps to identical image frame pixel coordinates in the left and right
foveas. Fig. 7 shows example ZDF output. Simply comparing the intensities
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Fig. 3. NCC of 3x3 pixel regions at same coordinates in left and right images.
Correlation results with higher values shown more white.

of pixels in the left and right images at the same coordinates is not adequate
due to inconsistencies in (for example) saturation, contrast and intensity gains
between the two cameras, as well as focus differences and noise.

A human can easily distinguish the boundaries of the object upon which fixa-
tion has occurred even if one eye looks through a tinted lens. Accordingly, the
regime should be robust enough to cope with these types of inconsistencies.
One approach is to normalised cross-correlate (NCC) small templates in one
image with pixels in the same template locations in the other image. The NCC
function is shown in Eq.1:

NCC(I1, I2) =

∑
(u,v)∈W I1(u, v) � I2(x + u, y + v)√∑

(u,v)∈W I2
1 (u, v) �

∑
(u,v)∈W I2

2 (x + u, y + v)
, (1)

where I1, I2 are the compared left and right image templates of size W and u, v
are coordinates within the template. Fig. 3 shows the output of this approach.
Bland areas in the images have been suppressed (set to 0.5) using difference of
Gaussians 4 (DOG) pre-processing. The 2D DOG kernel is constructed using
symmetric separable 1D convolutions. The 1D DOG function is shown in Eq.2:

DOG(I) = G1(I)−G2(I), (2)

where G1(), G2() are Gaussians with different standard deviations σ1, σ2 ac-
cording to:

G(x) =
e−x2

2σ2
, (3)

DOG pre-processing is used to suppress untextured regions that always return
a high NCC response whether they are at zero disparity or not. As Fig. 3 shows,
the output is sparse and noisy. The palm is positioned at zero disparity but is
not categorised as such.

To improve results, image context needs to be taken into account. Contextual
information can assist by assigning similar labels to visually similar neighbour-
hoods. Most importantly, contextual refinement allows slight relaxation of the
zero disparity assumption such that non-planar surfaces or surfaces that are

4 The difference of Gaussians function approximates the Laplacian of Gaussians
function. Convolving a 2D DOG kernel with an image suppresses bland regions.
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not perpendicular to the camera optical axes – but appear visually similar to
the dominantly zero disparity region – can be segmented as the same object.

For these reasons, we adopt a Markov Random Field [16] (MRF) approach.
The MRF formulation defines that the value of a random variable at the set of
sites (pixel locations) S depends on the random variable configuration field f
(labels at all sites) only through its neighbours N ∈ S. For a ZDF, the set of
possible labels at any pixel in the configuration field is binary, that is, sites can
take either the label zero disparity (f(S) = lz) or non-zero disparity (f(S) =
lnz). For an observation O (in this case an image pair), Bayes’ law states that
the a posterior probability P (f | O) of field configuration f is proportional
to the product of the likelihood P (O | f) of that field configuration given the
observation and the prior probability P (f) of realisation of that configuration:

P (f | O) ∝ P (O | f) · P (f). (4)

The problem is thus posed as a maximum a posterior probability (MAP) opti-
misation where we want to find the configuration field f(lz, lnz) that maximises
the a posterior probability P (f | O). In the following two sections, we adapt
the approach of [7] to construct the terms in Eq. 4 suitable for ZDF hand
tracking.

