
Proof Theory and Proof Search of

Bi-Intuitionistic and Tense Logic

Linda Postniece

A thesis submitted for the degree of

Doctor of Philosophy at

The Australian National University

November 2010

c© Linda Postniece

Typeset in Palatino by TEX and LATEX 2ε .

Except where otherwise indicated, this thesis is my own original work.

Linda Postniece

21 November 2010

Acknowledgements

Firstly, I would like to thank my supervisors Rajeev Goré and Alwen Tiu, for pro-

viding much inspiration and support during the research and writing of this thesis.

In particular, I appreciate your timely and constructive feedback on the many drafts

I inflicted upon you over the years. Raj, I am also thankful for your mentoring and

career advice, which helped me eventually find an optimal path. Thank you also to

John Lloyd for valuable advice on various research/career matters, and providing

feedback on this thesis.

I would like to thank ANU/CECS, for supporting my studies with a PhD scholar-

ship/topup, and for establishing the VC travel grants scheme, which helped fund my

travel to AiML 2008 and WoLLIC 2009. The Wood Bledsoe Travel Award helped fund

my travel to IJCAR 2008.

To Tarmo Uustalu, thank you for generously hosting me in Tallinn for a week in

2008, and taking time out of your busy schedule to discuss the details of bi-intuitionistic

logic with me. It was a pleasure to meet you.

To my friends Dima Kamenetsky, Florian Widmann, Kate Kiseeva and Rowan

Martin-Hughes, I will always cherish the memories of our fun times in Canberra.

Your moral support and practical help during 2007/2008 was invaluable - I am very

grateful for it.

To my boyfriend Steve, thank you for giving me much love and encouraging me

to occasionally look on the illogical side of life :)

Finally, thank you to my parents Ieva and Gunnars, who have supported and en-

couraged my education from an early age, and continued to look after me when I

moved to the other side of the world. To my late grandmother Herta, thank you for

your many words of wisdom and inspiration; they continue to guide me every single

day.

v

Abstract

In this thesis, we consider bi-intuitionistic logic and tense logic, as well as the com-

bined bi-intuitionistic tense logic. Each of these logics contains a pair of dual connec-

tives, for example, Rauszer’s bi-intuitionistic logic [100] contains intuitionistic impli-

cation and dual intuitionistic exclusion. The interaction between these dual connec-

tives makes it non-trivial to develop a cut-free sequent calculus for these logics.

In the first part of this thesis we develop a new extended sequent calculus for bi-

intuitionistic logic using a framework of derivations and refutations. This is the first

purely syntactic cut-free sequent calculus for bi-intuitionistic logic and thus solves an

open problem. Our calculus is sound, semantically complete and allows terminating

backward proof search, hence giving rise to a decision procedure for bi-intuitionistic

logic.

In the second part of this thesis we consider the broader problem of taming proof

search in display calculi [12], using bi-intuitionistic logic and tense logic as case stud-

ies. While the generality of display calculi makes it an excellent framework for de-

signing sequent calculi for logics where traditional sequent calculi fail, this generality

also leads to a large degree of non-determinism, which is problematic for backward

proof-search. We control this non-determinism in two ways:

1. First, we limit the structural connectives used in the calculi and consequently,

the number of display postulates. Specifically, we work with nested structures

which can be viewed as a tree of traditional Gentzen’s sequents, called nested se-

quents, which have been used previously by Kashima [73] and, independently,

by Brünnler and Straßburger [17; 21; 20] and Poggiolesi [97] to present several

modal and tense logics.

2. Second, since residuation rules are largely responsible for the difficulty in find-

ing a proof search procedure for display-like calculi, we show how to eliminate

these residuation rules using deep inference in nested sequents.

Finally, we study the combined bi-intuitionistic tense logic, which contains the

well-known intuitionistic modal logic as a sublogic. We give a nested sequent cal-

culus for bi-intuitionistic tense logic that has cut-elimination, and a derived deep in-

ference nested sequent calculus that is complete with respect to the first calculus and

where contraction and residuation rules are admissible. We also show how our calculi

can capture Simpson’s intuitionistic modal logic [104] and Ewald’s intuitionistic tense

logic [39].

vii

viii

Contents

Acknowledgements v

Abstract vii

1 Introduction 1

1.1 Background and motivation . 1

1.2 Summary of contributions . 3

2 Background and motivation 5

2.1 Logic . 5

2.2 Non-classical logics . 13

2.3 Motivation . 26

2.4 Conclusion . 31

I Bi-intuitionistic logic 33

3 A calculus of derivations and refutations for bi-intuitionistic logic 35

3.1 An overview of GBiInt . 35

3.2 The sequent calculus . 36

3.3 Soundness and completeness . 44

3.4 Decision procedure and complexity . 52

3.5 Comparison with related work . 58

II Towards taming proof search in display logic 61

4 A shallow inference nested sequent calculus for bi-intuitionistic logic 63

4.1 The sequent calculus LBiInt1 . 64

4.2 Cut elimination . 72

4.3 Soundness and completeness of LBiInt1 78

4.4 Proof search . 79

5 A deep inference nested sequent calculus for bi-intuitionistic logic 91

5.1 The sequent calculus DBiInt . 91

5.2 Soundness and completeness of DBiInt 93

5.3 Proof search . 105

ix

x Contents

6 Shallow and deep inference nested calculi for tense logic 117

6.1 SKt: a shallow inference nested sequent calculus 118

6.2 DKt: a contraction-free deep inference nested sequent calculus 127

6.3 Sequent calculi for some extensions of tense logic 132

6.4 Proof search . 140

7 Putting it all together: bi-intuitionistic tense logic 145

7.1 Nested sequent calculi . 147

7.2 Cut elimination in LBiKt . 155

7.3 Equivalence of DBiKt and LBiKt . 160

7.4 Proof search . 173

7.5 Semantics . 180

7.6 Modularity, extensions and classicality . 189

8 Related work 195

8.1 Non cut-free sequent calculi . 195

8.2 Deep inference . 195

8.3 Hypersequents and other extended sequent calculi 197

8.4 Labelled sequent calculi . 198

8.5 Tableaux methods for description logics with inverse roles 198

8.6 Bellin’s work on logic for pragmatics . 199

9 Further work and conclusions 201

9.1 Further work . 201

9.2 Conclusions . 204

A Display calculi 207

A.1 Goré’s display calculus for bi-intuitionistic logic 207

A.2 Proof search in display logic . 213

B Additional proofs 215

B.1 Proofs for Chapter 5 . 215

Bibliography 221

List of Figures

2.1 Semantics of CPC . 6

2.2 Hilbert axioms for CPC . 8

2.3 Structural rules in Gentzen’s sequent calculus for CPC 10

2.4 Forcing of K-formulae . 14

2.5 Forcing and rejecting of Int-formulae . 16

2.6 Forcing and rejecting of DualInt-formulae 18

2.7 Forcing and rejecting of BiInt-formulae 20

2.8 Hilbert axioms for BiInt . 22

2.9 Forcing of Kt-formulae . 25

2.10 Non-terminating backward proof search attempt in a display calculus

for bi-intuitionistic logic . 29

3.1 Calculi GBiInt0, GBiInt1 and GBiInt . 43

3.2 A proof search strategy for GBiInt . 53

3.3 GBiInt switching premises . 55

4.1 Formula translation of nested sequents . 64

4.2 LBiInt1: a shallow inference nested sequent calculus for BiInt 65

4.3 Cut-elimination example . 72

4.4 LBiInt2: a nested sequent calculus for proof search in BiInt 80

4.5 A proof search strategy for LBiInt2 . 82

5.1 DBiInt: a deep inference nested sequent calculus for BiInt 93

5.2 A proof search strategy for DBiInt1 . 108

5.3 Propagation of formulae . 113

5.4 Blocked repeated application of →R . 114

6.1 SKt: a shallow inference nested sequent calculus for Kt 118

6.2 Some derivations in SKt. 123

6.3 DKt: a contraction-free deep inference nested sequent calculus for Kt . . 128

6.4 Additional propagation rules for DS4 . 133

6.5 Additional propagation rules for DS5 . 137

6.6 A proof search strategy for DKt . 140

7.1 Formula translation of nested sequents . 147

7.2 LBiKt: a shallow inference nested sequent calculus for BiKt 150

7.3 DBiKt: a deep inference nested sequent calculus for BiKt 151

xi

xii LIST OF FIGURES

7.4 Translation from DBiKt sequents to trees 176

7.5 A proof search strategy for DBiKt1 . 177

7.6 Semantics of BiKt . 181

A.1 Goré’s display calculus δBiInt for bi-intuitionistic logic. 209

A.2 Non-terminating backward proof search attempt in δBiInt 213

Chapter 1

Introduction

1.1 Background and motivation

Classical logic can be seen as a “mathematical model of deductive thought” [38]; it is

a formal and rigorous approach to building and analysing deductions. In addition to

classical logic, there is a large body of work concerning various non-classical logics

that are either restrictions or extensions of classical logic. These specialised logics are

often motivated by philosophical or practical considerations; they capture reasoning

that cannot be captured using classical logic.

