
Application Fault Tolerance for Shrinking Resources via the Sparse Grid
Combination Technique

Peter E. Strazdins

Research School of Computer Science
Australian National University

Canberra, Australia
Peter.Strazdins@cs.anu.edu.au

Md Mohsin Ali

Research School of Computer Science
Australian National University

Canberra, Australia
md.ali@anu.edu.au

Bert Debusschere

Combustion Research Facility
Sandia National Laboratories

Livermore, USA
bjdebus@sandia.gov

Abstract—The need to make large-scale scientific simulations
resilient to the shrinking and growing of compute resources
arises from exascale computing and adverse operating con-
ditions (fault tolerance). It can also arise from the cloud
computing context where the cost of these resources can
fluctuate.

In this paper, we describe how the Sparse Grid Combination
Technique can make such applications resilient to shrinking
compute resources. The solution of the non-trivial issues of
dealing with data redistribution and on-the-fly malleability
of process grid information and ULFM MPI communicators
are described. Results on a 2D advection solver indicate that
process recovery time is significantly reduced from the alternate
strategy where failed resources are replaced, overall execution
time is actually improved from this case and for checkpointing
and the execution error remains small, even when multiple
failures occur.

Keywords-algorithm-based fault tolerance; ULFM; process
failure recovery; PDE solvers; sparse grid combination tech-
nique; parallel computing; elasticity; cloud computing

I. INTRODUCTION

Large-scale scientific simulations typically arise from

the solution of time-dependent Partial Differential Equa-

tions (PDEs), involving the evolution over time of multi-

dimensional fields over a physical space. There is however

an increasing need to engineer the applications, driving

these simulations to be adaptable and resilient to changing

computational resources. Various scenarios motivate this:

• very large scale computing: for a system with n com-

ponents, the mean time between failures (MTBF) is

proportional to 1/n. Thus for a sufficiently large n, a
long-running application will never finish! By ‘failure’

we usually mean a transient or permanent failure of

a component (e.g. node), although it could be that

of simply a process, failing due to temporary lack of

resources.

Under adverse operating condition scenarios, the

MTBF can be much smaller, and hence this can be

an issue on even moderate scale systems.

• cloud computing: resources (e.g. compute nodes) may

have periods of scarcity / high costs. For a long-running

application, we may wish to shrink and grow the nodes

it is running on accordingly: this scenario is also known

as elasticity.
Elasticity is also desirable in the case of transient fail-

ures, where for example after reboot, a node becomes

available again within the lifetime of the application.

Traditionally, large-scale parallel applications use the

Message Passing Interface (MPI) [1], which is a widely used

standard for parallel and distributed programming of HPC

systems. However, the standard does not include methods to

deal with one or more component failures at run-time.
Recently, the MPI Forum’s Fault Tolerance Working

Group began work on designing and implementing a stan-

dard for User Level Failure Mitigation (ULFM) by in-

troducing a new set of tools to facilitate the creation of

fault-tolerant applications and libraries. This draft standard

(targeted for Open MPI 3.1) allows the application writers

to design recovery methods and control them from the user

level, rather than specifying an automatic form of fault tol-

erance managed by the operating system or communication

library [2], [3].
PDEs are normally solved on a regular grid. With uni-

form discretization across all its dimensions, the number

of grid points increases exponentially with the increase of

dimensionality. This behavior makes the high-dimensional

PDE solver computationally expensive. In order to address

this issue, high-dimensional PDEs can be solved on a grid

with substantially fewer grid points than the regular full grid.

These grids are called sparse grids [4].
A numerical method called the Sparse Grid Combination

Technique (SGCT) [5], [6] is employed to approximate the

solutions to PDEs on the sparse grid. Instead of solving

the PDEs on a full isotropic grid, it solves them on several

anisotropic grids with substantially fewer grid points, called

the sub-grids or component grids, as shown in Figure 1.

Solutions on these sub-grids are then linearly combined

to approximate the solution on the sparse grid. As well

as making high-dimensional PDEs tractable, employing the

SGCT can result in computational efficiencies even for

lower-dimensional problems [5], [6], [7], [8].

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.210

1232

= ∪ ∪

Figure 1. Sparse grid with its components.