4.1.1 Prior term P (f)

The prior encodes the properties of the MAP configuration we seek. It is
intuitive that the borders of zero disparity regions coincide with edges (or
intensity transitions) in the image. The Hammersly-Clifford theorem, a key
result of MRF theory, is used to represent this property:

P (f) ∝ e−
∑

C
VC(f). (5)

Clique potential VC describes the prior probability of a particular realisation
of the elements of the clique C. For our neighbourhood system, MRF the-
ory defines cliques as pairs of horizontally or vertically adjacent pixels. Eq. 5
reduces to:

P (f) ∝ e
−

∑
p

∑
q∈Np

Vp,q(fp,fq )
. (6)

In accordance with [7], we assign clique potentials using the Generalised Potts
Model where clique potentials resemble a well with depth u:

Vp,q(fp, fq) = up,q · (1− δ(fp − fq)), (7)
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where δ is the unit impulse function. Clique potentials are isotropic (Vp,q =
Vq,p), so P (f) reduces to:

P (f) ∝ e

−
∑

{p,q}∈εN

2u ∀fp 6= fq,

0 otherwise.
(8)

VC can be interpreted as a cost of discontinuity between neighbouring pixels
p, q. In practice, we assign the clique potentials according to how continuous
the image is over the clique using the Gaussian function:

Vc =
e−(∆IC)2

2σ2
, (9)

where ∆IC is the change in intensity across the clique, and σ is selected
such that 3σ approximates the minimum intensity variation that is consid-
ered smooth.

Note that at this stage we have looked at one image independently of the
other. Stereo properties have not been considered in constructing the prior
term.

4.1.2 Likelihood term P (O | f)

This term describes how likely it is that an observation O matches a hy-
pothesized configuration f and involves incorporating stereo information for
assessing how well the observed images fit the configuration field. It can be
equivalently represented as:

P (O | f) = P (IA | f, IB), (10)

where IA is the primary image and IB the secondary (chosen arbitrarily) and
f is the hypothesized configuration field. In terms of image sites S (pixels),
Eq. 10 becomes:

P (O | f) ∝
∏
S

g(iA, iB, lS), (11)

where g() is some symmetric function [7] that describes how well label lS fits
the image evidence iA ∈ IA and iB ∈ IB corresponding to site S. It could
for instance be a Gaussian function of the difference in observed left and
right image intensities at S; we evaluate this instance – Eq. 15 – and propose
alternatives later.

To bias the likelihood term towards hand-like objects, we include a hand cue
term HS, Eq. 12. This term is not required for the system to operate, it merely
provides a greater propensity for the MAP ZDF detector to track hand-like
scene objects (rather than any arbitrary object), as required by the task. In our
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tuned implementation, the hand cue term enumerates (assigns a probability
to site S in each image) how hand-like a pixel site is in terms of its colour and
texture. However, formulation of the hand cue term is beyond the scope of
this paper, and to show the generality of this body of work, we have set this
term to zero throughout this paper, including results section. The reader may
formulate this term to best suit their tracking application, or modulate this
term dynamically to intelligently select the tracked/attended object.

P (O | f) ∝
∏
S

g(iA, iB, lS, HS) (12)

4.1.3 Energy minimisation

We have assembled the terms in Eq. 4 necessary to define the MAP optimisa-
tion problem:

P (f | O) ∝ e
−

∑
p

∑
q∈Np

Vp,q(fp,fq ) ·
∏
S

g(iA, iB, lS). (13)

Maximising P (f | O) is equivalent to minimising the energy function:

E =
∑
p

∑
q∈Np

Vp,q(fp,fq)−
∑
S

ln(g(iA, iB, lS)). (14)

4.1.4 Optimisation

A variety of methods can be used to optimise the above energy function in-
cluding, amongst others, simulated annealing and graph cuts. For active vision,
high-speed performance is a priority. At present, a graph cut technique is the
preferred optimisation technique, and is validated for this class of optimisa-
tion as per [23]. We adopt the method used in [22] for MAP stereo disparity
optimisation (we omit their use of α–expansion as we consider a purely binary
field). In this formulation, the problem is that of finding the minimum cut on
a weighted graph:

A weighted graph G comprising of vertices V and edges E is constructed
with two distinct terminals lzd, lnzd (the source and sink). A cut C = V s, V t

is defined as a partition of the vertices into two sets s ∈ V s and t ∈ V t.
Edges t, s are added such that the cost of any cut is equal to the energy of
the corresponding configuration. The cost of a cut |C| equals the sum of the
weights of the edges between a vertex in V s and a vertex in V t.