Perhaps the best known alternative to classical logic is intuitionistic logic, which

dates back to the early 20th century and was developed during the study of construc-

tive mathematics [112]. Because of its constructive nature, intuitionistic logic forms a

rigorous foundation for the type theory of programming languages [93] via the Curry-

Howard isomorphism [70] between proofs of intuitionistic formulae and terms in the

λ-calculus. The λ-calculus is a Turing-complete model of computation, introduced by

Church as part of an investigation into the foundations of mathematics [24]; variants

of it have been an inspiration to designers of a number of functional programming

languages ([109], [79]).

Modal logic [14] is another non-classical logic; it extends classical logic with modal-

ities, such as possibility and necessity. Variants of modal logic also allow temporal

constructs such as ”some time in the future” [85]. Modal logic and its variants have

numerous application areas, such as knowledge representation and reasoning in ar-

tificial intelligence and automated verification of hardware and software [14]. For

example, description logics, which are syntactic variants of modal logics, provide a

rigorous foundation for the semantic web [66; 6].

In this thesis, we will consider two aspects of logic: proof theory and proof search.

While proof theory deals with the analysis of proofs [111], proof search is concerned

with algorithmic methods for finding proofs [45] and determining whether a particu-

lar logical formula is a theorem. Sequent calculi [46] are one of the logical formalisms

that serve both purposes well and as a result are widely used. Sequent calculi consist

of a number of rules which allow us to form proofs. A very important rule is the cut

rule which effectively encodes the transitivity of theoremhood; it has two premises

Γ ⇒ A and A ⇒ ∆, and a conclusion Γ ⇒ ∆:

1

2 Introduction

Γ ⇒ A A ⇒ ∆ cut
Γ ⇒ ∆

When viewed downwards from premises to conclusion, the cut rule reads: if we

can derive A from Γ and ∆ from A, then we can derive ∆ from Γ ; we refer to A as the

cut formula.

A fundamental question in proof theory is whether for a given sequent calculus,

the cut rule can be eliminated from the set of the rules whilst allowing to prove the

same theorems as before. If this is the case, the calculus is said to have cut-elimination.

Cut-free sequent calculi are also very important for backward proof search, since the

non-deterministic nature of the cut rule complicates backward proof search [45]. More

specifically, backward proof search is a method of proof search that starts with the con-

clusion and attempts to prove it by applying sequent rules backwards. Since the cut

formula is not present in the conclusion of the cut rule, the theorem proving procedure

needs to guess it before it can apply the cut rule.

While traditional proof search methods focus on attempting to prove theorems,

there is also a smaller body of research concerned with finding refutations of non-

theorems [81; 50; 94]. Refutation calculi are formalisms that are specifically designed

to reason about non-provability as a first-class citizen, rather than conclude non-

provability as a result of failed proof search.

In this thesis we will study a number of non-classical logics that we call bi-logics;

these logics are extensions of intuitionistic and modal logics with converse opera-

tors. For example, bi-intuitionistic logic [100] is an extension of intuitionistic logic

with the exclusion connective, which is converse to the intuitionistic implication. Bi-

intuitionistic logic has applications in programming language theory - while the tra-

ditional Curry-Howard isomorphism relates the implication connective to a func-

tion [70], the exclusion connective can be used to describe control mechanisms such as

co-routines [28; 29]. Another example of a bi-logic is tense logic, which is the extension

of modal logic with converse modal operators [85].

While converse operators give bi-logics more expressive power than their individ-

ual sublogics, this often comes at the price of more intricate proof search algorithms.

Specifically, it means that the traditional mechanisms used to develop cut-free sequent

calculi for the sublogics cannot simply be applied to the bi-logics. For example, while

there are many cut free sequent calculi for intuitionistic logic (e.g. [46; 36; 34]), bi-

intuitionistic logic has lacked a cut-free sequent calculus for around 30 years [95].

In addition to traditional sequent calculi, there are a number of extended sequent

calculi mechanisms that are often used in logics where traditional methods do not

suffice. For example, display calculi [12] are an extremely general proof-theoretical

framework that can cater for a wide range of logics, including modal logic [116] and

bi-intuitionistic logic [51; 53]. The most pleasing property of display calculi is that

if the rules of the display calculus enjoy eight easily checked conditions, then the

calculus is guaranteed to obey cut-elimination [12]. However, these calculi contain a

large degree of non-determinism and as a result are not immediately suitable for proof

search [75].

§1.2 Summary of contributions 3

1.2 Summary of contributions

Chapter 2 sets the scene for this thesis and gives an introduction to the proof theory

and proof search of non-classical logics. In the rest of the thesis, we will develop new

extended sequent calculi formalisms that will allow reasoning in logics such as bi-

intuitionistic and tense logic where previous calculi have failed. We will do so using

two complementary approaches:

• In Part I (Chapter 3) we develop a framework of proofs and refutations as first

class citizens, and give sequent calculi rules that allow to combine proofs and

refutations in order to achieve a cut-free sequent calculus for bi-intuitionistic

logic where traditional calculi fail. We give the first cut-free sequent calculus

for bi-intuitionistic logic that is amenable to proof search. We then show our

calculus to be sound and complete with respect to the Kripke semantics of bi-

intuitionistic logic. Finally, we give a decision procedure for bi-intuitionistic

logic based on our calculus.

• In Part II, we consider the broader problem of proof search in display calculi,

and use display-like calculi to develop reasoning techniques for bi-intuitionistic

logic (Chapters 4 and 5), tense logic (Chapter 6) and a combination of the two

logics (Chapter 7).

We control the non-determinism of proof search in display logic by using the

concept of deep inference in nested sequent calculi. Nested sequent calculi [73;

17; 19; 97] operate on structures that are trees of traditional sequents, and deep

inference allows us to apply sequent rules to any formula nested deep inside the

nested structure.

Specifically, we show that for a number of bi-logics, deep inference allows us

to simulate residuation rules, which are at the heart of display calculi. Since

residuation rules are one of the biggest sources of non-determinism in backward

proof search for display calculi, our work is a significant first step towards proof

search in general display calculi. Our work is the first which establishes a direct

correspondence between proofs in a display-like calculus (with explicit residua-

tion rules) and proofs in a deep-inference calculus (with no explicit residuation

rules).

For each of the bi-logics considered, we give two sequent calculi: the first one

is derived from a display calculus and the second one uses deep inference and

nested sequents. We give a cut-elimination proof for the first calculus, and then

show that the second calculus is syntactically complete with respect to the first

calculus. Finally, we give a terminating proof search strategy for the second

calculus, which yields a decision procedure for the particular bi-logic.

Chapter 8 surveys related work, and Chapter 9 provides some directions for fur-

ther work and concludes the thesis. Appendix A gives a short introduction to display

calculi and reviews a display calculus for bi-intuitionistic logic. Appendix B contains

some additional proofs.

4 Introduction

Chapter 2

Background and motivation

In this chapter, we place our proposed work in the context of existing research. In

Section 2.1, we set the scene with a brief review of the concepts of syntax, semantics

and proof calculi, using classical propositional logic as an example. In Section 2.2, we

give a brief synopsis of some non-classical logics that are relevant to our work. We

then introduce bi-intuitionistic logic in Section 2.2.4 and tense logic in Section 2.2.5.

In Section 2.3, we motivate our work by highlighting the shortcomings of some of the

existing approaches to proof search in bi-intuitionistic and tense logics.

2.1 Logic

While logic in the most general sense is the study of reasoning and encompasses topics

from philosophy, computer science and mathematics, in this thesis we will focus on

symbolic logic, which is a “mathematical model of deductive thought” [38].

From now on, we will use the term “logic” in a more narrow sense to mean a

particular formal system or object logic. We will study a number of such object logics

from three different angles: syntax, semantics and proof calculi. The syntax of each

logic defines the formal language we use to write down logical statements; the seman-

tics defines the meaning of those statements, and the proof calculi allow us to reason

purely syntactically in this logic and construct logical inferences or proofs of logical

statements.

We now introduce the concepts of syntax, semantics and proof calculi in more

detail, illustrating them using the well-known classical propositional logic as an object

logic.

2.1.1 Syntax

The statements of an object logic are called formulas; they are built from a denumer-

able set Atoms of atomic propositions (atoms for short) using logical connectives. The

set of all syntactically correct formulas for an object logic is often specified using a

BNF grammar.