The SGCT can also be extended to support algorithm-

based fault tolerance [9], [10], [8]. Upon detection of a fault,

the SGCT can be applied in such a way that the component

grids associated with the failed nodes are avoided. With the

development of a highly scalable SGCT algorithm [11], [12],

recent work has been done to make various applications

fault-tolerant via the SGCT using process or node recovery

via ULFM-MPI [10], [8], [13], but these all make the

assumption that there are constant resources available, i.e.

the failed nodes can be replaced by spares. However, not in

all situations is this realistic or desirable. For example, the

costs of spawning new processes may offset the benefits of

their potential extra processing power.

An alternative is to try to continue the computation with

shrinking resources, accepting there will be some degra-

dation in performance. In this paper, we extend the above

previous work by showing how SGCT-enabled fault-tolerant

PDE solvers, and the underlying SGCT infrastructure, can

be designed to continue with shrinking resources.

This paper is organized as follows. Section II gives

background information on the SGCT and its parallel im-

plementation. Design and implementation considerations are

detailed in Section III, with experiment results on fault

recovery time, overall scaling and approximation error given

in Section IV. Related work is discussed in Section V and

conclusions are given in Section VI.

II. THE SPARSE GRID COMBINATION TECHNIQUE

Consider the SGCT for the 2D case. This will involve

solving the PDE on each component sub-grid Gi, where

i = (ix, iy). Gi is assumed to have (2ix + 1) × (2iy + 1)
grid points with a grid spacing of h1 = 2−ix and h2 = 2−iy

in the x- and y-directions, respectively, where ix, iy ≥ 0. If
we consider a square domain, then the grid points of Gi are

{(x′
2ix ,

y′

2iy
)|x′ = 0, 1, · · · , 2ix , y′ = 0, 1, · · · , 2iy}.

If ui denotes the approximate solution of a PDE on Gi,

the combination solution uc
I generally takes the form

uc
I =

∑

i∈I
ciui, (1)

where ci ∈ R are the combination coefficients. For the 2D

case, good choices of the coefficients are ±1. For instance,
in the classical SGCT of the ‘level’ l, we have for the set

I = {(ix, iy)|ix, iy ≥ 0, l − 1 ≤ ix + iy ≤ l} and the

following combination formula:

uc
I =

∑

ix+iy=l

ui −
∑

ix+iy=l−1

ui (2)

Figure 2. A depiction of the 2D SGCT combination coefficients ci,j ,
where +, − and blank represent values of +1, −1 and 0, respectively.
On the left is a combination of the form (2). On the right is a modified
combination of the form (1) which avoids 3 of the solutions required in the
original combination instead making use of one smaller solution. Thus this
combination serves as an alternative when a failure affects one or more of
the 3 solutions that were avoided.

which is depicted in the left half of Figure 2.

A. Fault-tolerant SGCT

A fault-tolerant adaptation of the SGCT (FT-SGCT) has

been studied in [9]. When a process failure affects one or

more processes involved in the computation, we set ci = 0
for each ui which was not successfully computed. After

a combination, all sub-grids may be restarted from the

combined solution, including those which had previously

failed.

For the 2D fault-tolerant SGCT computations in this

paper, two extra layers (or diagonals) of sub-grid solutions ui

were computed satisfying ix+iy = l−2 and ix+iy = l−3.
These two extra layers of grids have levels l− 2 and l− 3,
respectively. During fault-free operation these extra sub-

grids are not used in the combination (Equation 2). However,

if any of the sub-grid solutions ui with ix + iy = l or

ix + iy = l − 1 do not complete due to a fault, these extra

sub-grids are used.

B. Parallel SGCT Algorithm

Referring to Equation (1), each PDE instance whose

solution is ui will be run on a distinct set of processes

denoted by Pi, arranged in a logical 2-dimensional grid.

The SGCT algorithm consists of first a gather stage, where

each process in Pi sends its portion of ui to each of the

corresponding (in terms of physical space) processes in

a logical 2-dimensional grid P c. For reasons of efficient

resource utilization, P c is made up of a (normally near-

maximal) subset of all processes in ∪i∈IPi. Each process

in P c then gathers the |I| versions of each point of the full

grid (using interpolation where necessary), and performs the

summation according to Equation (1) to get the sparse grid

solution uc
I , which can be used as an approximation to the

full grid solution. The use of interpolation in turn requires

that a ‘halo’ of neighbouring points (in the positive direction,

for our implementation) have been filled by a halo exchange

1233

operation by each process in each Pi and is also sent in the

gather stage.

