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Abstract

We present an efficient method for mutual information
(MI) computation between images (2D or 3D) for NVIDIA’s
‘compute unified device architecture’ (CUDA) compatible
devices. Efficient parallelization of MI is particularly chal-
lenging on a ‘graphics processor unit’ (GPU) due to the
need for histogram-based calculation of joint and marginal
probability mass functions (pmfs) with large number of bins.
The data-dependent (unpredictable) nature of the updates
to the histogram, together with hardware limitations of the
GPU (lack of synchronization primitives and limited mem-
ory caching mechanisms) can make GPU-based computa-
tion inefficient. To overcome these limitation, we approxi-
mate the pmfs, using a down-sampled version of the joint-
histogram which avoids memory update problems. Our
CUDA implementation improves the efficiency of MI cal-
culations by a factor of 25 compared to a standard CPU-
based implementation and can be used in MI-based image
registration applications.

1. Introduction

Mutual information (MI) [12] between the images, as a
similarity measure, has been very successful in automatic
and retrospective registration of multi-modal images, par-
ticularly in the medical domain [5]. The MI-based registra-
tion, typically entails an iterative optimization step aimed at
finding the optimal transformation that best aligns the im-
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ages, which is time consuming (see [8, 10, 11] for methods
to speed up mutual information-based registration). De-
pending on the size of images and the domain of the reg-
istration problem (e.g. rigid, similarity, affine, perspective,
and non-rigid), the optimization can take from several min-
utes to several hours.

In the recent decade, the computing capacities of the
graphics processor units (GPUs) have improved exponen-
tially. This has made GPU-accelerated computation a viable
option for many applications. Fig. 1 shows the rapid growth
in GPU processing power compared to the CPU [2].

Figure 1. Rapid growth in GPU processing
compared to the CPU in recent years. Image
courtesy of NVIDIA.

Each iteration of the optimization algorithm, for image
registration, requires image transformation and similarity
measure calculations. GPUs are ideal for speeding up the
transformations, as they have been designed for rendering
3D environments, which heavily use image transformations.



However, efficient MI computation has not been one of their
highest praised virtues. In fact, authors in [4] conclude that
‘information-theoretic similarity measures like MI cannot
be implemented’ on the GPU, which was of course before
the compute unified device architecture or CUDA was re-
leased by NVIDIA.

To appreciate the problem, one should note that, GPUs
are data-parallel computing devices that perform best in
”single instruction multiple data” (SIMD) applications.
This typically involves ordered processing (reading and
writing) of data. Many scientific computing applications
can be formulated in this manner, and as such, can greatly
benefit from the massive parallelization offered by the GPU.
However, the performance gains can quickly diminish if the
data needs to be processed in an unpredictable or random
manner and where there is a need for data-access synchro-
nization between the threads. This is because in GPU archi-
tecture, data-caching and flow control logic are minimized
to make room for more arithmetic logic units (ALUs).

1.1. Previous Work and Contributions

MI computation at its core, requires estimation of the
marginal and joint pmfs of the images. To determine the
pmfs, most researchers use a joint histogram of the intensi-
ties. Each entry h(a, b) in the histogram denotes the number
of times intensity a in one image coincides with intensity b
in the other image [5]. The entries are normalized by the to-
tal number of samples to obtain the joint pmf. The marginal
pmfs can then be obtained by reducing the joint pmf along
its columns and rows. Parzen windowing using Gaussian,
exponential and spline functions can be used to obtain a
smoother joint histogram. Other alternatives include, use
of a gradient based histogram estimation [7], and the uni-
form volume histogram method in [10], which are shown to
be robust w.r.t. noise and selection of the number of bins.

Efficient calculation of histograms has been traditionally
difficult on GPUs [6]. An efficient 1D histogram imple-
mentation has been proposed in [6], however the number of
bins is limited to 64, which is prohibitive for MI compu-
tations. Typically, the joint histograms for MI computation
require in the order of 100 bins in each dimension, hence re-
sulting in an equivalent of 10, 000 bins on a 1D histogram.
Two efficient histogram methods for CUDA have been pro-
posed in [9], the methods can both be used for virtually any
number of bins with a performance improvement of up to
30 times compared to the standard CPU-based implemen-
tation. The highest performance gain is realized for 1000
bins or less and the speed up factor reduces as the number
of bins increase. For 10, 000 bins, the methods perform only
2-4 times faster than their CPU-based counterpart. This is
due to the limited size of the cached shared memory, which
is used to hold intermediate partial histograms on the GPU