For example, the formulas Fml of classical propositional logic CPC are given by the

following grammar, where p ∈ Atoms, > and ⊥ are logical constants, and the logical

5

6 Background and motivation

V̄(p) = V(p) (2.1.1)

V̄(>) = true (2.1.2)

V̄(⊥) = false (2.1.3)

V̄(A ∧ B) =

{
true if V̄(A) = true and V̄(B) = true
false otherwise

(2.1.4)

V̄(A ∨ B) =

{
true if V̄(A) = true or V̄(B) = true
false otherwise

(2.1.5)

V̄(A → B) =

{
true if V̄(A) = false or V̄(B) = true
false otherwise

(2.1.6)

V̄(¬A) =

{
true if V̄(A) = false
false otherwise

(2.1.7)

Figure 2.1: Semantics of CPC

connectives are ∧ (conjunction), ∨ (disjunction), → (implication) and ¬ (negation):

A := p | > | ⊥ | A ∧ A | A ∨ A | A → A | ¬A.

For example, if p0 is an atomic proposition “the bicycle is blue” and p1 is an atomic

proposition “the sun is shining”, then the CPC formula p0 → p1 formally represents

the statement “if the bicycle is blue then the sun is shining”.

We will often need to refer to meta-formulae which define the shape of a formula

and can be instantiated to specific formula instances; we call such meta-formulae for-

mula schemes and use capital letters to denote them. For example, A → (B → A) is a

formula scheme and both p0 → (q0 → p0) and (p0 ∧ q0) → ((r0 ∨ s0) → (p0 ∧ q0))
are instances of it.

We write ∅ to mean the empty set. Given a formula A and two sets ∆ and Γ of

formulae, we write ∆, Γ for ∆ ∪ Γ and we write ∆, A for ∆ ∪ {A}.

2.1.2 Semantics

While the syntax of an object logic defines the formal language we use to represent

statements, semantics defines the meaning of those statements. More specifically,

the semantics describes how to assign truth values to formulae, as well as what it

means for some formula to be a logical consequence of (a set of) other formula(e). De-

pending on the object logic, its semantics may be given by a range of mathematical

structures, from basic truth tables in CPC [90] to algebraic [115], relational [77] and

game-theoretical [102] semantics of other logics. We will now review the semantics of

CPC; later in this chapter we will introduce the more intricate semantics of other object

logics such as Kripke semantics for modal logic [77].

In CPC, the truth values of atomic propositions are given by a valuation, which is

a function V : Atoms → {true, false}: for each atom, the valuation tells us whether

§2.1 Logic 7

this atom is true or false1. Then the truth value V̄ : Fml → {true, false} of compound

formulae and logical constants is determined as given in Figure 2.1 [38]. For example,

using the atoms p0 and p1 from the previous section, if V(p0) = true and V(p1) =
false, then V̄(p0 → p1) = false according to Equation 2.1.6.

We say that a formula A is valid in CPC, if for every valuation V, we have V̄(A) =
true. We say that a formula A is falsifiable in CPC, if there exists a valuation V such that

V̄(A) = false. Given a set Γ of CPC formulae and a CPC formula A, we say that A is a

logical consequence of Γ and write Γ � A if for any valuation V the following holds:

if (for all B ∈ Γ we have V̄(B) = true) then V̄(A) = true.

Note that if Γ = ∅ then � A iff A is valid.

We may define or formulate an object logic semantically, by specifying the set of

all valid formulae in this logic.

A well-known valid formula of CPC is A ∨¬A; the fact that this formula is valid is

known as the law of excluded middle. Another law that holds in CPC is the law of non-

contradiction, that is: A ∧ ¬A is always false, that is, every valuation makes A ∧ ¬A

false. As we shall see later in this chapter, there are other non-classical object logics

where these laws do not hold.

2.1.3 Calculi

We use proof calculi for formally expressing inferences in an object logic. Proof theory

is an area of logic that deals with the meta-theoretic analysis of such proofs, as well

as translations from one formal theory into another [111]. A proof in some object

logic can be formally expressed using one of three basic types of logical formalisms:

natural deduction, Hilbert calculi and sequent calculi [111]; we often use the terms

“derivation” or “deduction” for such proofs. In this thesis, we will mostly focus on

sequent calculi and occasionally refer to Hilbert calculi.

2.1.3.1 Hilbert calculi

A Hilbert calculus for an object logic consists of a set of axioms, which are formula

schemes, and (a small number of) inference rules. For example, the axioms of a Hilbert

calculus for CPC [111] are given in Figure 2.2. The only rule of inference in the Hilbert

calculus for CPC is called modus ponens (MP) and allows to infer B from A → B and A.

A deduction of a formula A in a Hilbert calculus from a set of assumptions (formu-

lae) Γ is often presented as a list of formulas, where each formula is either a member

of Γ , or an instance of an axiom, or is obtained from previous members of the list

using an inference rule. We write Γ ` A to mean that A is deducible from Γ . For

example, the following is a Hilbert calculus deduction of the formula q0 from the as-

1The CPC valuation is often referred to as a “truth assignment” in introductory logic textbooks [90;
38]. However, as we shall see later, the semantics for modal logic and other non-classical logics uses the
concept of “valuation” that serves a very similar purpose to the “truth assignment” in CPC. Therefore,
for consistency reasons, we are using the term “valuation” for all object logics considered in this thesis,
including CPC.

8 Background and motivation

A → (B → A) (2.1.8)

(A → (B → C)) → ((A → B) → (A → C)) (2.1.9)

A → A ∨ B (2.1.10)

B → A ∨ B (2.1.11)

(A → C) → ((B → C) → (A ∨ B → C)) (2.1.12)

(A ∧ B) → A (2.1.13)

(A ∧ B) → B (2.1.14)

A → (B → (A ∧ B)) (2.1.15)

⊥ → A (2.1.16)

¬¬A → A (2.1.17)

Figure 2.2: Hilbert axioms for CPC

sumption p0 ∧ (p0 → q0) in CPC where the right hand column gives justification for

each deduction step:

(0) p0 ∧ (p0 → q0) assumption

(1) (p0 ∧ (p0 → q0)) → (p0 → q0) instance of axiom (A ∧ B) → B

(2) p0 → q0 apply MP to (1) and (0)

(3) (p0 ∧ (p0 → q0)) → p0 instance of axiom (A ∧ B) → A

(4) p0 apply MP to (3) and (0)

(5) q0 apply MP to (2) and (4)

Hilbert calculi are often used to define or formulate an object logic syntactically:

we say that the theorems of some object logic are exactly those formulae that can be

proven in some Hilbert calculus from the empty set of assumptions.

2.1.3.2 Sequent calculi

A sequent is the basic building block of a sequent calculus derivation, and consists of

a pair of multi-sets of formulas separated by a “turnstile”. For example, Γ ⇒ ∆ is a se-

quent in Gentzen’s sequent calculus for CPC [46]; the sequent consists of an antecedent

Γ and a succedent ∆. The intuitive reading of a sequent Γ ⇒ ∆ is that we can deduce

some formula in ∆ from the set of formulae Γ . That is, the formula translation of the se-

quent Γ ⇒ ∆ is the CPC-formula Γ̂ → ∆̌: a conjunction of all the members of Γ implies

the disjunction of all the members of ∆.

A rule of inference in sequent calculus contains one or more premises, which are

sequents, and a single conclusion sequent. For example, the following is Gentzen’s

original rule for implication on the left [46], where Γ ⇒ ∆, A and B, Γ ⇒ ∆ are the

premises, and A → B, Γ ⇒ ∆ is the conclusion:

§2.1 Logic 9

Γ ⇒ ∆, A B, Γ ⇒ ∆ →L
A → B, Γ ⇒ ∆

The reading of the →L rule is: if we can deduce ∆, A from Γ and we can deduce

∆ from B, Γ then we can deduce ∆ from A → B, Γ . The formula translation of the →L

rule is: if Γ̂ → (∆̌ ∨ A) and (B ∧ Γ̂) → ∆̌ then ((A → B) ∧ Γ̂) → ∆̌.

Another example of a sequent calculus rule is the rule for conjunction on the

left [46], where Γ , Ai ⇒ ∆ is the premise and Γ , A1 ∧ A2 ⇒ ∆ is the conclusion.

Γ , Ai ⇒ ∆
∧L for i ∈ {1, 2}

Γ , A1 ∧ A2 ⇒ ∆

Note that this rule has two versions:

Γ , A1 ⇒ ∆
∧L1

Γ , A1 ∧ A2 ⇒ ∆

Γ , A2 ⇒ ∆
∧L2

Γ , A1 ∧ A2 ⇒ ∆

The reading of the ∧L rule is: if we can deduce ∆ from Γ , Ai for some i ∈ {1, 2},

then we can deduce ∆ from Γ , A1 ∧ A2.