In the scatter stage, each process in P c sends a down-

sample of its portion of uc
I to the corresponding process in

Pi, iteratively, for each i ∈ I .
We assume that the MPI ranks of processes increase

contiguously both within each process grid Pi and also

between each Pi, when each i ∈ I is arranged in some

canonical order.

Full details of the algorithm may be found in [11]: we

use the so-called ‘direct’ version of the algorithm, due to its

superior speed and simplicity.

III. DESIGN AND IMPLEMENTATION

Compared to the recovery from faults via replacement

processes or nodes, recovery with a shrinking number of

processes or nodes appears to be a much more difficult

problem when the fields are distributed across processes.

This is especially the case in applications made fault-tolerant

by the SGCT, because we now have multiple process grids

(Pi), and the loss of a process in a grid can affect the MPI

rank (among other things) of all process in grids ordered

afterwards. However two factors mitigate this:

1) any existing fault-tolerant application must be capable

of a restart from the middle of the computation.

Depending on how the application is engineered, it

should be possible to change parameters affected by

shrinkage, i.e. local field sizes and process grid pa-

rameters, at this point.

2) the FT-SGCT provides an effectively cost and effort-

free method for the required data redistribution.

In this section, Section III-A describes issues with shrink-

age within the SGCT. Section III-B describes how process

failure detection and recovery for shrinkage is performed

within ULFM MPI. The support for the parallel SGCT

algorithm for shrinkage, mainly an enhanced data structure

for representing process grids (Pi), and how they may be

shrunk, is described in Section III-C. Finally how the PDE

solver itself has to be adapted for fault tolerant shrinkage is

described in Section III-D.

A. Shrinking Based Recovery

In this technique, fault tolerance is achieved without

spawning the replacement processes. After detecting the

process or node failures, the faulty communicator is shrunk,

containing only the alive processes to complete the rest of

the computation. With an SGCT-based application, this is

achieved by shrinking the process grid and updating the data

structures of the sub-grids that are experiencing failures.

The sub-grids whose processes are not lost continue their

operations without disruption. However, after shrinking the

communicator, a mapping of processes is required to access

the appropriate data owned by each sub-grid.

An example of the overall approach is shown in Figure 3.

The process grid for each sub-grid without any failures is

shown in Figure 3a. Suppose, processes 8 and 38 fail. After

this failure, the communicator is shrunk excluding processes

8 and 38. The process grids of sub-grids containing pro-

cesses 8 and 38 are shrunk as shown in Figure 3b. The data

structures of each process of these process grids are updated

to adjust the whole range of grid points of the corresponding

sub-grids. The remaining processes of the other sub-grids do

not need to update their data structures. But a mapping of

processes is required to point to the appropriate sub-grid

data. As for example in Figure 3b, processes 38 to 41 of the

shrunken communicator play the role of processes 40 to 43

of the un-shrunken communicator. Otherwise, a disruption in

communication and/or unexpected data transfer will happen.

The process grid for each sub-grid after shrinking the faulty

communicator is shown in Figure 3c.

Comparing Figures 3a and 2 indicates the ordering we

use to delineate the process grid index space I .

B. Communicator Recovery via ULFM MPI

The recovery method for process shrinkage is similar to

that for process replacement, as is described in more detail

in [10].

Firstly, an ULFM MPI error handler must be created and

set as described in [10], in such a way that the address of

MPI_Comm ftComm, initialized to the SGCT application’s

communicator world, is passed to the handler.

Each time before we invoke the parallel SGCT algorithm,

we call MPI_Barrier(ftComm) to detect any failure.

If a failure is detected, we revoke the

communicator via OMPI_Comm_revoke(&ftComm)
and create a shrunken communicator via

OMPI_Comm_shrink(ftComm, &shrunkComm).
Then we synchronize the system via

OMPI_Comm_agree(ftComm=shrunkComm, ...).
Finally, we reset any local variables holding the MPI

rank via MPI_Comm_rank(ftComm, myrank)
and the number of MPI processes via

MPI_Comm_size(ftComm, nprocs).

