Defining types with binders in HOL

Michael Norrish
Michael.Norrish@nicta.com.au

National ICT Australia

24 April 2005
Defining types with binders in HOL

Outline

Introduction
- Type definition, traditionally
- Dealing with α-equivalence
- Summary

Model Choices
- Untyped λ-calculus model
- Weak HOAS type as model
- Quotient of algebraic type as model

Conclusions
Defining types with binders in HOL

Introduction

- When proving Fermat’s Last Theorem, HOL provides the type of natural numbers (\mathbb{N}).
- When verifying a hardware design, the (new) type for the system state-space needs to be specified (tuple of registers, memory . . .).

Theorem-proving, redux

1. Find your type:
 - When proving Fermat’s Last Theorem, HOL provides the type of natural numbers (\mathbb{N}).
 - When verifying a hardware design, the (new) type for the system state-space needs to be specified (tuple of registers, memory . . .).
Theorem-proving, redux

1. Find your type:
 - When proving Fermat’s Last Theorem, HOL provides the type of natural numbers \((\mathbb{N})\)
 - When verifying a hardware design, the (new) type for the system state-space needs to be specified (tuple of registers, memory . . .)

2. Define functions over the type:
 - Define \texttt{gcd} over \(\mathbb{N}^2\)
 - Define a transition relation over the hardware state-space
Theorem-proving, redux

1. Find your type:
 - When proving Fermat’s Last Theorem, HOL provides the type of natural numbers (\mathbb{N})
 - When verifying a hardware design, the (new) type for the system state-space needs to be specified (tuple of registers, memory . . .)

2. Define functions over the type:
 - Define \texttt{gcd} over \mathbb{N}^2
 - Define a transition relation over the hardware state-space

3. Prove theorems!
 - . . .
 - Prove safety, liveness . . .
Theorem-proving, redux

1. Find your type:
 ▶ When proving Fermat’s Last Theorem, HOL provides the type of natural numbers (\mathbb{N})
 ▶ When verifying a hardware design, the (new) type for the system state-space needs to be specified (tuple of registers, memory . . .)

2. Define functions over the type:
 ▶ Define gcd over \mathbb{N}^2
 ▶ Define a transition relation over the hardware state-space

3. Prove theorems!
 ▶ . . .
 ▶ Prove safety, liveness . . .

This talk is about step 1: type definition, for types with binders.
Inductive Types

- User specifies the desired type by giving some sort of algebraic signature.
- For example, lists:

\[
\alpha \text{ list} = \text{nil} \mid \text{cons}(\alpha, \alpha \text{ list})
\]

- For example, trees:

\[
\alpha \text{ tree} = \text{Lf} \mid \text{Node}(\alpha, \alpha \text{ tree}, \alpha \text{ tree})
\]

- System responds by defining the type, with new constants corresponding to the desired “constructors”, and a recursion theorem.
Recursion Theorems

For lists:

\[\vdash \forall n \ c. \ \exists h. \]
\[h \ [] = n \ \land \]
\[\forall e \ t. \ h \ (e :: t) = c \ (h \ t) \ e \ t \]

- \(n \) is the value when the function \((h) \) is applied to an empty list
- \(c \) is the value when the function is applied to a “cons”. \(c \) can compute its answer with reference to
 - the head element of the list \((e) \)
 - the rest of the list \((t) \)
 - the result of the recursive call of \(h \) applied to \(t \)
Recursion Theorems, Generally

The basic desirable form for a recursion theorem is

\[\vdash \forall \ldots f_i \ldots \exists h. \]
\[\ldots \land \]
\[\forall \ldots x_j \ldots r_k. \]
\[h \left(C_i(\ldots x_j, \ldots r_k)\right) = f_i \left(h \; r_k\right) \ldots x_j \ldots r_k \land \]
\[\ldots \]

Where

- \(x_j \) is a non-recursive parameter to constructor \(C_i \)
- \(r_k \) is a recursive parameter to the same constructor
- \(f_i \) gets access to \(x_j, r_k, \) and the result of recursive call \((h \; r_k) \)
Specifying Types with Binders

Assume from the outset that we are working with quotients of algebraic types (rather than co-algebraic ones).