A rule of inference is specified using formula schemes; the formula that is intro-

duced in the conclusion is called the principal formula, the other formulae are called

side formulae. An instance of a rule contains an instance of the principal formula and

instances of every side formula. For example, the following is an instance of the →L

rule above, where p0 → q0 is the principal formula:

r0 ⇒ s0, t0, p0 q0, r0 ⇒ s0, t0 →L
p0 → q0, r0 ⇒ s0, t0

Derivations in sequent calculi are trees that consist of sequents, connected using

rules of inference. The leaves of the tree are axiomatic sequents of the form A ⇒ A,

and every sequent in the tree is the conclusion from its predecessor(s), and the root of

the tree contains the conclusion of the entire derivation. Formally:

• All instances of axioms of the form A ⇒ A are derivations.

• For any instance of a rule ρ, if the premises Γ1 ⇒ ∆1 to Γn ⇒ ∆n have deriva-

tions Π1 to Πn for some n ≥ 1, then the conclusion Γ ⇒ ∆ has the following

derivation:
Π1

Γ1 ⇒ ∆1 · · ·
Πn

Γn ⇒ ∆n ρ
Γ ⇒ ∆

The →L rule above is an example of a logical rule, because it operates on the logi-

cal connectives in a formula, in this case, the → connective. Sequent calculi can also

contain structural rules, which operate on the physical structure of the sequent. Fig-

ure 2.3 shows Gentzen’s original contraction and weakening rules on the left and on

the right, as well as several versions of the cut rule, which we shall discuss in the next

section.

For example, the contraction left rule (cL) replaces two copies the principal for-

mula A in the premise with one copy of A in the conclusion, and involves no logical

10 Background and motivation

A, A, Γ ⇒ ∆
cL

A, Γ ⇒ ∆

Γ ⇒ ∆, A, A
cR

Γ ⇒ ∆, A

Γ ⇒ ∆ wL
A, Γ ⇒ ∆

Γ ⇒ ∆ wR
Γ ⇒ ∆, A

Γ ⇒ B, ∆ B, Γ ′ ⇒ ∆′
muliplicative cut

Γ , Γ ′ ⇒ ∆, ∆′

Γ ⇒ B, ∆ B, Γ ⇒ ∆
additive cut

Γ ⇒ ∆

Γ ⇒ Bm, ∆ Bn, Γ ⇒ ∆
multicut

Γ ⇒ ∆

Figure 2.3: Structural rules in Gentzen’s sequent calculus for CPC

connectives explicitly.

The following is an example sequent calculus derivation of the formula q0 from

p0 ∧ (p0 → q0) in CPC:

p0 ⇒ p0 q0 ⇒ q0 →Lp0, p0 → q0 ⇒ q0 ∧L
p0, p0 ∧ (p0 → q0) ⇒ q0 ∧L

p0 ∧ (p0 → q0), p0 ∧ (p0 → q0) ⇒ q0 cL
p0 ∧ (p0 → q0) ⇒ q0

Another example of a structural rule is the weakening rule. For example, the in-

tuitive reading of the wL rule in Figure 2.3 is that if we can deduce some formula in

∆ from the set of formulae Γ , then we can still deduce the same formula from the set

Γ ∪ {A}.

2.1.3.3 The cut rule

In addition to the logical and structural rules, a sequent calculus may contain a cut

rule, which effectively encodes the transitivity of derivability. Consider the multi-

plicative cut rule of Figure 2.3. Since the cut formula B need not be a subformula of

either Γ or ∆, this rule violates the subformula property, which states that all formulae

occurring in the premises of a rule are subformulae of the formulae in the conclu-

sion [45]. Moreover, when read upwards, the multiplicative cut rule partitions the

antecedent into Γ and Γ ′ and the succedent into ∆ and ∆′. Another version of the cut

rule is the additive version (see Figure 2.3), which still violates the subformula prop-

erty but does not require partitioning the antecedent and succedent of the conclusion.

One of the main contributions of Gentzen was that he showed that the cut rule can

be eliminated from the rules of his sequent calculus LK, that is, any derivation that

uses the cut rule can be transformed into a derivation of the same sequent that does

not use the cut rule [46]. This process is called cut-elimination, the resulting derivation

§2.1 Logic 11

is called cut-free, and the calculus is said to have cut-admissibility. In general, we say

that a rule is admissible in a sequent calculus if we can leave out this rule and still

derive the same sequents as before. Formally, a rule ρ is admissible in some calculus

C if the following holds: if there exists a derivation of Γ ⇒ ∆ in C+ρ, then there exists

a derivation of Γ ⇒ ∆ in C.

In some sequent calculi where the contraction rule is not admissible, cut-elimination

is complicated for derivations that include an instance of contraction immediately

above an instance of cut. Then the multicut rule (see Figure 2.3) may be used, where

Bm and Bn stand for m and n copies of the formula B respectively.

If n = m = 1, multicut becomes the traditional cut rule. If n ≥ 1 and/or m ≥ 1,

multicut can be seen as a combination of contraction and cut:

Γ ⇒ Bm, ∆
m × cR

Γ ⇒ B, ∆
Bn, Γ ⇒ ∆

n × cL
B, Γ ⇒ ∆

cut
Γ ⇒ ∆

It is often easier to prove multicut-elimination than cut-elimination [111].

Cut-admissibility has a number of important corollaries. We briefly note some of

them here; full details are given by Troelstra and Schwichtenberg [111]. Firstly, cut-

admissibility implies the separation property: any derivable sequent Γ ⇒ ∆ always

has a derivation using only the logical rules and/or axioms for the logical operators

occurring in Γ ⇒ ∆. This property is helpful if we wish to find a derivation of some

sequent Γ ⇒ ∆, since it limits the number of axioms and rules we need to consider.

Secondly, cut-admissibility often implies Craig’s interpolation [26; 111], which is an

important proof-theoretic result on its own and also has applications in software and

hardware verification [86]. Formally, Craig’s interpolation theorem for CPC states: if

the sequent ∅ ⇒ A → B is derivable then there is a formula I such that the sequents

∅ ⇒ A → I and ∅ ⇒ I → B are derivable, and every atom of I occurs in both A and

B.

An important property of a sequent calculus rule is invertibility. Formally, a rule ρ

is invertible if the derivability of the conclusion implies the derivability of the premise(s).

For example, the contraction rules cL and cR in Figure 2.3 are invertible in LK, but the

weakening rules wL or wR are not.

2.1.3.4 Backward proof search

While proof theory is an important research area on its own, it also has applications

in automated deduction, which is concerned with algorithmic methods for proving

theorems [45]. Increasingly, sequent calculi are used to decide theoremhood by ap-

plying the rules in a backward fashion. Thus it has become important to study such

calculi from this proof search perspective. In backward proof search, we start with the

sequent we wish to prove, and apply rules backwards to obtain premises, and so on,

until we have reduced each premise to an axiomatic leaf sequent. For example, if we

wanted to prove the sequent A → B, Γ ⇒ ∆, we would use the →L rule backwards

and obtain the premises Γ ⇒ ∆, A and B, Γ ⇒ ∆, which we would then attempt to

12 Background and motivation

prove. Notice that the formulae A and B in the premises are strict subformulae of

A → B, meaning that the subgoals Γ ⇒ ∆, A and B, Γ ⇒ ∆ are somehow simpler than

the original goal A → B, Γ ⇒ ∆.

However, the structural rules are problematic for backward proof search. For ex-

ample, if we were to apply the contraction rule backwards with principal formula A

to the sequent A, Γ ⇒ B, we would obtain the premise A, A, Γ ⇒ B, and so on, thus

potentially causing an infinite loop in the theorem proving procedure. Therefore the

use of contraction rules needs to be controlled to avoid this problem. This is done,

for example, by Dyckhoff: his LJT [36] is a contraction-free sequent calculus that can

be used for proof-search in intuitionistic logic, which we shall introduce later in this

chapter. Additionally, once we have shown that the contraction rule is admissible in

some sequent calculus, we may consider sequents as pairs of sets of formulae rather

than pairs of multisets of formulae. The use of sets instead of multisets can lead to

a simpler backward proof search procedure, therefore contraction admissibility is a

desirable feature of a sequent calculus.

The weakening rules also pose problems for backward proof search due to their

non-deterministic nature: when we attempt to prove a sequent Γ ⇒ ∆, both the weak-

ening left and weakening rules are applicable to any formula in Γ or ∆. However, the

weakening rules are not invertible, meaning that applying them too early might mean

losing formulae that are essential for finding the derivation. Fortunately, weakening

can often can be shown admissible quite easily, if we build it into the axioms. That is,

the axioms of the sequent calculus become Γ , A ⇒ A, ∆ instead of A ⇒ A. In terms of

backward proof search, this modification means we postpone the weakening step for

as long as possible, which allows us to keep all formulae potentially relevant to the

derivation we are looking for.