C. SGCT Algorithm Support

For a (2D) SGCT-enabled application, the computation

of solutions on different sub-grids is embarrassingly parallel

and each sub-grid is assigned to a different (2D) process

grid. Each sub-grid then uses a domain decomposition

according to the process grid. The solutions are combined in

parallel using a gather-scatter approach. This is all handled

by setting up process grids with corresponding process maps

which indicate the MPI ranks associated with each logical

process in the grid. This section details the data structure

for these process grids and how it supports shrinkage.

The data structure contains the fields:

• np, the total number of processes available.

1234

�����

����� �����

����	 ����
 ����

�� ����� ����� ��	

(a) process grids before shrinking the
communicator

� � � � � � 	

� � � � � � 	

� � �� �� �� �� �� ��

 � � �� �� �� �� ��

�	 �
 �� �� �� �� �� ��

�� �	 �
 �� �� �� �� ��

�� �� �	 �
 �� �� �� ��

�� �� �� �	 �
 �� �� ��

�� �� �� �� �	 �
 �� ��

�� �� �� �� �� �	 �

�� �� �� �� �� �� �	 �
 ��

�� �� �� �� �� �� �� �� �	

(b) detailed process grid shrinking and process mapping

�����

����� �����

����� ����� ����

�	 ����� ����� ���

(c) process grids after shrinking the
communicator

Figure 3. Process grid configurations of different sub-grids of the FT-SGCT based 2D applications with level l = 4 when the faulty communicator is
shrunk as a recovery action. Numbers with white and gray background cells represent the MPI processes before and after shrinking the communicator,
respectively. The mark ‘X’ represents the failure of an MPI process.

• r0, the lowest MPI rank of the processes associated

with the grid. It is assumed that the MPI rank r for

each process in the group satisfies r0 ≤ r < r0 + np.

• P = (Px, Py), the 2D logical process grid shape. The

logical process id p = (px, py) satisfies (0, 0) ≤ p < P
and has rank given by r0 = pyPx+px. Initially (before

failures) we will also have pxpy = np; afterwards, we

may have pxpy ≤ np. Note that the np − pxpy spare

processes can be used to offset future process failures

in this process grid.

Given f < np process failures in P , assuming Px ≥ Py ,

we resize the process grid to P ← (Px − �f/Py�, Py) and

set np ← np − f . Finally, we set r0 ← r0 − fl, where fl is
the number of failures in lower-ordered process grids. This

is illustrated in Figure 3.

It can be observed that under true process shrinkage

under ULFM, the process grid data structure (and any local

variables and arrays depending on them) needs only to be

changed if f > 0.

We also have implemented a testing mode running under

normal MPI where we simulate failures and we shift MPI

ranks across process grids in the same way as illustrated

in Figure 3. In the example of Figure 3, with a total of

2 failures, the last 2 MPI ranks (47 and 48) no longer

participate in the computation and we have to change process

grids and any dependent local variables and data structure

for any process of lower rank. In this case, the shrinkage of

the process grids also must occur between the gather and

scatter stages of the parallel SGCT algorithm.

D. Modifications to the PDE Solver

To make an application fault-tolerant under the regime

of process replacement, the replaced processes need to be

started from an arbitrary point (e.g. checkpoint). This in

turn requires two different paths for initialization. To accom-

modate this, the initialization of all process grid dependent

variables and arrays are put into a single function. For the

regime of process shrinkage, this is also required.

Before calling the parallel SGCT, the program must check

for failures, and then determine a list of the ranks of all

failed processes (see [10] for details on how to determine

this under ULFM MPI). The program must iterate though its

array of process grid data structures Pi, for each i ∈ I , and
shrink them, as described in Section III-C. The combined

grid process grid P c must similarly be shrunk.

If the current process is part of a process grid Pi which

had a failure, the solution field ui will need to be re-sized.

In this case, the respective sub-grid for the field will be

assigned a zero combination coefficient in the SGCT and this

process plays no part in the gather stage. It does however

1235

participate in the scatter stage, and the process receives its

re-sized local solution field automatically. In this way, the

SGCT effectively forms a re-distribution at zero cost.

IV. EXPERIMENTAL RESULTS

We use a parallel solver for the scalar advection equation

in two spatial dimensions. The problem is solved on regular

grids using a McCormack scheme [14]. An exact analytical

solution can be computed to determine the accuracy of the

solver.