[9].
We emphasize that all pmf calculation methods provide

an estimate of the probability density of the underlying (as-
sumed) random variable. We also note that, for large data-
sets (e.g. 3D medical images), a reasonable down-sampling
or random sampling of the input data should still provide
a consistent estimation of the probability density function.
For example in [13], the authors use stochastic sampling
(and down-sampling) of the data in order to estimate the
joint pmf and show improved smoothness of the MI func-
tions and less susceptibility to the ‘grid effect’1. For GPU-
based implementation, we would like to avoid random sam-
pling which results in non-coalesced memory access (see
Section 2.3). As such, we use a systematic and data-
dependent sampling, which assigns each thread to a sub-
set of bins. Each thread will then fetch a memory location
aligned with its ID and will only sample input data if it be-
longs to the bin range designated for the thread. The benefit
is that we are able to calculate MI for a large number of bins
without any loss of performance. More detail is provided
in Section 2.4. We show experimentally that our method
results in well-behaved MI functions and can be used for
registration purposes.

2. Concepts

2.1. Entropy

Entropy of a random variable is a measure of the average
or expected information content of an event, whose distribu-
tion is determined by the marginal probability of the random
variable. One such measure was introduced by Shannon in
1948 [12], and is defined as

H(X) =
∑
x∈X

p(x) log
1

p(x)
, (1)

where p(.) is the probability mass function (pmf) of the ran-
dom variable X . Shannon entropy measures the degree of
uncertainty of a random variable by scoring less likely out-
comes higher than the more likely ones. This is consistent
with the notion that knowledge of an outcome that can be
easily predicted is considered less valuable.

2.2. Mutual Information

Mutual information of two random variables is the
amount of information that each carries about the other and

1The authors in [13] show that the MI function shows a slightly biased
response on the grid of image samples (i.e. integer spatial coordinates)
which results in small ripples in the MI functions and makes the optimiza-
tion step more difficult. See the reference for more information.



is defined as

I(X;Y ) = H(X) − H(X|Y )
= H(X) + H(Y ) − H(X, Y ), (2)

I(X;Y ) =
∑

x

∑
y

p(x, y) log
p(x, y)

p(x)p(y)
, (3)

where H(X|Y ) is the information content of random vari-
able X if Y is known, H(X, Y ) is the joint entropy of the
two random variables and is a measure of combined in-
formation of the two random variables. I(X;Y ) can be
thought of as the reduction in uncertainty of random vari-
able X as a result of knowing Y . The uncertainty is maxi-
mally reduced, when there is a one-to-one mapping between
the two random variables and is not reduced at all if the two
random variables are independent and do not provide any
information about one another.

2.3. An Overview of CUDA

We provide a quick overview of the terminology, main
features, and limitations of CUDA. More information can
be found in [2]. A reader who is familiar with CUDA may
skip this section.

CUDA can be used to offload data-parallel and compute-
intensive tasks to the GPU. The computation is distributed
in a grid of thread blocks. All blocks contain the same num-
ber of threads that execute a program on the device2, known
as the kernel. Each block is identified by a two-dimensional
block ID and each thread within a block can be identified by
an up to three-dimensional ID for easy indexing of the data
being processed. The block and grid dimensions, which are
collectively known as the execution configuration, can be
set at run-time and are typically based on the size and di-
mensions of the data to be processed.

It is useful to think of a grid as a logical representation
of the GPU itself, a block as a logical representation of a
multi-core processor of the GPU and a thread as a logi-
cal representation of a processor core in a multi-processor.
Blocks are time-sliced onto multi-processors. Each block
is always executed by the same multi-processor. Threads
within a block are grouped into warps. At any one time
a multi-processor executes a single warp. All threads of a
warp execute the same instruction but operate on different
data.

While the threads within a block can co-operate through
a cached but small shared memory (16 KB), a major limita-
tion is the lack of a similar mechanism for safe co-operation
between the blocks. This makes implementation of certain
programs such as a histogram difficult and rather inefficient.

2We use the terms device and the GPU, and host and the CPU inter-
changeably.

The device’s DRAM, the global memory, is un-cached.
Access to global memory has a high latency (in the order of
400-600 clock cycles), which makes reading from and writ-
ing to the global memory particulary expensive. However,
the latency can be hidden by carefully designing the kernel
and the execution configuration. One typically needs a high
density of arithmetic instructions per memory access and an
execution configuration that allows for hundreds of blocks
and several hundred threads per block. This allows the GPU
to perform arithmetic operations while certain threads are
waiting for the global memory to be accessed. The per-
formance of global memory accesses can be severely re-
duced unless access to adjacent memory locations is coa-
lesced. Memory accesses are coalesced if for each thread
i within the half-warp the memory location being accessed
is ‘baseAddress[i]’, where ‘baseAddress’ complies with
certain alignment requirements. Fig. 2 shows an example of
coalesced memory reads by multiple threads.