Of all the structural rules, the cut rule is the most problematic from a backward

proof search perspective. Since the cut formula B does not appear in the conclusion

of the rule, the theorem proving procedure needs to guess it. This is because the cut

rule violates the subformula property. Moreover, if the multiplicative version of the

cut rule is being used, the theorem proving procedure needs to guess the partitioning

of the antecedent into Γ and Γ ′ and the succedent into ∆ and ∆′. As Gallier [45] points

out, Gentzen’s cut-elimination result [46] is very important for backward proof search,

because in cut-free derivations all inferences are purely mechanical and require no

ingenuity. Since we are looking for proof search algorithms for a range of object logics

that we shall introduce shortly, a large part of our work will consist of developing

cut-free sequent calculi, and calculi with cut-elimination, for these logics.

2.1.3.5 Connection to semantics

When developing a proof system such as a sequent calculus for an object logic, we

typically want to ensure that this proof system allows us to derive exactly those for-

mulae that are semantically valid in this logic.

More formally, we first want to show that if a formula is syntactically derivable in

the calculus, then it is semantically valid - this property of a calculus is called soundness

§2.2 Non-classical logics 13

and is typically quite easy to show. Secondly, we want to show that if a formula is

semantically valid, then it is syntactically derivable in the calculus - this property is

called completeness and is often non-trivial to show.

We typically also want to link logical consequence with derivability from a set of

assumptions. That is, we want to show that we can derive A from the set of assump-

tions Γ if and only if A is logical consequence of Γ . In this thesis, we will focus only

on validity and therefore devise proof calculi that allow us to derive a formula (or a

sequent) rather than a formula from a set of assumptions.

2.2 Non-classical logics

In addition to classical propositional logic, there is a large body of work concerning

various non-classical logics that are either restrictions or extensions of classical logic:

modal, intuitionistic, paraconsistent logic to name a few. These specialised logics are

often motivated by philosophical or practical considerations and capture reasoning

that cannot be captured by classical logic.

2.2.1 Modal logic

Modal logic extends classical logic with modalities, such as possibility and necessity;

variants of modal logic also allow temporal constructs such as ”some time in the fu-

ture”. Modal logic and its variants have numerous application areas, for example,

knowledge representation and reasoning in artificial intelligence and automated ver-

ification of hardware and software [14].

2.2.1.1 Syntax

The basic modal logic K consists of the connectives of classical propositional logic, as

well as modal connectives diamond ♦ and box �, where the reading of ♦A is “possibly

A” and the reading of �A is “necessarily A”. Formally, formulas of modal logic K are

given by the following grammar, where p is an atom:

A := p | > | ⊥ | A ∧ A | A ∨ A | A → A | ¬A | ♦A | �A.

2.2.1.2 Semantics

The semantics of modal logic K due to Kripke [76] uses graphs and is referred to as

possible world semantics. A Kripke model is a graph consisting of worlds connected

by a reachability relation, and each world has a different valuation for propositional

atoms. While the truth value of atoms and propositional formulae is determined at a

single world, the truth value of modal formulae is determined by examining neigh-

bouring worlds.

More formally, a K-frame is a pair 〈W, R〉, with W a non-empty set (of worlds) and

R ⊆ W × W. A K-model is a triple 〈W, R, V〉, with 〈W, R〉 a K frame and V : Atoms →

14 Background and motivation

w
 > for all w w 6
 ⊥ for all w
w
 ¬A iff w 6
 A w
 A → B iff w 6
 A or w
 B
w
 A ∨ B iff w
 A or w
 B w
 A ∧ B iff w
 A and w
 B
w
 �A iff ∀u. if wRu then u
 A w
 ♦A iff ∃u.wRu and u
 A

Figure 2.4: Forcing of K-formulae

2W a valuation mapping each atom to the set of worlds where it is true2. We use 2W

to mean the powerset of the set W.

For a world w ∈ W and an atom p ∈ Atoms, if w ∈ V(p) then we write w
 p and

say p is forced by w; otherwise we write w 6
 p and say p is rejected by w. Forcing of

compound formulae is defined by mutual recursion in Figure 2.4. A K-formula A is

valid if and only if it is forced by all worlds in all models, i.e. if and only if w
 A for

all 〈W, R, V〉 and for all w ∈ W. A K-formula A is falsifiable if and only if some world

in some model rejects A, i.e. if and only if w 6
 A for some 〈W, R, V〉 and some w ∈ W.

2.2.1.3 Calculi

The Hilbert axioms for K are all those of CPC plus the following axiom [44]:

�(A → B) → (�A → �B) (2.2.1)

In addition to the modus ponens inference rule, the Hilbert calculus for K has the

necessitation rule: infer �A from A. Modal logic K is thus a conservative extension of

CPC, meaning that every formula B of K such that B consists only of CPC connectives is

a theorem of K if and only if B is a theorem of CPC.

As Fitting [44] points out, axiomatic proof calculi are elegant, but often difficult for

proof discovery. On the other hand, sequent calculi (and their close cousins tableaux

calculi [52]) are suitable and therefore widely used for proof search in modal logic. A

basic sequent calculus for modal logic consists of all the rules of Gentzen’s LK [46]

plus the following two rules where �Γ = {�B | B ∈ Γ} and ♦∆ = {♦B | B ∈ ∆} [44]:

A, Γ ⇒ ∆
♦L

♦A, �Γ ⇒ ♦∆

Γ ⇒ ∆, A
�R

�Γ ⇒ ♦∆, �A

For example, the following is a derivation of axiom 2.2.1:

A ⇒ A B ⇒ B →L
A → B, A ⇒ B

�R
�(A → B), �A ⇒ �B

→R
�(A → B) ⇒ �A → �B

→R
⇒ �(A → B) → (�A → �B)

2Note the subtle difference between a CPC valuation and a K valuation. Since the CPC models effec-
tively consist of only one world, a CPC valuation maps each atom to {true, false}.

§2.2 Non-classical logics 15

2.2.1.4 Extensions

In addition to the basic modal logic K, there are a variety of extensions of it [44]. These

extensions are usually defined either axiomatically (by specifying additional Hilbert

axioms to those for K), or semantically as conditions on the frames. For example, the

modal logic S4 extends K by adding the following two axioms to the Hilbert calculus

for CPC:

4 : �A → ��A (2.2.2)

T : A → ♦A (2.2.3)

The frames of S4 are pairs 〈W, R〉, with W a non-empty set (of worlds) and R ⊆
W ×W, such that R is reflexive and transitive.

2.2.2 Intuitionistic logic

Perhaps the most well-known alternative to classical logic is intuitionistic logic, which

dates back to the early 20th century and was developed during the study of construc-

tive mathematics [112]. Reasoning in intuitionistic logic can be seen as a process of con-

structing mathematical structures [15]: a formula C is a theorem if we can construct

a concrete proof of C. For example, we could prove A ∨ ¬A if we could construct

a proof of the fact that A holds, or if we could construct a proof of the fact that ¬A

holds. Thus, A ∨ ¬A need not be true in intuitionistic logic, and hence the law of the

excluded middle does not hold in intuitionistic logic.

Because of its constructive nature, intuitionistic logic forms a rigorous foundation

for the type theory of programming languages [93] via the Curry-Howard isomor-

phism [70] between proofs of intuitionistic formulae and terms in the λ-calculus. The

λ-calculus is a Turing-complete model of computation, introduced by Church as part

of an investigation into the foundations of mathematics [24]; variants of it have been

an inspiration to designers of a number of functional programming languages ([109],

[79]).

2.2.2.1 Syntax

Formally, formulas of intuitionistic logic Int are given by the following grammar,

where p is an atom:

A := p | > | ⊥ | A ∧ A | A ∨ A | A → A | ¬A.

2.2.2.2 Semantics

Kripke has also presented possible world semantics for intuitionistic logic [78]; they

have many similarities to the semantics of S4. An Int frame is a pair 〈W,≤〉, where W

is a non-empty set of worlds and ≤ is a reflexive and transitive binary accessibility re-

lation. An Int model M = 〈W,≤, V〉 is an Int frame 〈W,≤〉 together with a valuation

16 Background and motivation

w
 > for all w
w

⊥ for all w

w
 A ∨ B iff w
 A or w
 B
w

A ∨ B iff w

A and w

B

w
 A ∧ B iff w
 A and w
 B
w

A ∧ B iff w

A or w

B

w
 ¬A iff ∀u ≥ w . u

A
w

¬A iff ∃u ≥ w . u
 A

w
 A → B iff ∀u ≥ w . u

A or u
 B
w

A → B iff ∃u ≥ w . u
 A and u

B

Figure 2.5: Forcing and rejecting of Int-formulae

V : Atoms → 2W which obeys the persistence property:

∀u, w ∈ W.∀p ∈ Atoms (if w ≤ u and w ∈ V(p) then u ∈ V(p)) .

For some statement X and some fixed w ∈ W, we sometimes use the abbreviations:

∀u ≥ w.X means ∀u ∈ W. if w ≤ u then X

∀u ≤ w.X means ∀u ∈ W. if u ≤ w then X

∃u ≥ w.X means ∃u ∈ W.w ≤ u and X

∃u ≤ w.X means ∃u ∈ W.u ≤ w and X.