Need to be able to specify

- which constructors are binders
- the unit of binding
- which units are bound by which constructors

Good notation for many variations still to be devised.
Example Types

Untyped λ-calculus: Constructed by LAM, VAR, APP. LAM is a binder over its first argument (a string). Arguments to VAR are potentially bound.

\[(\lambda x. x y) \equiv_{\alpha} (\lambda z. z y)\]

Typed λ-calculus à la HOL: Constructed by LAM, VAR, APP, CON. LAM is a binder over string-type pairs. Arguments to VAR are potentially bound.

\[\left(\lambda(x : \alpha). (x : \alpha \rightarrow \alpha)(x : \alpha)\right) \equiv_{\alpha} \left(\lambda(y : \alpha). (x : \alpha \rightarrow \alpha)(y : \alpha)\right)\]

Note: though the names (x and y) are allowed to vary, and the type (\(\alpha\)) is not, the type still helps determine what is bound.
More Examples

Barendregt’s Λ^\prime (weighted vars): Constructed by LAM, LAM$_n$, APP, VAR. LAM and LAM$_n$ are binders over strings. String arguments to VAR are potentially bound, weight arguments are not.

$$\textstyle (\lambda_3x. \ x^4 \ y^1) \ z^5 \equiv_\alpha (\lambda_3z. \ z^4 \ y^1) \ z^5 \quad (\rightarrow_\beta \ z^5 \ y^1)$$

System F: Two types (one of types, one of terms). Types constructed by \forall, tyVAR, \rightarrow. \forall binds strings under tyVAR. Terms constructed by LAM, APP, tyAPP, VAR and Λ. LAM binds over strings under VAR, Λ binds over strings under tyVAR (under VAR).

$$\textstyle (\Lambda\alpha. \ \lambda x : (\forall \beta. \ \alpha \rightarrow \beta). \ x) \ \equiv_\alpha (\Lambda\beta. \ \lambda y : (\forall \gamma. \ \beta \rightarrow \gamma). \ y)$$
Recursion Theorems for Types with Binders

- Recursion theorems in a ‘natural’ style are possible for types with binders
- 'Natural' means that the recursion theorems
 - look like theorems for normal algebraic types,
 - allow functions to refer to bound variable names
 - automatically include necessary side conditions on name-avoidance:

\[
\forall v \neq x \land v \notin FV(M) \Rightarrow (\text{LAM } v \ M)[x \mapsto N] = \text{LAM } v \ (M[x \mapsto N])
\]

- I proved the recursion theorem for untyped λ-calculus by hand—we need an automatic tool
The Type Definition Problem Once More

Given: a specification of type(s) with binders (in a notation yet to be devised)

Prove: (1) the type exists, defining constructors etc.

Prove: (2) the type’s recursion theorem

(Have this for the untyped λ-calculus.)
Probable Shape of Destination

I expect to define first order types:

- total constructors
- no exotic terms
- classical, simply-typed, higher-order logic setting

This choice looks promising because of work done so far:

- Mechanised proofs
- A function definition principle for untyped λ-calculus
Proving Types Exist in HOL

Rule of type definition (introducing the type τ to name the set P):

\[\vdash \exists \, \exists \, x : \sigma. \, P \, x \]

\[\vdash \exists f : \tau \to \sigma. \]

\[\forall a_1 \, a_2. \, (f \, a_1 = f \, a_2) \Rightarrow (a_1 = a_2) \land \]

\[\forall r. \, P \, r = (\exists a. \, r = f \, a) \]

\[\vdash \exists f : \tau \to \sigma. \]

\[\forall a_1 \, a_2. \, (f \, a_1 = f \, a_2) \Rightarrow (a_1 = a_2) \land \]

\[\forall r. \, P \, r = (\exists a. \, r = f \, a) \]
After Type Existence Comes Recursion Theorem

It is not enough to prove the existence of the new type.

A type is crippled for logical reasoning if it doesn’t have a recursion theorem. (Having to define functions as relations is not an answer.)

We know what the recursion theorems for types with binders should look like.