The goal is to find the cut with the smallest cost, or equivalently, compute the
maximum flow between terminals according to the Ford Fulkerson algorithm
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[12]. The minimum cut yields the configuration that minimises the energy
function. Details of the method can be found in [22]. It has been shown to
perform (as worst) in low order polynomial time, but in practice performs in
near linear time for graphs with many short paths between the source and
sink, such as this [23].

4.1.5 Robustness

We now look at the situations where the MAP ZDF formulation performs
poorly, and provide methods to combat these weaknesses. Fig. 7a shows ZDF
output for typical input images where the likelihood term has been defined
using intensity comparison. Output was obtained at approximately 27fps for
the 60x60 pixel fovea on a standard 3GHz single processor PC. For this case,
g() in Eq. 11 has been defined as:

g(iA, iB, f) =


e−(∆IC )2

2σ2 ∀f = lz

1− e−(∆IC )2

2σ2 ∀f = lnz

(15)

The variation in intensity at corresponding pixel locations in the left and
right images is significant enough that the ZDF has not labeled all pixels
on the hand as being at zero disparity. To combat such variations, NCC is
instead used (Fig. 7b). Whilst the ZDF output improved slightly, processing
time per frame was significantly increased (∼ 12fps). As well as being slow,
this approach requires much parameter tuning. Bland regions return a high
correlation whether they are at zero disparity or not, and so the correlations
that return the highest results cannot be trusted. A threshold must be chosen
above which correlations are disregarded, which also has the consequence of
disregarding the strongest correct correlations. Additionally, a histogram of
correlation output results is not symmetric (Fig. 5, left). There is difficulty
in converting such output to a probability distribution about a 0.5 mean, or
converting it to an energy function penalty.

To combat the thresholding problem with the NCC approach, the images can
be pre-processed with a DOG kernel. The output using this technique (Fig. 7c)
is good, but is much slower than all previous methods (∼ 8fps) and requires
yet more tuning at the DOG stage. It is still susceptible to the problem of
non-symmetric output.

We prefer a comparator whose output histogram resembles a symmetric distri-
bution, so that these problems could be alleviated. For this reason we chose a
simple neighbourhood descriptor transform (NDT) that preserves the relative
intensity relations between neighbouring pixels (in a fashion similar to but
less rigidly than that of the Rank transform), and is unaffected by brightness
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Fig. 4. NDT descriptor construction, four comparisons.

or contrast variations between image pairs. Fig. 4 depicts the definition of the
NDT transform.

In this approach, we assign a boolean descriptor string to each site and then
compare the descriptors. The descriptor is assembled by comparing pixel in-
tensity relations in the 3x3 neighbourhood around each site (Fig. 4). In its
simplest form, for example, we first compare the central pixel at a site in the
primary image to one of its four-connected neighbours, assigning a 1 to the
descriptor string if the pixel intensity at the centre is greater than that of its
northern neighbour and a 0 otherwise. This is done for its southern, eastern
and western neighbours also. This is repeated at the same pixel site in the
secondary image. The order of construction of all descriptors is necessarily
the same. A more complicated descriptor would be constructed using more
than merely four relations 5 . Comparison of the descriptors for a particular
site is trivial, the result being equal to the sum of entries in the primary image
site descriptor that match the descriptor entries at the same positions in the
string for the secondary image site descriptor, divided by the length of the
descriptor string.

Fig. 5 shows histograms of the output of individual neighborhood comparisons
using the NCC DOG approach (left) and NDT approach (right) over a series
of sequential image pairs. The histogram of NDT results is a symmetric dis-
tribution about a mean of 0.5, and hence is easily converted to a penalty for
the energy function.

