Characterization of 3D Spatial Wireless Channels

Thushara Abhayapala, Tony Pollock and Rod Kennedy
Motivation/Background

◊ MIMO theory makes weak connection with space
 • independence result
 • correlated gaussian result

◊ Have bounds but what can really be achieved? May be over-optimistic.
• Typical spatial channel models
 – discrete scatterers around Tx and Rx
 – contrived geometries, regular rings
 – linear arrays

• This paper has quite different approach
 – few assumptions about scattering
 – arrays \rightarrow regions (no antennas)
 – parsimonious model
Parsimony

- Multipath modelled with (the actual) multiple paths is rarely parsimonious.
- An accurate multipath model can do more harm than good.

Why?
- Millions of multipath implies millions of parameters
- AIC hostile
- Excess parameters degrade estimation performance

Obvious that the finite resolving power of an array (in angle) implies we can reduce the number of multipaths we need to model. (Actually this has very little to do with arrays.)
Messages

1. Reducing the number of multipaths is not just desirable but really necessary.
Messages

1. Reducing the number of multipaths is not just desirable but really necessary.

2. Array theory tells us this but actually we don’t need arrays.
Messages

1. Reducing the number of multipaths is not just desirable but really necessary.

2. Array theory tells us this but actually we don’t need arrays.

3. OK we do need arrays... Arrays as:
 - implementation
 - spatial sampling
3D Model of Multipath

scatterers

\[A(\phi, \varphi) \]

transmitters

receivers
Model Form – Three Spatial Regions

- source free ball about Tx
Model Form – Three Spatial Regions

- source free ball about Tx
- complex scattering field
Model Form – Three Spatial Regions

- source free ball about Tx
- complex scattering field
- source free ball about Rx
Model Form – Three Spatial Regions

- source free ball about Tx
- complex scattering field
- source free ball about Rx

Generalizes to other shaped regions (holding the antennas).
MIMO Model – Matrices

- multi Tx antennas
- matrix channel
- multi Rx antennas

Matrices are highly desirable
New Model – Matrices also

- orthonormal functions in T_x ball
- bounded operator
- orthonormal functions in R_x ball

Bounded operators have a matrix representation (infinite).
Parsimony

- Use the most efficient orthonormal expansion in balls
- Bound the essential dimension (ugly)
- Given radius R, the essential dimension is $(N + 1)^2$ where $N \approx \pi eR/\lambda$.
- Different expansions depending on the shape of the region — eigenfunctions.
Channel Matrix Model

\[H = J_R H_s J_T^\dagger, \] \hspace{1cm} (1)

\(J_R: \) \(P \times (N_R + 1)^2 \)

\(H_s: \) \((N_R + 1)^2 \times (N_T + 1)^2 \)

\(J_T: \) \((N_T + 1)^2 \times Q \)

\(J_R, J_T \) — antenna ↔ scattering operator (matrix)

\(H_s \) — scattering operator (matrix)
Sampling Matrices

Entries of J_T look like

$$4\pi i^n j_n(k\|x_q\|)\overline{Y_{nm}(\hat{x}_q)},$$

where x_q is the location of the qth antenna. Mapping from spatial sample points to an orthonormal function indexed by m and n. (This choice of orthonormal function is optimal in a energy concentration sense.)
Key Points

\(J_T, J_R \)

- hold the antenna specific info only
- deterministic

\(H_s \)

- all scattering
- random
Flip Side

Conventional MIMO matrix H

- antenna specific and scattering info is mixed up
In the Paper

- H_s is also expressed in terms of the scattering gain function of angles $A(\hat{\phi}, \hat{\varphi})$
- Linear array case reworked
- $\text{rank}\{H\} = \min\{\text{rank}\{J_T\}; \text{rank}\{J_R\}; \text{rank}\{H_s\}\}$
Conclusions

The channel matrix of a MIMO system can be factored into fixed (and known) and random matrices where the deterministic portion depends on receiver and transmitter antenna configurations.