Given a model M = 〈W,≤, V〉, a world w ∈ W and an atom p ∈ Atoms, we write

w
 p (w forces p) iff w ∈ V(p), and we write w

p (w rejects3 p) iff w 6∈ V(p). We

define forcing and rejecting of compound formulae by mutual recursion in Figure 2.5.

2.2.2.3 Calculi

The Hilbert calculus for Int contains all the Hilbert axioms of CPC (as presented in

Figure 2.2), except the law of double negation (axiom 2.1.17). The omission of the law

of double negation prohibits us from proving formulae such as A ∨ ¬A in Int.

A sequent calculus for Int may be obtained from Gentzen’s LK for CPC via either

of the following modifications:

1. Restrict all sequents of LK to at most one formula in the succedent; the resulting

3Note that we deliberately use

for rejection in intuitionistic, dual intuitionistic and bi-intuitionistic
logic, as opposed to 6
 for rejection in modal logic. We do this because it makes it easier to extend the
notions of forcing and rejection to sets of formulae in Definition 2.2.2. While it is the case that a single
formula is either forced or rejected by a world, a set of formulae may be forced, rejected or neither forced
nor rejected by a world. Therefore we define rejection in its own right, rather than simply as a negation
of forcing.

§2.2 Non-classical logics 17

sequent calculus is called LJ [46]. This approach is very common and is often

referred to as singletons on the right. For example, the following are Gentzen’s

implication left and right rules in LJ:

Γ ⇒ A Γ , B ⇒ C →L
Γ , A → B ⇒ C

Γ , A ⇒ B →R
Γ ⇒ A → B

2. Replace Gentzen’s implication right rule with a rule which has a single formula

in the succedent of the premise but allows multiple formulae in the succedent of

the conclusion, as shown below:

Γ , A ⇒ B →R
Γ ⇒ A → B, ∆

This approach has been used by Maehara [83] and Dragalin [34] to present multi-

succedent sequent calculi for Int.

2.2.3 Dual-intuitionistic logic

While intuitionistic logic rejects the law of excluded middle, paraconsistent logic is an-

other non-classical logic which rejects the law of non-contradiction. That is, in para-

consistent logic, the formula A∧ ∼ A need not be false; we use ∼ to emphasize that

paraconsistent negation is different from classical negation. The main feature of para-

consistent logic is that it allows reasoning in the presence of inconsistent information:

whilst in classical logic A ∧ ¬A is always false irrespective of A, this is not the case in

paraconsistent logic [8]. One example of a paraconsistent logic is dual intuitionistic

logic [114; 49; 30].

2.2.3.1 Syntax

Formally, formulas of dual-intuitionistic logic DualInt are given by the following

grammar, where p is an atom:

A := p | > | ⊥ | A ∧ A | A ∨ A | A−<A |∼ A.

The −< connective is called “exclusion”, and also known as ”subtraction” or “co-

implication” in the literature. Intuitively, the formula B−<C reads “B excludes C”.

We can define paraconsistent negation ∼ A using exclusion as >−<A.

2.2.3.2 Semantics

Several authors have given algebraic semantics of DualInt (e.g. [100; 49]). We now

present a Kripke semantics that is dual to the Kripke semantics for Int and is a subset

of Rauszer’s semantics for BiInt [100], which we shall discuss later in this chapter.

A DualInt frame is a pair 〈W,≤〉, where W is a non-empty set of worlds and ≤ is a

reflexive and transitive binary accessibility relation. A DualInt model M = 〈W,≤, V〉

18 Background and motivation

w
 > for all
w

⊥ for all w

w
 A ∨ B iff w
 A or w
 B
w

A ∨ B iff w

A and w

B

w
 A ∧ B iff w
 A and w
 B
w

A ∧ B iff w

A or w

B

w
 ∼ A iff ∃u ≤ w . u

A
w

∼ A iff ∀u ≤ w . u
 A

w
 A−<B iff ∃u ≤ w . u
 A and u

B
w

A−<B iff ∀u ≤ w . u

A or u
 B

Figure 2.6: Forcing and rejecting of DualInt-formulae

is an DualInt frame 〈W,≤〉 together with a valuation V : Atoms → 2W which obeys

the reverse persistence property:

∀u, w ∈ W.∀p ∈ Atoms (if w ≤ u and u 6∈ V(p) then w 6∈ V(p)) .

Given a model M = 〈W,≤, V〉, a world w ∈ W and an atom p ∈ Atoms, we write

w
 p (w forces p) iff w ∈ V(p), and we write w

p (w rejects p) iff w 6∈ V(p). We

define forcing and rejecting of compound formulae by mutual recursion in Figure 2.6.

Comparing Figures 2.5 and 2.6, we can observe the semantic differences between

→ and −<: while the → connective “looks forward” along the relation ≤, the −<
connective “looks backward” along the relation ≤.

2.2.3.3 Calculi

In a sequent setting, the introduction rules for exclusion are symmetric to the intro-

duction rules for implication. Using a singletons on the left approach [114; 49; 30], the

introduction rules for exclusion are shown below:

A ⇒ B, ∆
−<L

A−<B ⇒ ∆

C ⇒ A, ∆ B ⇒ ∆
−<R

C ⇒ A−<B, ∆

We could also develop a Dragalin-like sequent calculus for DualInt where the

−<L rule (as shown below) has a single formula on the left of the premise but allows

multiple side formulae on the left of the conclusion:

A ⇒ B, ∆
−<L

Γ , A−<B ⇒ ∆

§2.2 Non-classical logics 19

2.2.4 Bi-intuitionistic logic

We now introduce bi-intuitionistic logic, which is one of the two main object logics

studied in this thesis.

2.2.4.1 History

Bi-intuitionistic logic (BiInt), also known as subtractive logic and Heyting-Brouwer

logic, is the union of intuitionistic logic and dual intuitionistic logic; it was intro-

duced by Rauszer as a Hilbert calculus with Kripke semantics [100]. BiInt is a con-

servative extension of both its Int and DualInt components, and Rauszer’s Hilbert

calculus also includes interaction axioms between the Int-connectives and DualInt-

connectives. Recently, Pinto and Uustalu have suggested that BiInt has potential

applications in the area of type theory [95]; Filinski [43] and Crolard [28] have already

done initial investigations in this direction. Additionally, Curien and Herbelin [29],

and Ariola et al [4] have studied the type theory of classical logic with the exclusion

connective.

2.2.4.2 Syntax

Formally, formulas of bi-intuitionistic logic are given by the following grammar, where

p is an atom:

A := p | > | ⊥ | A ∧ A | A ∨ A | A → A | ¬A | A−<A |∼ A.

The connectives → and ¬ are those of intuitionistic logic, the connectives −< and

∼ are those of dual intuitionistic logic and the connectives ∨ and ∧ are from both.

2.2.4.3 Relationship to classical logic

Note that because of conservativity over Int, BiInt is different from classical logic

with an exclusion connective. Similarly, conservativity over DualInt means that the

exclusion connective is independent and cannot be defined using the other connec-

tives. However, BiInt can be seen as being closer to classical logic than either Int or

DualInt is, as evidenced by the following two theorems of BiInt which combine the

two negations:

A →∼ ¬A (2.2.4)

¬ ∼ A → A (2.2.5)

Moreover, the law of excluded middle holds for the DualInt-fragment of BiInt:

the following formula is a theorem of BiInt, if A contains only the DualInt-connectives:

A∨ ∼ A (2.2.6)

20 Background and motivation

w
 > for all w
w

⊥ for all w

w
 A ∨ B iff w
 A or w
 B
w

A ∨ B iff w

A and w

B

w
 A ∧ B iff w
 A and w
 B
w

A ∧ B iff w

A or w

B

w
 ¬A iff ∀u ≥ w . u

A
w

¬A iff ∃u ≥ w . u
 A

w
 A → B iff ∀u ≥ w . u

A or u
 B
w

A → B iff ∃u ≥ w . u
 A and u

B

w
 ∼ A iff ∃u ≤ w . u

A
w

∼ A iff ∀u ≤ w . u
 A

w
 A−<B iff ∃u ≤ w . u
 A and u

B
w

A−<B iff ∀u ≤ w . u

A or u
 B

Figure 2.7: Forcing and rejecting of BiInt-formulae

Similarly, the law of non-contradiction holds for the Int-fragment of BiInt: the

following formula is a theorem of BiInt, if A contains only the Int-connectives:

(A ∧ ¬A) → B (2.2.7)

2.2.4.4 Kripke semantics

We now review Rauszer’s Kripke semantics for bi-intuitionistic logic [100]: it is the

obvious combination of the Int and DualInt semantics we have already presented.