The data is transferred between the host and the device
via the direct memory access (DMA), however, transfers
within the device memory are much faster. To give reader
an idea, device to device transfers on 8800 GTX are around
70 Gb/s3, whereas, host to device transfers can be around
2−3 Gb/s. As a general rule, host to device memory trans-
fers should be minimized where possible. One should also
batch several smaller data transfers into a single transfer.

Shared memory is divided into a number of banks that
can be read simultaneously. The efficiency of a kernel can
be significantly improved by taking advantage of parallel
access to shared memory and by avoiding bank conflicts.

A typical CUDA implementation consists of the follow-
ing stages:

1. Allocate data on the device.

2. Transfer data from the host to the device.

3. Initialize device memory if required.

4. Determine the execution configuration.

5. Execute kernel(s). The result is stored in the device
memory.

6. Transfer data from the device to the host.

The efficiency of iterative or multi-phase algorithms can
be improved if all the computation can be performed in the
GPU, so that step 5 can be run several times without the
need to transfer the data between the device and the host.

2.4. Method

Assume that we have two images J1 and J2, for which
we would like to determine the joint pmf using a joint his-

3Gigabits per second



togram with B1 × B2 bins, where B1 and B2 are the num-
ber of bins required for calculating marginal pmfs of J1 and
J2, respectively. We have assumed that J1(·) and J2(·) are
normalized intensity values between 0.0 and 1.0. We note
that joint histogram computation can be reformulated as a
marginal histogram with B bins, where B = B1 × B2 by
combining the elements of J1 and J2 into a single array J
such that,

J(x) =
B1(J1(x) + J2(x)(B2 − 1))

B1B2 − 1
, B1B2 > 1, (4)

where J(x) is the intensity of the combined images at spa-
tial locations x = [x y z ]. It is easy to show that calculating
a 1D histogram of J(·) with B bins is equivalent to calcu-
lating the 2D histogram for J1(·) and J2(·) with B1 and B2

bins, respectively. Using this pre-processing step, allows us
to use our 1D histogram code for joint histogram calcula-
tion.

We have implemented the algorithm for CUDA devices
of ‘compute capability 1.0’, which neither support atomic
updates to the device’s global or shared memory, nor sup-
port mutex or other memory access synchronization meth-
ods.

The pmf calculation is to be distributed to L thread
blocks each with N threads. Each block will maintain a
partial histogram of its own in the global memory for the
portion of the input data assigned to the block. Partial his-
tograms are finally summed up using a very efficient multi-
threaded reduction function. The reduction stage has almost
no bearing on the overall efficiency of the method for the
number of blocks that are typically required to ensure that
GPU resources are fully utilized.

Thread(1) Thread(2) 

data[1]

Thread(i)

data[2] ... data[i] data[N]...

data[N+1] data[N+2] ... data[N+i] data[N+N]...

data[MN+1] data[MN+2] ... data[MN+i] data[MN+N]...

Thread(N)

Bin[1] Bin[2] Bin[B]...

... ...

... ...... ...

Bin[3] Bin[4] Bin[B-1]

Figure 2. Data access and execution config-
uration for threads within a block. Schemati-
cally we have displayed allocation of two bins
per thread. Dotted lines indicate that the
data is outside the bin range assigned to the
thread and as a result is discarded.

Fig. 2 shows data access and execution configuration for
each block. Input data allocated for each block is further

divided among the threads. Each thread will process data
only if histogram location b for the data falls within the sub-
set of bins assigned to that particular thread. The bin range
assigned to each thread ID tid (zero-indexed) is given by

bB

N
× tidc ≤ b < bB

N
× (tid + 1)c, (5)

where, B is the number of bins, N is number of threads per
block, bac denotes the largest integer value that does not
exceed a. Based on (5), each thread will handle either bB

N c
or bB

N c + 1 bins.
The algorithm is designed to ensure that histogram up-

dates by different threads do not coincide. We note that
even if memory access synchronization were available, this
method would still improve the efficiency of pmf calcula-
tion, as synchronized memory updates had to be serialized
among competing threads. Ideally, we would have liked to
allocate a partial histogram per thread in the shared mem-
ory. However, for 128 threads per block and 10, 000 bins,
this requires 5000 KB of shared memory that far exceeds
the capabilities of existing hardware, which only provides
16 KB of shared memory per block.