Fig. 7d shows NDT output for typical images. Assignment and comparison
of descriptors is faster than NCC DOG, (∼ 27fps) yet requires no parameter
tuning. In Fig. 7e, the left camera gain was maximised, and the right camera
contrast was maximised. In Fig. 7f, the left camera was defocussed and satu-
rated. The segmentation retained it’s good performance under these artificial
extremes.

5 Experiment has shown that a four neighbour comparator gives results that com-
pare favorably (in terms of trade-offs between performance and processing time) to
more complicated descriptors.
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Fig. 5. Histograms of individual NCC DOG (left) and NDT (right) neighborhood
comparisons for a series of observations.

5 Tracking and Segmentation

Hand tracking is implemented using a combination of virtual and physical
retinal shifts. Fig. 6 describes the four steps of the tracking algorithm. Ini-
tialisation of the system is simple. The operator merely passes their hand
through the area surrounding the arbitrary initial stereo fixation point. At a
fixation point 2m from the cameras, the initial search window defines a recep-
tive volume of about 0.5m3. Once tracking begins, segmentation of the zero
disparity region induced by the hand is followed by continual NCC alignment
of the horopter such that the zero disparity segmentation area is maximised.
The NCC search window is sufficient to cope with the upper limits of typical
hand motions between successive frames. The MAP ZDF process reduces the
segmented area to that associated with a 2D projection of the object on the
horopter, such that occlusions or secondary hands do not distract track unless
they are essentially touching the tracked hand (see section 7.2.1). If track is
lost, it will resume on the zero disparity region induced by the subject closest
to the fixation point. In this manner, if track is lost, the subject need only
return their hand to the volume surrounding the current fixation point (where
track was lost).

The method of virtual verification followed by physical motion copes with
rapid movement of the hand, providing an awareness of whether the hand has
moved towards or away from the cameras so that the physical horopter can be
shifted to the location that maximises the zero disparity area associated with
the hand. It is emphasised that template matching is not used to track the
hand, it is only used to estimate the pixel shift required to align the virtual
horopter over the hand. Tracking is performed by extracting the zero disparity
region at the virtual horopter, and physically moving the cameras to point at
the centre of gravity of the segmented zero disparity region, if it is significantly
non-zero. The virtual horopter alignment is successful if any part of the hand
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MAP ZDF Tracking Algorithm:

(1) Determine virtual shift required to approximately align virtual
horopter over subject: the pixel distance d between a small tem-
plate (approximately 30x30 pixels) at the centre of the left image
and its location of best match in the right image is determined
using NCC. We conduct the search in a window a few pixels above
and below the template location in the left image and up to 10
pixels to the left and right in the right image. In this manner, the
NCC will only return a high correlation result if the subject in the
template is located near the 3D scene fixation point.

(2) Perform a virtual shift of the left fovea by d/2 and the right fovea
by −d/2 to approximately align the location of best correlation in
the virtual centre of the left and right foveas. If the NCC result
was not sufficiently high, no physical shift will be conducted and
the process returns to the first step.

(3) MAP ZDF segmentation extracts the zero disparity pixels associ-
ated with a 2D projection of the hand from the virtually aligned
foveas. If there is indeed a hand at the virtual fixation point, the
area of the segmented region will be significantly beyond zero.

(4) If the area is greater than a minimum threshold, the virtual shift
has aligned the centre of the images over the hand. In this case,
a physical movement of the cameras is executed that reduces the
virtual shift to zero pixels, and aligns the centres of the cameras
with the centre of gravity of the segmented area. If the area is below
the threshold, there is little likelihood that a hand or object is at
the virtual fixation point, and no physical shifting is justified.

The process then cycles, continuing from step (1).

Fig. 6. Hand tracking algorithm using maximum a posterior probability zero disparity
filter (MAP ZDF) segmentation.

is selected as the template, and does not depend on the centre of the hand
being aligned in the template.