A BiInt frame is a pair 〈W,≤〉, where W is a non-empty set of worlds and ≤ is a

reflexive and transitive binary accessibility relation. A BiInt model M = 〈W,≤, V〉
is a BiInt frame 〈W,≤〉 together with a valuation V : Atoms → 2W which obeys

persistence:

∀u, w ∈ W.∀p ∈ Atoms. (if w ≤ u and w ∈ V(p) then u ∈ V(p)) .

Definition 2.2.1. Given a model M = 〈W,≤, V〉, a world w ∈ W and an atom p ∈ Atoms,

we write w
 p (w forces p) iff w ∈ V(p), and we write w

p (w rejects p) iff w 6∈ V(p).

We define forcing and rejecting of compound formulae by mutual recursion in Figure 2.7.

From the semantics, it is clear that the connectives ¬ and ∼ can be derived from

→ and −< respectively. Therefore from now on we restrict our attention to the con-

nectives →, −<, ∧, ∨ only.

§2.2 Non-classical logics 21

By induction on the length of a formula A, it follows that the persistence property

also holds for formulae, and the reverse persistence property holds for formulae, that

is:

Persistence: ∀M = 〈W,≤, V〉.∀w ∈ W.∀A ∈ Fml.∀u ≥ w.(if w
 A then u
 A).

Reverse persistence: ∀M = 〈W,≤, V〉.∀w ∈ W.∀A ∈ Fml.∀u ≤ w.(if w

A then u

A).

If we view the ≤ relation as describing the flow of time, then the persistence prop-

erty says that once an atomic fact becomes known (true), it will remain known at all

future points in time. Moreover, more atomic facts may become known as time pro-

gresses. Conversely, the reverse persistence property says that if an atomic fact is

unknown (false) at the current point in time, it has been unknown at all past points in

time. Moreover, more facts may become unknown as we revisit earlier points in time.

Definition 2.2.2. Given a model M = 〈W,≤, V〉 and a world w ∈ W, we write:

w
 Γ iff ∀A ∈ Γ .w
 A w

∆ iff ∀A ∈ ∆.w

A.

Definition 2.2.3 (Validity and falsifiability). Given sets Γ and ∆ of BiInt formulae, a

BiInt formula A and a BiInt model M = 〈W,≤, V〉, we write:

M
 A iff ∀w ∈ W.w
 A M

A iff ∃w ∈ W.w

A

M
 Γ iff ∀w ∈ W.w
 Γ M

∆ iff ∃w ∈ W.w

∆.

Then validity, falsifiability, satisfiability and unsatisfiability are:

validity ∀M.M
 A (2.2.8)

falsifiability ∃M.M

A (2.2.9)

satisfiability ∃M = 〈W,≤, V〉.∃w ∈ W.w
 A (2.2.10)

unsatisfiability ∀M = 〈W,≤, V〉.∀w ∈ W.w

A. (2.2.11)

We write �BiInt A for “A is BiInt-valid”, and

�

BiInt A for “A is BiInt-falsifiable”.

2.2.4.5 Rauszer’s Hilbert calculus

Rauszer’s Hilbert calculus for BiInt [99; 100] consists of the axioms given in Figure 2.8

and the following two inference rules:

A → B A
B

MP
A

¬ ∼ A
R

Axioms 2.2.21 to 2.2.29 relate the Int and DualInt connectives - we call these in-

teraction axioms. We now give some intuitions (no pun intended) on the exclusion con-

nective and interaction axioms. While implication A → B can be read as “if we can

verify A, then we can verify B”, exclusion A−<B can be read as “we can verify A but

we do not have enough information to verify B”. Then the intuition of axiom 2.2.21 in

22 Background and motivation

(A → B) → ((B → C) → (A → C)) (2.2.12)

A → A ∨ B (2.2.13)

B → A ∨ B (2.2.14)

(A → C) → ((B → C) → ((A ∨ B) → C)) (2.2.15)

(A ∧ B) → A (2.2.16)

(A ∧ B) → B (2.2.17)

(C → A) → ((C → B) → (C → (A ∧ B))) (2.2.18)

(A → (B → C)) → ((A ∧ B) → C) (2.2.19)

((A ∧ B) → C) → (A → (B → C)) (2.2.20)

A → (B ∨ (A−<B)) (2.2.21)

(A → B) → (¬B → ¬A) (2.2.22)

(A−<B) →∼ (A → B) (2.2.23)

((A−<B)−<C) → (A−<(B ∨ C)) (2.2.24)

¬(A−<B) → (A → B) (2.2.25)

(A → (B−<B)) → ¬A (2.2.26)

¬A → (A → (B−<B)) (2.2.27)

((B → B)−<A) →∼ A (2.2.28)

∼ A → ((B → B)−<A) (2.2.29)

Figure 2.8: Hilbert axioms for BiInt

§2.2 Non-classical logics 23

Figure 2.8 is “if we can verify A, then we can either verify B, or we can verify the fact

that (we can verify A but we do not have enough information to verify B)”.

2.2.4.6 Sequent calculi

While the proof theory of intuitionistic logic and dual intuitionistic logic separately

has been studied extensively and there are many cut-free sequent calculi for intu-

itionistic logic (e.g. [46; 36; 34]) and dual intuitionistic logic (e.g. [114]), the case for

bi-intuitionistic logic is less satisfactory. Although Rauszer presented a sequent cal-

culus for bi-intuitionistic logic and “proved” it cut-free [99], Pinto and Uustalu [95]

have recently shown that it fails cut-elimination. Rauszer’s sequent calculus is in-

complete without cut because it does not handle the interaction between intuitionistic

implication → and dual intuitionistic exclusion −<.

We now give an example that explains this interaction in more detail. Consider

the sequent4 p ⇒ q, r → ((p−<q) ∧ r) [95]. It has a derivation using cut in Rauszer’s

G1 [99], as shown below:

Example 2.2.4.

idq ⇒ q idp ⇒ p
−<Rp ⇒ q, p−<q

idp−<q, r ⇒ p−<q idp−<q, r ⇒ r
∧R

p−<q, r ⇒ (p−<q) ∧ r
→R

p−<q ⇒ r → ((p−<q) ∧ r)
cut

p ⇒ q, r → ((p−<q) ∧ r)

The end sequent contains three complementary pairs, a positive and negative oc-

currence of p, q and r respectively: note that p occurs positively and q negatively in

the p−<q in the end sequent. In particular, the pairs involving p and q occur in the

axioms and are essential for the derivation.

Now consider a backward attempt to derive this sequent without cut. The only

non-structural rule that could give the conclusion is the →R rule. But for intuitionistic

soundness, the conclusion of →R in Rauszer’s calculus needs to be restricted to a

singleton succedent. Thus we must weaken away the q to obtain the premise p ⇒
r → ((p−<q) ∧ r). But we have lost the essential occurrence of q. The only alternative

is to weaken away p or r → ((p−<q) ∧ r). But neither of the resulting premises is

derivable.

Crolard’s dependency tracking [28] is one way to relax the intuitionistic restric-

tion of “singletons on the right” to retain the essential q, so that cases like the above

example remain cut-free derivable whilst retaining soundness. The idea is to record

the dependencies between antecedents and succedents of the axioms, and use these

dependencies to impose side conditions on the rules. Thus dependency tracking is

not immediately suitable for backward proof search since the side conditions need to

be known when the rules are applied backwards, before the axioms, and hence the

dependencies, are computed.

4Using our previous notation, we would write p0 ⇒ q0, r0 → ((p0−<q0) ∧ r0). However, from now
on, we will leave out the subscripts for readability.

24 Background and motivation

2.2.5 Tense logic

Having introduced BiInt, we now turn our attention to tense logic, which bears many

similarities to BiInt, both from semantical and proof theoretic perspectives. Tense

logic is an extension of modal logic with black box � and black diamond � operators.

2.2.5.1 Syntax

Formally, formulas of tense logic are given by the following grammar, where p is an

atom:

A := p | > | ⊥ | ¬A | A → A | A ∧ A | A ∨ A | �A | ♦A | �A | �A.

The axioms of minimal tense logic Kt are all the axioms of classical propositional

logic, plus the following [85]:

�(A → B) → (�A → �B) (2.2.30)

�(A → B) → (�A → �B) (2.2.31)

A → ��A (2.2.32)

A → �♦A (2.2.33)

The theorems of Kt are those that are generated from the above axioms and their

substitution instances using the following rules:

A → B A
B

MP
A

�A
Nec�

A
�A

Nec�

As can be seen from axioms 2.2.32 and 2.2.33, there is an interaction between the

� and � connectives of tense logic, as well as between the � and ♦ connectives. This

interaction makes the development of a cut-free sequent calculus non-trivial, just as

in the case of bi-intuitionistic logic, where there is an interaction between → and −<.

2.2.5.2 Kripke semantics

Semantically, Kt can be defined using Kripke frames with bi-directional relations.