For the SGCT version of the solver, the computation of

solutions on different sub-grids is embarrassingly parallel

and each sub-grid is assigned to a different process grid.

The number of unknowns (grid size) on the lower diagonal

sub-grids (see Figure 2) is half that of the other. As we use

a fixed simulation timestep (Δt) across all grids for stability
purposes, our load balancing strategy is to use half of the

number of processes on these grids than on the others.

All experiments were conducted on the Raijin clus-

ter managed by the National Computational Infrastructure

(NCI) with the support of the Australian Government. Raijin

has a total of 57,472 cores distributed across 3,592 compute

nodes each consisting of dual 8-core Intel Xeon (Sandy

Bridge 2.6 GHz) processors (i.e., 16 cores) with Infiniband

FDR interconnect, a total of 160 terabytes (approximately)

of main memory, with an x86_64 GNU/Linux OS. It has

≈ 10 petabytes of usable LUSTRE filesystem, which has

been shown to have very low write latency [10].

We used git revision icldistcomp-ulfm-46b781a8f170 of

ULFM MPI under the development branch 1.7ft of Open

MPI for our experiments. The parameters for the col-

lective communications for mpirun were set to coll
tuned,ftbasic,basic,self. We set the MCA pa-

rameter coll_ftbasic_method=1 of ULFM MPI to

choose the ‘Two-Phase Commit’ as an agreement algorithm

for failure recovery. The ‘Log Two-Phase Commit’ option

was more scalable than the former, but could not be used

in our experiments due to its instability. All the source

code (including ULFM MPI) was compiled with GNU-

4.6.4 compilers using the flag -O3. Process failure was

implemented by sending a kill signal to the required

number of (randomly selected) processes.

Figure 4 compares the measured recovery overheads of

the process replacement vs the process shrinkage regimes for

fault recovery. We see an order of magnitude improvement

for shrinkage. The plots scale roughly linearly with the

number of cores, indicating the degree of scalability of the

current ULFM MPI distributed agreement algorithm. We

found that varying the number of failures had little effect

on the recovery time.

The overall scalability of the two regimes, plus a

checkpoint-restart version of our parallel advection SGCT

solver (CR-SGCT) is shown in Figure 5. Details of the

disk-based checkpoint-restart method are given in [10]: the

49 19
6

78
4

31
36

10−2

10−1

100

101

number of cores

w
al
l
ti
m
e
(s
ec
)

spawned recovery shrunken recovery

Figure 4. Comparison of communicator recovery overheads of the FT-
SGCT based 2D general advection solver with a single combination, level
l = 4, and full grid size (213+1)×(213+1). The overhead for ‘spawned
recovery’ includes detection and identification of process failures, shrinking
the broken communication, and spawning the replacement processes. But
for ‘shrunken recovery’, no spawning of replacement processes is needed.
Two randomly selected MPI processes are killed to simulate the process
failure.

101 102 103
100

101

102

103

number of cores

w
al
l
ti
m
e
(s
ec
)

CR-SGCT: checkpointing based recovery

FT-SGCT: spawning based recovery

FT-SGCT: shrinking based recovery

Figure 5. Overall parallel performance of the CR-SGCT and FT-SGCT
based 2D general advection solver with a single combination, level l = 4,
and full grid size (213 + 1) × (213 + 1). The execution time in each
plot includes faulty communicator reconstruction time by spawning the
replacement MPI processes or shrinking the communicator, data recovery
time, and application running time. The results shown are an average of
five experiments, with each time two randomly selected processes failing.

1236

0 1 2 3 4 5 6
10−7

10−6

10−5

number of processes failed

re
la
ti
v
e
l 1

er
ro
r

1st run 2nd run 3rd run 4th run

5th run average

Figure 6. Approximation error of the FT-SGCT based 2D general
advection solver with a single combination, level l = 4, and full grid
size (213 + 1)× (213 + 1). Randomly selected MPI processes are killed
to simulate process failure, out of an initial set of 49. After the failure, the
rest of the computations and communications are performed with either
the non-shrunken or shrunken communicator. The baseline error rate (no
failures) is 4.45E-07.

actual runtime is augmented with the expected number of

checkpoints writes with an optimal checkpointing interval.