6 Results

Hand tracking and segmentation for the purpose of real-time HCI gesture
recognition and classification must exhibit robustness to arbitrary lighting
variations over time and between the cameras, poorly focussed cameras, hand
orientation, hand velocity, varying backgrounds, foreground and background
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Fig. 7. MAP ZDF hand segmentation. The left and right images and their respective
foveas are shown with ZDF output (bottom right) for each case a-f. Result a involves
intensity comparison, b involves NCC, and c DOG NCC for typical image pairs.
Result d-f show superior NDT output for typical images d, and extreme adverse
conditions e,f.

distractors including non-tracked hands and skin regions, and hand appear-
ance such as skin or hand covering colour. System performance must also be
adequate to allow natural hand motion in HCI observations. The quality of
the segmentation must be sufficient that it does not depart from the hand over
time. Ideally the method should find the hand in its entirety in every frame,
and segment adequately for gesture recognition. For recognition, segmentation
need not necessarily be perfect for every frame because if track is maintained,
real-time classification is still possible based on classification results that are
validated over several frames. Frames that are segmented with some error still
usually provide useful segmentation information to the classifier.

Fig. 7 shows snapshots from online MAP ZDF hand segmentation sequences.
Segmentations on the right (d-f) show robust performance of the NDT com-
parator under extreme lighting, contrast and focus conditions. Fig. 8 shows the
robust performance of the system in difficult situations including foreground
and background distractors. As desired, segmentation of the tracked hand
continues. Fig. 9 shows a variety of hand segmentations under typical circum-
stances including reconfiguring, rotating and moving hands as they perform a
sequence of conceptually symbolic gestures in real time.
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Fig. 8. Robust performance in difficult situations: Segmentation of the tracked hand
from a face in the near background (top left); from a second distracting hand in the
background (bottom left); and from a distracting occluding hand in the immediate
foreground, a distance of 3cm from the tracked hand at a distance of 2m from
the cameras (top right). Once the hands are closer together than 3cm, they are
segmented as the same object (bottom right).

Fig. 9. Segmentation of conceptually symbolic gestures.

7 Performance

7.1 Speed

On average, the system is able to fixate and track hands at 27fps, including
display. Acquiring the initial segmentation takes a little longer ( 23 − 25fps
for the first few frames) after which successive MAP ZDF optimisation results
do not vary significantly so using the previous segmentation as an initiali-
sation for the current frame accelerates MRF labeling. Similarly, the change
in segmentation area between consecutive frames at 30fps is typically small,
allowing sustained high frame rates after initial segmentation. The frame rate
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remains above 20fps and is normally up to the full 30fps camera frame rate.

7.2 Quality

In typical tracking of a reconfiguring, moving hand over 100 consecutive frames,
inaccurate segmentation of the hand typically occurs in around 15 frames. We
describe a frame as inaccurate if the segmentation result has incorrectly la-
beled more than 10% of the pixels associated with the hand segmentation
(either miss-labeling pixels on the hand as not being on the hand, or vice
versa). These figures have been determined by recording segmentation out-
put for typical gesturing sequences and having a human arbitrator review and
estimate the percentage-wise inaccuracies in each frame.

Segmentation success also depends on the complexity of hand posture. For
example, if the hand is posed in a highly non-planar fashion or a pose whose
dominant plane is severely non-perpendicular to the camera optical axes, non-
successful segmentation can degrade to up to around 50 frames in 100. In these
situations, the zero disparity assumption is violated over some parts of the
hand. The induced relaxation of the zero disparity assumption due to MRF
contextual refinement is not always sufficient to segment the hand. Under
such circumstances, methods reliant on prior knowledge could conceivably
assist segmentation. For example, if the colour or appearance of the hand was
known prior to segmentation and incorporated using the HS term from Eq.
12. Nevertheless, despite some inaccurately segmented frames, track is rarely
lost for natural motions and gestures.

