Capacity Analysis of Correlated MIMO Channels

Leif Hanlen
National ICT Australia
Canberra, Australia

Alex Grant
Institute for Telecommunications Research
Univ. of South Australia, Adelaide, Australia

e-mail: alex.grant@unisa.edu.au
Overview

- Background
- Analytic capacity for correlated channel
- “Large n” capacity
- Concept: “always linear” capacity growth
- Conclusions
Background

- Capacity of i.i.d MIMO channel well studied. (Telatar, 1999)
 - t transmit, r receive
 - “linear growth” with respect to minimum number of elements $m = \min(r, t)$.
 - reasonable match physical non-line-of-sight channel.

- Correlated MIMO channel more heuristic
 - LOS components
 - Chuah et al. (2002) noted that capacity growth still linear for correlated channels, through use of Stieljes transform, although LOS introduces equivalent power loss due to correlation.
Channel model

• General linear MIMO channel model:

\[y = Hx + w \]

restriction: \(H \) random matrix, known at receiver, unknown at transmitter.

\[C = \mathbb{E} \left\{ \log_2 \det \left(I_m + HH^* \cdot \frac{P}{t\eta} \right) \right\} \]

• For our model:

 – \(H \) is Gaussian random, with covariance \(\Sigma \).

 – \(H \) and \(\Sigma \) unknown at transmitter.

What is the analytic capacity of this channel?
Capacity of Correlated Gaussian MIMO Channel

\[C = K_{\Sigma,m,n} \cdot \int_{\Lambda} \text{hypgeom} \left(-\frac{1}{2} \Sigma^{-1}, n\Lambda \right) \cdot J(\Lambda) \cdot \sum_{i=1}^{m} \log \left(1 + \frac{P}{t} \lambda_i \right) \, d\Lambda \]

- Integral arises from definition of expectation.
- Problem: contains hypergeometric function
- Can be solved numerically, and \textit{under certain conditions} also analytically.
 1. \(\Sigma = I \): “famous” iid case, \(\text{hypgeom} \left(-\frac{1}{2} \Sigma^{-1}, n\Lambda \right) \) reduces to simpler form
 2. asymptotically for \(n \gg m \)
The next step... \(n \gg m \)

- Can assume \(\Sigma \) is diagonal,
 - \(\Sigma = \text{diag}\{\sigma_1, \cdots, \sigma_m\} \)
 - Also, \(\sigma_1 > \cdots > \sigma_k > \sigma_{k+1} = \cdots = \sigma_m \)
The next step... \(n \gg m \)

- Can assume \(\Sigma \) is diagonal,
 - \(\Sigma = \text{diag}\{\sigma_1, \cdots, \sigma_m\} \)
 - Also, \(\sigma_1 > \cdots > \sigma_k > \sigma_{k+1} = \cdots = \sigma_m \)

- \(F_0(\cdot) \) separates into two (joint) distributions
 - Normal independent distribution for distinct eigenvalues and
 - Normal distribution, with conditional density for remaining equal eigenvalues
 - The distributions are jointly independent

- Separate capacity integral into two parts:
 \[
 C = C_d + C_{eq}
 \]
 - \(C_d \) for distinct eigenvalues \(\sigma_1 > \cdots > \sigma_{k-1} \)
 - \(C_{eq} \) for equal eigenvalues \(\sigma_k = \sigma_{k+1} = \cdots = \sigma_m \)
Split Capacity

- C_d comprises joint distribution of independent random variables:

$$C_d = \frac{1}{\sqrt{2\pi}} \sum_{i=1}^{k} \int \exp \left(-\frac{z^2}{2} \right) \log \left(1 + \frac{P}{t} n \lambda_i \left[z \left(\frac{n}{2} \right)^{-1/2} + 1 \right] \right) \, dz$$

- C_{eq} has similar distribution to standard i.i.d. MIMO case

$$C_{eq} = \int \log \left(1 + \frac{P}{t} n \lambda \left[z \left(\frac{n}{2} \right)^{-1/2} + 1 \right] \right)$$

$$\cdot \sum_{j=1}^{m-k} \frac{1}{2^j j! \sqrt{2\pi}} \left[H_j \left(\frac{z}{\sqrt{2}} \right) \right]^2 e^{-z^2/2} \, dz$$

where $H_j(\cdot)$ is the j-th Hermite polynomial (Szegö, 1939).
Divide & Conquer

- C_d
 - requires special attention, use approximation of $n \to \infty$.

- C_{eq}
 - has same form as capacity for iid channel.

\[C_{n \to \infty} = C_d + C_{eq} \]

\[\sim \sum_{i=1}^{k} \log_2 \left(1 + \frac{P}{t}n\sigma_i \right) + \int \log_2 \left(1 + \frac{P}{t}n\sigma_m \right) \cdot f(\sigma_m) \]

This limit only converges for large t.

Figure 1: C_{eq} vs number of equal eigenvalues
Large n vs Large t

- $n = t \to \infty$, limit converges
 - growth is linear with respect to $m = r$
 \[
 C_{t \to \infty} \sim \sum_{i=1}^{k} \log_2 \left(1 + \frac{P}{\eta} \sigma_i \right) + (r - k) \log_2 \left(1 + \frac{P}{\eta} \sigma_r \right)
 \]
 - σ_i is the i^{th} eigenvalue of Σ
 - Define equivalence class of correlation matrices $S_m \subset \mathbb{C}^{m \times m}$, with equal trace

- **Compare $\Sigma \in S'_m$ matrices**
 - number of distinct eigenvalues k (or $\kappa = k/r$) and
 - ratio $\epsilon = \lambda_1/\lambda_m$
Capacity Surface $C_\infty(\Sigma)/r$

Capacity $C_\infty(\Sigma)/r$ for κ and ϵ
Capacity $C_\infty(\Sigma)$ for κ and r, given $\epsilon = 15$
Conclusions

- Provided analytic capacity for correlated random MIMO channel.

- Provided asymptotic simplification for large t and fixed r.
 - For full rank correlation matrices Σ_m, growth is linear
 - Σ_m gives rate of growth

- i.i.d. channel has largest rate of growth $\alpha = \log_2(1 + P)$ for increasing r.
 - Equivalent β dB power loss for LOS channel due to ratio ϵ.
References