The question is: which model makes it easiest to get that recursion theorem out?
Possible Models for Types with Binders

Four possibilities (in order of declining appeal):

- The existing untyped λ-calculus type
- A quotient over the corresponding algebraic type
- A subset of a weak HOAS type
- A type using de Bruijn indices

The de Bruijn solution lies behind the construction (by Gordon & Melham) of the existing untyped λ-calculus type.

(It’s sufficiently scary that I won’t explore it further.)
The Untyped λ-calculus Model

Track record:
- Used it as the basis for the definition of
 - Barendregt’s Λ' type
 - the type of $F_<$ types (for PoplMark)
- But didn’t prove recursion theorems for either type

Advantage:
- Model type + recursion theorem exist already
- Similar to (efficient) HOL type definition technology

Disadvantage:
- May not have enough flexibility to allow varying binding flavours
The Polymorphic CON Constructor

- The untyped λ-calculus type includes a CON constructor.
- Thus, term is actually \((\alpha)\text{term}\), with CON : \(\alpha \rightarrow \alpha \text{ term}\)
- The polymorphism makes it easy to model new types that refer to other, existing types (numbers, strings &c)
Defining Λ'—1

\[
\Lambda' ::= \begin{array}{l}
\nu \quad \text{(variable)} \\
| \quad \Lambda' \ \Lambda' \quad \text{(application)} \\
| \quad (\lambda \nu. \ \Lambda') \quad \text{(abstraction)} \\
| \quad (\lambda_n \ \nu. \ \Lambda') \ \Lambda' \quad \text{(labelled redex)}
\end{array}
\]

- this is a simple type that is very close to the model
- there are four constructors, two of which are binders.
- the labelled redex form calls for a constructor of four arguments: label ($\in \mathbb{N}$), bound variable, body of abstraction, right hand argument to redex
Defining Λ'—2

Inductively specify subset of Λ:

\[
\begin{array}{c}
\text{ok}(\nu) \quad \text{ok}(M) \quad \text{ok}(N) \\
\text{ok}(M) \quad \text{ok}(\lambda \nu. M) \\
\text{ok}(\lambda \nu. M) \quad \text{ok}((\text{CON}(n)) (\lambda \nu. M) N)
\end{array}
\]

Use type definition principle to create copy of this subset as new type, Λ', with f injective from Λ' to Λ.

Define constructors. For example,

\[
\text{APP}_{\Lambda'} M N = f^{-1}((f(M)) (f(N)))
\]

\[
\text{LAMn } n \nu M N = f^{-1}(((\text{CON}(n)) (\lambda \nu. f(M)) (f(N)))
\]
Functions Over Λ'?

- Substitution in Λ' corresponds to substitution in the representation
- Term size in Λ' plausibly corresponds to term size in the representation
- I defined the φ function (reduces all labelled redexes) by well-founded recursion (ugh!)

I think it should be possible to define a generic recursion theorem, but it would be hard....
A better way?

Recall

\[\text{LAM}_n \ n \ v \ M \ N = f^{-1}((\text{CON}(n)) (\lambda v. f(M)) (f(N))) \]

In \(\Lambda' \), one constructor, \(\text{LAM}_n \) is represented by four constructors in \(\Lambda \) (two applications, one \text{CON} and one abstraction).

A straightforward recursion in \(\Lambda' \) would have to be modelled by a very convoluted recursion in \(\Lambda \).

But if the underlying type (\(\alpha \text{ term} \)) had one constructor:

\[C : \alpha \times \text{string}^* \times (\text{string} \times \alpha \text{ term})^* \times (\alpha \text{ term})^* \rightarrow \alpha \text{ term} \]

all of \(\Lambda' \)'s constructors could be modelled by \(C \).
More on the Super-Constructor, C

$$C : \alpha \times \text{string}^* \times (\text{string} \times \alpha \text{term})^* \times (\alpha \text{term})^* \rightarrow \alpha \text{term}$$