Two randomly selected process failures were used: this is

sufficient to reveal interesting recovery behavior. Despite

the loss of compute resources, the shrinkage regime is the

fastest, and especially for ≈ 3000 cores, where the ULFM

agreement algorithm impacts on application performance

(c.f. Figure 4). It is also faster than the checkpoint-restart

regime, by a factor of approximately 2.

Upon process failure in the SGCT, the respective solution

field component grids, Gi, are discarded. This results in a

loss of accuracy. Figure 6 indicates the 1-norm of the error

under the SGCT as a function of the number of processes

failed. Note that both the replacement and shrinkage regimes

perform identically in this respect. The impact of the number

of failures depends on which Gi are affected, and how many

of them. The figure indicates instances of negligible impact

(lower points) and a noticeable (but arguably tolerable)

impact for more than 2 faults (by a factor of ≈ 5).

V. RELATED WORK

A technique for replacing only a single failed process

on the communicator and matrix data repair for a QR-

Factorization problem is proposed in [15]. Process failure

is handled by the ULFM standard, and data repair is ac-

complished by using a reduction operation on a checksum

and remaining data values. The technique was not applied

to a varying number of processes on other realistic parallel

applications.

Algorithm-based fault tolerance techniques for creating

robust PDE solvers based on the modified sparse grid com-

bination technique are proposed in [16], [9]. These works

however were implemented using simulated, rather than

genuine, process failures. They also assumed the process

replacement regime for fault recovery.

Fault-tolerant SGCT-based applications have been devel-

oped for the case of an advection solver [10], GENE [8],

[13] and Taxilla LBM and SFI [13]. These also assumed

the process replacement regime for fault recovery.

A fault-tolerant implementation of a multi-level Monte

Carlo simulation that avoids checkpointing or recomputation

of samples was proposed in [17]. It used the ULFM standard

to recover the communicator by sacrificing its original size

and employing a periodic reduction strategy with all the

unaffected samples to generate final result. However, this

work did not have to deal with resizing of local fields as

does our work.

VI. CONCLUSIONS

We have demonstrated, via a parallel advection solver, that

applications can be made fault tolerant via the SGCT under

a regime of shrinking compute resources. The fault recovery

under ULFM MPI is relatively simple and reliable. Process

grid data structure shrinkage was the main addition needed in

the parallel SGCT algorithm, and only modest modifications

on an existing fault tolerant application was required. The

SGCT simply and elegantly avoids the problem of redistri-

bution, which is normally an issue when compute resources

are shrunk.

Unsurprisingly, the recovery overhead for the shrinking

regime was an order of magnitude less than for the estab-

lished replacement regime, due to the fact that spawning

new processes takes considerable overhead. Surprisingly,

with a small number of failures, the shrinking regime led

to better application performance, especially for high core

counts. In all cases, it clearly out-performed checkpoint-

restart based recovery. Depending on which component grids

were excluded due to process failure, the loss of accuracy in

the advection solver was either negligible, or within a factor

of 5, even when 10% of the processes failed.

Note that the current (stable) ULFM MPI distributed

agreement algorithm is still inefficient due to the recentness

of this technology, and we expect the performance of our

method relative to checkpointing will improve.

Future work includes extending our work to allow also for

the growing of compute resources and thus achieve elasticity.

It also includes extending our work to real applications,

such as GENE, Taxilla LBM and SFI [13]. While there is

no in-principle reason why this cannot be done, all these

applications are very large (≈ 10–100 KLOC), and any local

or global variable dependent on changes in the (equivalent of

1237

the) process grid data structure must be located and changed

upon shrinkage or expansion.

VII. ACKNOWLEDGMENTS

This research was supported under the Australian Re-

search Council’s Linkage Projects funding scheme (project

number LP110200410). We thank the NCI National Facility

for the use of the Raijin cluster. Sandia National Laboratories

is a multi-program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lock-

heed Martin Corporation. We acknowledge support by the

U.S. Department of Energy, Office of Science, Office of

Advanced Scientific Computing under Award Number 13-

016717.

REFERENCES

[1] Message Passing Interface Forum, “MPI: A message passing
interface,” in Proceedings of Supercomputing. IEEE Com-
puter Society Press, November 1993, pp. 878–883.

[2] Fault Tolerance Working Group, “Run-through stabiliza-
tion interfaces and semantics,” svn.mpi-forum.org/trac/
mpi-forum-web/wiki/ft/run_through_stabilization.