The size of data counters that we allocate for each bin,
depends on the number of bins. For example, for 10, 000
bins we can allocate 8-bits per bin. This means that the
block’s partial histogram has to be updated every time a bin
counter overflows. This is still very efficient compared to
writing to global memory directly and avoids the huge la-
tency associated with global memory updates.

Fig. 3 shows the throughput of MI computation using
our approximate histogram method compared to the exact
histogram method proposed in [9] and a CPU-based imple-
mentation. Our method performs 21-25 times faster than
the CPU implementation and as can be seen, the perfor-
mance levels are maintained for the entire range of bins.
Note that the performance of MI computation using the ex-
act histogram is above the CPU implementation but drops
as the number of bins increase.

Typically, 128-256 threads per block are required to
ensure that GPU’s computing resources are fully utilized.
Fig. 4 depicts the throughput of our method for different
number of threads and shows that the method is scalable
and the performance increases as we increase the load on
the GPU.

2.5. Validations

So far we have established the superior efficiency of our
method for MI computation. In this section, we will demon-
strate that the method is useful and accurate enough for
practical registration problems. We are not directly con-
cerned with the absolute difference between MI values com-
puted by different methods. As it is the shape of the MI
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Figure 4. Throughput of the method in-
creases with more threads, which demon-
strates the scalability of the algorithm.

function which is of value in registration applications. As
such, we focus on showing that the MI functions derived
with the approximate method are well-behaved and can cor-
rectly determine the misalignment between the images.

Fig. 5 shows several MI functions based on the approxi-
mate histogram and the exact histogram for two MR images
of the brain (MR-T1 and MR-T2). MI functions based on
the approximate histogram are well-behaved, smooth and
correctly identify the alignment.

We note that in Fig. 5, the MI functions with higher
number of threads (more down-sampling) are slightly less
smooth, however, they are smooth enough for optimization
purposes. The smoothness of the MI function is related to
the size of the input data. Larger data-sets tend to remain
smoother for larger number of threads. However, we em-
phasize that a lower number of threads is recommended for
smaller data-sets.

We finally show an example of using our method for

registration of two 3D images with approximately 7 × 106

voxels, voxel size of 1 mm3 and using 256 threads. The
misalignment between the images (gold) and the resulting
registration parameters for standard MI calculation (CPU)
and our method (GPU) are shown in Table 1. tx, ty
and tz are translation parameters along the x, y and z-
axis,respectively. Rotations around x, y and z-axis are
shown by α, β, and γ, respectively. The target registration
error (TRE) is specified in millimeters and is shown in the
last row. The TRE for the GPU method is comparable with
the CPU method and is well below the voxel size. The Sim-
plex method was used for the optimizations. Both methods
converged with around 200 iterations but the GPU-based
registration is around 25 times more efficient.

Table 1. Registration Results
Gold CPU GPU

tx (mm) 5.0 4.99 5.00

ty (mm) -10.0 -10.01 -9.96

tz (mm) -5.0 5.01 5.01

α 15.0◦ 15.02◦ 15.01◦

β -10.0◦ -9.99◦ -10.04◦

γ 10.0◦ 10.04◦ 9.99◦

Iterations 198 197

Time (sec) 210 8.6

TRE (mm) 0.10 0.14

2.6. Conclusion

Traditionally, it has been difficult to un-tap GPU’s power
for general purpose programming. This has been due to
the hardware and software limitations of the GPU; most
notably, the need to program through a graphics applica-
tion programming interface (API)4, limitations in accessing
the GPU DRAM [2], and lack of certain native flow-control
and integer instructions. With the introduction of CUDA,
NVIDIA has been able to address some of these problems.

However, it is possible to improve efficiency of the com-
putations by re-designing and re-thinking existing algo-
rithms to overcome the limitations of the GPUs and benefit
from their massively multi-threaded architecture and pro-
cessing capabilities.

4Previous attempts to use GPUs for general purpose programming
(such as BrookGPU [1] and Sh [3]) use software-only abstraction layers
to map a higher level stream processing language to the graphics API.
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Figure 5. Comparison of MI functions for various misalignments. The dotted graph shows the stan-
dard MI function for two multi-modal images of the brain. The solid graphs show the results for our
accelerated MI method. Our MI graphs show that the cost function is well-behaved and suitable for
registration.

A. Hardware Configuration

Table 2. Host Specification
Processor AM2 Athlon 64×2 6000+ 3.0 GHz

Memory 4 GB, 800 MHz DDR2

Motherboard ASUS M2N-SLI Deluxe

Table 3. Device Specification (GPU)
Model NVIDIA 8800 GTX

# of Multi-processors 16

# of cores per Multi-processor 8

Memory 768 MB

Shared memory per block 16 KB

Max # of threads per block 512

Warp size 32
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