For Λ', use $\alpha = 1 + \mathbb{N}$, and

- $f(\text{VAR}_{\Lambda'} \ s) = C(\text{inl}(\langle \rangle), [s], \epsilon, \epsilon)$
- $f(\text{APP}_{\Lambda'} \ M \ N) = C(\text{inl}(\langle \rangle), \epsilon, \epsilon, [f(M), f(N)])$
- $f(\text{LAM}_{\Lambda'} \ v \ M) = C(\text{inl}(\langle \rangle), \epsilon, [(v, f(M))], \epsilon)$
- $f(\text{LAMn} \ n \ v \ M \ N) = C(\text{inr}(n), \epsilon, [(v, f(M))], [f(N)])$

with $f : \Lambda' \rightarrow \Lambda$

- Recursion theorem should drop out much more readily.
- Allows any finitely branching structure.
- Enforces strings (and only strings) as bound objects.
Untyped λ-calculus Model—Summary

- Use existing type with binders (probably type with “super-combinator”)
- Encode new type as inductive subset of existing type (easy)
- Lift recursion theorem (easy; see existing HOL datatype package)
- Super-combinator type and recursion theorem still have to be established manually
The Weak HOAS type as model

Track record:

- None: (stupid) implementation reasons make it a pain to do in HOL

Advantage:

- Can use existing proof to generate recursion theorem
- Should allow variation in binding structure

Disadvantage:

- Requires definition of some supporting constants (including substitution) over the HOAS type
Using (Weak) Higher-Order Abstract Syntax

- Pretend we are defining Λ for the first time
- The following are constructors for a reasonable algebraic type

 \[
 \begin{align*}
 \text{VAR} : & \text{ string } \rightarrow \alpha \text{ term} \\
 \text{APP} : & \alpha \text{ term } \rightarrow \alpha \text{ term } \rightarrow \alpha \text{ term} \\
 \text{LAM'} : & (\text{string } \rightarrow \alpha \text{ term}) \rightarrow \alpha \text{ term}
 \end{align*}
 \]

- It’s not great as a model for Λ because of the exotic terms possible in LAM’’s function space.
- But the exotic terms can be avoided by restricting the functions allowed:

 \[
 \text{ok}(f) \equiv \exists v. \ t = (\lambda u. \ t[v \mapsto u])
 \]

 (ignoring the fact that we don’t necessarily know how to define substitution on this type properly)
The Recursion Theorem for the HOAS Model

The abstraction clause of the recursion theorem for the HOAS type will look like:

\[h(LAM' f) = lam(\lambda s. h(f(s))) \]

for some \(lam : \text{string} \to \alpha \to \alpha \).

If \(f \) has been restricted to avoid exoticness, then it will be of the form \(\lambda u. t[u \mapsto v] \), and the above becomes

\[h(LAM' f) = lam(\lambda s. h(t[v \mapsto s])) \]

with \(LAM' f \) the “same as” \(LAM \, v \, t \), the above is exactly the \(LAM \)-clause from the Gordon-Melham recursion theorem.
The GM Recursion Theorem

- The GM recursion theorem has this awkward
 \[h \ (\text{LAM} \ v \ t) = \text{lam} \ (\lambda s. h \ (t[v \mapsto s])) \]
 clause

- But this clause can be turned into the much more reasonable
 \[h \ (\text{LAM} \ v \ t) = \text{lam} \ v \ (h \ t) \]
 if you pick up side-conditions on lam (is a finitely-supported function &c)

- This proof could be replayed for each new type.
Weak HOAS Type as Model—Summary

- Define the new type in "HOAS" style (easy, in Isabelle)
- Carve out non-exotic subset, lose higher-order nature
 - Use \(\text{LAM} \nu \ t = \text{LAM}' (\lambda s. t[\nu \mapsto s]) \)
 - Assume we have substitution already defined on HOAS type
- Gain Gordon-Melham style recursion theorem (easy)
- Transform this into nice version, replaying TPHOLs'04 proof (easyish)
- Done!
Quotienting

Track Record:
- People have done this by hand a number of times
 - Peter Homeier has done it all (recursion theorem included) in HOL

Advantage:
- Conceptually simple, allows variation in binding structure

Disadvantage
- Quotienting and associated proof may make this inefficient
Using Quotienting to Define a New Type

- Again, pretend we are defining Λ for the first time
- Define obvious algebraic type:

 \[
 \begin{align*}
 \text{VAR} & : \text{string} \to \alpha \text{ term} \\
 \text{APP} & : \alpha \text{ term} \to \alpha \text{ term} \to \alpha \text{ term} \\
 \text{LAM} & : \text{string} \to \alpha \text{ term} \to \alpha \text{ term}
 \end{align*}
 \]