The approach compares favorably to other ZDF approaches that have not
incorporated MRF contextual refinement, allowing relaxation and refinement
of the zero disparity assumption such that surfaces that are not perpendicular
to the camera axis can be segmented.

7.2.1 Foreground and Background Robustness

Fig. 8 shows examples of segmentations where subject-like distractors such
as skin areas, nearby objects, or other hands are present. For the case where
the tracked hand passes closely in front of a face (that has the same skin
colour and texture as the tracked hand) the system successfully distinguishes
the tracked hand from the nearby face distractor (Fig. 8, top left). Similarly,
when the tracked hand passes in front of a nearby hand, segmentation is not
affected (Fig. 8, bottom left). Cue- or model-based methods are likely to have
difficulty distinguishing between the tracked hand and background hand.

The right side images in Fig. 8 show the case where a tracked hand is oc-
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cluded by an incoming distractor hand. The hands are located approximately
2m from the cameras in this example. Reliable segmentation of the tracked
hand (behind) from the occluding distractor hand (in front) remains until the
distractor hand is a distance of approximately 3cm from the tracked hand.
Closer than this the hands are segmented as a connected object, which is
conceptually valid.

7.3 Tracking Constraints

The hand can be tracked as long as it does not move entirely out of the
fovea between consecutive frames. This is because no predictive tracking is
incorporated (such as a Kalman filter). In practice, we find that the hand
must be moved unnaturally quickly to escape track, such that it leaves the
fovea completely between consecutive frames. Tracking a target as it moves in
the depth direction (towards or away from the cameras) is sufficiently rapid
that loss of track does not occur. In interacting with the system, we find
that track was not lost for natural hand motions (see demonstration footage,
Section 9).

The visual workspace for the system remains within a conic whose arc angle
is around 100o. Performance remains good to a workspace depth (along the
camera axis) of 5m, for the resolution, baseline, and zoom settings of our stereo
apparatus. Higher resolution or more camera zoom would increase disparity
sensitivity, permitting zero disparity filtering at larger scene depths.

7.3.1 Segmentation for Gesture Recognition

This work can give a basis segmentation to facilitate gesture validation. Fig. 9
shows various segmentations for conceivable symbolic gestures. Segmentation
quality is such that the hand is extracted from its surroundings which has sig-
nificant benefits in classification processes because the operation is not tainted
by background features. In order that greater restriction on the segmentation
of hand-like regions be ensured, an intuitive step would be to combine MAP
ZDF segmentation with other cues to ensure “hand-ness” of the subject. Ap-
pearance classification or model verification could also be used. The frame-
work, however, provides the means to incorporate probabilistic hand-ness of
the segmentation. By inserting knowledge of the hand into the prior term in
the ZDF formulation (for example a skin colour cue or shape/size cue), a mea-
sure of hand-ness could be incorporated into the segmentation process itself.
In this instance, reliance on a final verification step is reduced or eliminated.

The likelihood term described in the MAP ZDF formulation does not incor-
porate the hand-ness term so that we are able to accurately segment the hand
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Fig. 10. Comparision to other methods: example output. Images reproduced from:
a) Shen (Mean Shift) [37], b) Shen (Annealed Mean Shift)[37], c) Comaniciu (Cam
Shift) [11], d) Allen (Cam Shift) [1].

and any hand-held object. The last two examples in Fig. 9 show the segmen-
tation of a hand holding a set of keys, and a hand holding a stapler. The term
has also been excluded for performance comparision with other ZDF tracking
filters that do not incorporate biasing for task-dependent tracking of specific
features such as hands (Section 7.4.2).

7.4 Comparison to state-of-art

Our method is based on active vision hardware, and as such, it is difficult to
find a performance metric such that numerical comparison between method
such as ours and methods that do not use active vision mechanisms can be
conducted. Additionally, implementation details for other ZDF methods are
difficult to obtain, and are usually hardware and calibration dependent such
that reproduction is not viable. Methods that do not use contextual refine-
ment for direct segmentation cannot be party to a segmentation performance
comparison. Having said that, we provide samples of output from other im-
plementations to allow the reader to assess performance visually.