[3] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and
J. J. Dongarra, “An evaluation of user-level failure mitigation
support in MPI,” in Recent Advances in the Message Passing
Interface, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2012, vol. 7490, pp. 193–203.

[4] H.-J. Bungartz and M. Griebel, “Sparse grids,” Acta Numer-
ica, vol. 13, pp. 147–269, 2004.

[5] M. Griebel, “The combination technique for the sparse grid
solution of PDE’s on multiprocessor machines,” in Proceed-
ings of Parallel Processing Letters, 1992, pp. 61–70.

[6] M. Griebel, M. Schneider, and C. Zenger, “A combination
technique for the solution of sparse grid problems,” in Pro-
ceedings of Iterative Methods in Linear Algebra, P. de Groen
and R. Beauwens, Eds. IMACS, Elsevier, North Holland,
1992, pp. 263–281.

[7] C. Kowitz, D. Pflüger, F. Jenko, and M. Hegland, “The
combination technique for the initial value problem in linear
gyrokinetics,” in Proceedings of Sparse Grids and Appli-
cations, ser. Lecture Notes in Computational Science and
Engineering, vol. 88. Heidelberg: Springer, October 2012,
pp. 205–222.

[8] M. M. Ali, P. E. Strazdins, B. Harding, M. Hegland, and
J. W. Larson, “A fault-tolerant gyrokinetic plasma application
using the sparse grid combination technique,” in Proceedings
of the 2015 International Conference on High Performance
Computing & Simulation (HPCS 2015), Amsterdam, The
Netherlands, July 2015, pp. 499–507.

[9] B. Harding and M. Hegland, “A parallel fault tolerant
combination technique,” in Proceedings of the International
Conference on Parallel Computing, (ParCo 2013), Garching,
Germany, 2013, pp. 584–592.

[10] M. M. Ali, J. Southern, P. E. Strazdins, and B. Harding,
“Application level fault recovery: Using fault-tolerant Open
MPI in a PDE solver,” in Proceedings of the IEEE 28th
International Parallel & Distributed Processing Symposium
Workshops (IPDPSW 2014), Phoenix, USA, May 2014, pp.
1169–1178.

[11] P. E. Strazdins, M. M. Ali, and B. Harding, “Highly scalable
algoritihms for the sparse grid combination technique,” in
Proceedings of the IEEE 29th International Parallel & Dis-
tributed Processing Symposium Workshops (IPDPSW 2015),
Hyderabad, India, May 2015, pp. 941–950.

[12] P. E. Strazdins, M. M. Ali, and B. Harding, “Design and
analysis of two highly scalable sparse grid combination
algorithms,” Journal of Computational Science (JCS 2016),
17 pages, http://hdl.handle.net/1885/95531, (Under Review).

[13] M. M. Ali, P. E. Strazdins, B. Harding, and M. Heg-
land, “Complex scientific applications made fault-tolerant
with the sparse grid combination technique,” International
Journal of High Performance Computing Applications (IJH-
PCA 2016), 2016, http://hpc.sagepub.com/content/early/2016/
02/10/1094342015628056 (Published Online).

[14] P. Lax and B. Wendroff, “Systems of conservation laws,”
Communications on Pure and Applied Mathematics, vol. 13,
no. 2, pp. 217–237, 1960.

[15] W. B. Bland, “Toward message passing failure management,”
Ph.D. dissertation, University of Tennessee, 2013.

[16] J. W. Larson, M. Hegland, B. Harding, S. G. Roberts,
L. Stals, A. P. Rendell, P. E. Strazdins, M. M. Ali, C. Kowitz,
R. Nobes, J. Southern, N. Wilson, M. Li, and Y. Oishi, “Fault-
tolerant grid-based solvers: Combining concepts from sparse
grids and mapreduce,” Procedia Computer Science, vol. 18,
no. 0, pp. 130–139, 2013, 2013 International Conference on
Computational Science (ICCS 2013).

[17] S. Pauli, M. Kohler, and P. Arbenz, “A fault tolerant imple-
mentation of multi-level Monte Carlo methods,” in Proceed-
ings of the International Conference on Parallel Computing,
(ParCo 2013), Garching, Germany, 2013, pp. 471–480.

1238