- Define \(\alpha\)-equivalence, free variables, name permutation
- Take quotient
- Prove recursion theorem for quotient
 - (This is the hard bit)
Defining types with binders in HOL

Model Choices

Quotient of algebraic type as model

Defining Algebraic Level Functions

- Quotient will be with respect to notion of α-equivalence
- So, must define α-equivalence on algebraic terms
- Recursion theorem proof also requires name permutation on algebraic terms:

\[
(x\, y) \cdot (\text{VAR } s) = \text{VAR} (\text{swapstr } x\, y\, s) \\
(x\, y) \cdot (\text{APP } M\, N) = \text{APP} ((x\, y)\cdot M) ((x\, y)\cdot N) \\
(x\, y) \cdot (\text{LAM } v\, M) = \text{LAM} (\text{swapstr } x\, y\, v) ((x\, y)\cdot M)
\]

- Free variables is also primitive recursive
Defining α-equivalence

Given notion of permutation and swapping, use following inductive relation:

- $\text{VAR}(s) \equiv_\alpha \text{VAR}(s)$
- $\text{APP} M_1 N_1 \equiv_\alpha \text{APP} M_2 N_2$
- $M \equiv_\alpha M' \Rightarrow \text{LAM } v M \equiv_\alpha \text{LAM } v M'$
- $u \neq v \land u \not\in \text{fv}(N) \Rightarrow M \equiv_\alpha (u \, v) \cdot N$
- $M \equiv_\alpha (u \, v) \cdot N \Rightarrow \text{LAM } u M \equiv_\alpha \text{LAM } v N$
Proving Recursion Theorem from Scratch

- Andy Pitts has shown me how to do this (now partially mechanised)
- Result is a recursion theorem that is “natural” (looks similar to earlier TPHOLs version)

Proof:
- Use recursion theorem of underlying algebraic type to define a new function at that level (magic here)
- Show that this function “respects” α-equivalence, that $(t_1 \equiv_\alpha t_2) \Rightarrow f(t_1) = f(t_2)$
- Lift to quotiented level
- Generic proof gives rise to recursion theorem
Lots of Nominal Theory Required

- This approach requires a great deal of supporting nominal theory (notions of permutation, support &c).
- In pure, simply-typed HOL, these notions become excessively parameterised:
 - For example, permutation on function spaces requires explicit reference to permutation actions on domain and range:
 \[
 \text{fnpm } d \ r \ \pi \ f = \lambda x. \ r \ \pi (f (d \ \pi^{-1} \ x))
 \]
- Isabelle-style overloaded constants (and axiomatic type classes) might make this underlying theory more palatable
- Some (probably unnecessary) flexibility lost
Defining types with binders in HOL

Model Choices

Quotient of algebraic type as model

Quotienting—Summary

- Generate fresh algebraic type for each new type (easy)
- Define small suite of nominal theory constants on this type (easy)
- Quotient (easy)
- Prove recursion theorem (involved)

- Done!
The Efficiency Contest

And the winner is:
The Efficiency Contest

And the winner is:

Existing type with binders + recursion theorem
The Efficiency Contest

And the winner is:

Existing type with binders + recursion theorem

- Only one new type (the type the user is interested in) is defined
- The transfer of the recursion theorem from the existing type is straightforward (no inductions required)

(Might use quotienting approach to manually generate representation type and its recursion theorem.)
The Flexibility Contest

And the winner is:
The Flexibility Contest

And the winner is:

Quotienting

(Weak HOAS gets honourable mention but looks logically fraught.)
The Flexibility Contest

And the winner is:

Quotienting

(Weak HOAS gets honourable mention but looks logically fraught.)

- The system builds everything from the ground up, so any manner of binding weirdness should be possible
Future Work

The Happy HOL Hacker in me loves this stuff!

- Am working on various examples by hand
- Want to attack full PoplMark problem
- Must design notation for binding flavours

General, well-tested technology for definition of types with binders in HOL is probably at least a year away.

General Principle: Implementations need to support proofs of real theorems. All of PoplMark might be a bit much, but Church-Rosser isn’t enough.