7.4.1 Comparision with colour-based methods

We provide tracking output from recent methods for empirical evaluation
(Fig.10). These methods provide bounding box output only, and as such do
not deal with segmenting – for example – two overlapping hands (Fig.10c).

7.4.2 Comparision with other ZDF-based methods

Fig.11 shows sample ZDF output from existing methods for comparison. These
methods provide probability distribution and bounding box outputs. The un-
derlying probability maps may be suitable for MRF refinement such as ours,
but they do not inherently provide segmentation.
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Fig. 11. ZDF performance comparision. Images reproduced from: a) Oshiro [31], b)
Rae [32], c) Rougeaux [34], d) Yu [43], e) Rougeaux [36], f) This paper.

7.4.3 Comparision to non-MRF methods

Fig. 3 shows sample ZDF output from our system without the incorporation
of MRF contextual refinement. Fig. 7c shows output using the same algorithm
as in Fig. 3, but incorporates MAP MRF contextual refinement from the orig-
inal images. Any attempt to use the output in Fig. 3 alone for segmentation
(via any, perhaps complex, method of thresholding), or for tracking, would not
yield results comparable to those achievable by using the output in Fig. 7c.
The underlying non-MRF processes may or may not produce ZDF probability
maps comparable to those produced by others (Section 7.4.2). However, the
tracking quality achievable by incorporating MRF contextual image informa-
tion refinement is better than is possible by the underlying ZDF process.

8 Discussion

It is critical that the MAP ZDF refinement operates at or near frame rate.
This is because we consider only the 60x60 pixel fovea when extracting the
zero disparity region. At slower frame rates, a subject could more easily escape
the fovea, resulting in loss of track. Increasing the fovea size could help prevent
this occurring, but would have the consequence of increasing processing time
per frame.

Our method uses all image information, it does not match only edges, fea-
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tures or blobs extracted from single or multiple cues. The strongest labeling
evidence does indeed come from textured and feature rich regions of the im-
age, but the Markov assumption propagates strongly labeled pixels through
pixel neighbourhoods that are visually similar until edges or transitions in
the images are reached. The framework deals with the trade-off between edge
strengths and neighbourhood similarity in the MAP formulation.

In contrast to many motion based methods, where motion models are used
to estimate target location based on previous trajectories and motion models
(eg, Kalman filtering), the implementation does not rely upon complex spa-
tiotemporal models to track objects. It merely conducts a continual search for
the maximal area of ZDF output, in the vicinity of the previous successful
segmentation. The segmentations can subsequently be used for spatial local-
isation of the tracked object, but spatiotemporal dynamics do not form part
of the tracking mechanism.

In this paper, we have operated on intensity images only. We have already
begun experiments where colour channel data is used to enhance segmentation.
For this implementation, the NDT comparison operation is conducted on the
intensity channel as well as RGB channels, and all comparison results are
incorporated into the Likelihood term in eq 12.

The focus of this paper has been on hand tracking, but this is just one example
of the general usefulness of robust zero disparity filtering.

9 Conclusion

A MAP ZDF has been formulated and used to segment and track an arbitrarily
moving, rotating and re-configuring hand, performing accurate marker-less
pixel-wise segmentation of the hand. A large visual workspace is achieved by
the use of active vision. Hand extraction is robust to lighting changes, defocus,
hand colour, foreground and background clutter including non-tracked hands,
and partial or gross occlusions including those by non-tracked hands. Good
system performance is achieved in the context of HCI systems. It operates at
approximately 27fps on a 3GHz single processor PC.

Demonstration Footage

Real-time sequences of the system in operation are available at:

http://rsise.anu.edu.au/~andrew/cviu05
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