More formally: A Kt-frame is a pair 〈W, R〉, with W a non-empty set (of worlds)

and R ⊆ W × W. A Kt-model is a triple 〈W, R, V〉, with 〈W, R〉 a Kt frame and

V : Atoms → 2W a valuation mapping each atom to the set of worlds where it is

true.

For a world w ∈ W and an atom p ∈ Atoms, if w ∈ V(p) then we write w
 p and

say p is forced by w; otherwise we write w 6
 p and say p is rejected by w. Forcing of

compound formulae is defined by mutual recursion in Figure 2.9. A Kt-formula A is

valid if and only if it is forced by all worlds in all models, i.e. if and only if w
 A for

all 〈W, R, V〉 and for all w ∈ W. A Kt-formula A is falsifiable if and only if it is rejected

§2.2 Non-classical logics 25

w
 > for all w w 6
 ⊥ for all w
w
 ¬A iff w 6
 A w
 A → B iff w 6
 A or w
 B
w
 A ∨ B iff w
 A or w
 B w
 A ∧ B iff w
 A and w
 B
w
 �A iff ∀u. if wRu then u
 A w
 ♦A iff ∃u.wRu and u
 A
w
 �A iff ∀u. if uRw then u
 A w
 �A iff ∃u.uRw and u
 A

Figure 2.9: Forcing of Kt-formulae

by some world in some model, i.e. if and only if w 6
 A for some 〈W, R, V〉 and for

some w ∈ W.

Viewed philosophically, tense logic allows to reason about the flow of time [85]:

while the � and ♦ modalities refer to future worlds, the � and � modalities refer to

past worlds.

Just as the basic modal logic K can be extended by various axioms that semantically

correspond to frame conditions, we can build extensions of the minimal tense logic

Kt. For example, we can obtain the reflexive-transitive extension Kt.S4 by adding the

following axioms:

4� : �A → ��A (2.2.34)

4� : �A → ��A (2.2.35)

T♦ : A → ♦A (2.2.36)

T� : A → �A (2.2.37)

2.2.6 Relationship between bi-intuitionistic logic and tense logic

In this section, we highlight the similarities between BiInt and tense logic with re-

flexive transitive frames Kt.S4 by reviewing two translations between these logics.

2.2.6.1 Wolter’s translation from BiInt to Kt.S4

Starting with Gödel [48], many authors have developed translations from Int-formulae

to S4-formulae that preserve validity, that is, they map valid Int-formulae to valid

S4-formulae, and falsifiable Int-formulae to falsifiable S4-formulae. Using the usual

symmetry between Int and DualInt, Int-to-S4 translations can be extended to give

translations from BiInt to Kt.S4. The following translation has been developed by

Wolter [121]; an equivalent translation was presented by Łukowski [82], but his paper

contains a typographical error.

Definition 2.2.5 (BiInt to Kt.S4 translation). In the following, q is an atomic formula, A

26 Background and motivation

and B are BiInt formulae, and T(.) is a Kt.S4 formula.

T(q) = �q

T(A ∧ B) = T(A) ∧ T(B)
T(A ∨ B) = T(A) ∨ T(B)
T(¬A) = �¬T(A)
T(A → B) = �(T(A) → T(B))
T(∼A) = �¬T(A)
T(A−<B) = �(T(A) ∧ ¬T(B))

Theorem 2.2.6. The decision problem for BiInt is PSPACE-complete.

Proof. To show that BiInt is in PSPACE, we use the polynomial translation of BiInt

into Kt.S4 given in Definition 2.2.5. Since Kt.S4 is in PSPACE [105], we know that BiInt

is also in PSPACE.

To show that BiInt is PSPACE-hard, we use the fact that BiInt is an extension

of Int, which is PSPACE-complete [106], and hence PSPACE-hard. Therefore BiInt is

PSPACE-complete. Q.E.D.

Although we won’t be using it in the rest of this thesis, there is a reverse translation

from S4 to Int which we briefly review next.

2.2.6.2 Fernandez’s translation from S4 to Int

Fernandez [41] has developed a polynomial validity-preserving translation from S4-

formulae to Int-formulae; see also earlier unpublished work by Egly [37]. As both

authors point out, the translation from S4-formulae to Int-formulae is much more

difficult than the reverse direction. Fernandez explains this difficulty semantically:

while S4 models consist of Kripke frames which contain clusters of worlds (a cluster

is a set if worlds C such that for any u, w ∈ C, it is the case that uRw), Int frames

are trees. Additionally, S4 obeys the law of the excluded middle, while Int does not.

The basic idea of Fernandez’s translation is to use a “layering” scheme to simulate

the clusters of S4 models in Int. He adds a number of new propositional atoms to

simulate �-formulae.

We conjecture that it is possible to extend Fernandez’s translation to a transla-

tion from Kt.S4-formulae to BiInt-formulae: using the symmetry between Int and

DualInt, we would add special propositional atoms to simulate �-formulae of Kt.S4

similarly to Fernandez’s translation of �-formulae.

2.3 Motivation

As discussed in Section 2.2.4.6, Rauszer’s sequent calculus for bi-intuitionistic logic

is incomplete without the cut rule. As illustrated by Uustalu’s counterexample, tra-

ditional sequent calculi methods fail for bi-intuitionistic logic. This problem is not

§2.3 Motivation 27

unique to bi-intuitionistic logic; it is also present in a range of other non-classical log-

ics (e.g. [5; 7; 25]). As a result, a range of other extended sequent mechanisms have

been developed that give cut-free sequent calculi for complicated logics where tradi-

tional sequent calculi fail.

These extended sequent mechanisms differ from traditional sequent mechanisms

in terms of the structures contained in the sequents, as well as the kind of rules that

can be applied to the sequents. For example, a hypersequent [5; 7; 25] consists of one or

more traditional sequents, while a nested sequent is a tree of traditional sequents [87;

88; 35; 73; 17; 19; 97].

The aim of this thesis is to develop extended sequent calculi mechanisms for bi-

intuitionistic and tense logic, as well as the combined bi-intuitionistic tense logic. We

will do so using two complementary approaches which we introduce next.

2.3.1 A calculus of derivations and refutations

In Part I (Chapter 3) of this thesis, we will give a purely syntactic cut-free sequent

calculus for bi-intuitionistic logic which combines derivations and refutations as first-

class citizens. We now set the scene by reviewing the notions of traditional deriva-

tion calculi, theorems, refutation calculi, non-theorems, proof/refutation search and

counter-models, and explaining why a combined calculus makes sense.

Derivation calculi are used to reason about a syntactic derivability relation `. For

example, Gentzen’s LJ [46] is a sequent calculus for propositional intuitionistic logic,

where a judgement ` Γ ⇒ A means the sequent Γ ⇒ A is derivable: that is, the

formula A is syntactically derivable from the multiset of formulae Γ in intuitionistic

logic. Increasingly, sequent calculi are used to decide whether Γ ⇒ A is derivable

by applying the rules backwards, so it has become important to study such calculi

from this “proof-search” perspective. Indeed, a “contraction-free” variant of LJ, called

LJT [36] can be used for proof-search in intuitionistic logic. But note that a single

non-derivation is not really a first-class citizen in this setting.

Refutation calculi are syntactic formalisms for reasoning about a syntactic refutabil-

ity relation a (say). They show syntactically that a formula is a non-theorem and were

introduced to modern logic by Łukasiewicz [81], although the idea originated from

Aristotle. For example, Goranko has given refutation calculi for some modal log-

ics [50] where the judgement a A means that A is refutable, i.e., a non-theorem of the

logic. The notion of “backward refutation-search” asks whether A is refutable under

the assumptions in Γ , and some refutation calculi have been designed with this aim.

For example, using Γ̂/∆̌ as a conjunction/disjunction of all the members of Γ/∆, Pinto

and Dyckhoff use “sequents” of the form Γ 6⇒ ∆ to give a refutation “sequent” calcu-

lus CRIP for intuitionistic logic [94] where the judgement `CRIP Γ 6⇒ ∆ means that the

formula Γ̂ → ∆̌ is a non-theorem. Importantly, these calculi produce refutations that

are first-class objects (trees).

As usual, we can relate syntactic derivability (in LJT) to semantics if the calculus

is sound and complete: thus ` Γ ⇒ A (in LJT) iff Γ̂ → A is valid (in intuitionistic

logic). Such a correspondence is vital in many applications: we pinpoint why A is not

28 Background and motivation

derivable from Γ by constructing a counter-model showing that Γ̂ → A is falsifiable. But

since derivation calculi do not construct counter-models directly, the counter-model

is constructed using meta-level reasoning to “stitch” together many non-derivations

of the sequent Γ ⇒ A.

Dually, we can relate syntactic refutability (in CRIP) to semantics if the calculus is

sound and complete: thus ` Γ 6⇒ A (in CRIP) iff the formula Γ̂ → A is falsifiable (in

intuitionistic logic). Indeed, specially designed refutation calculi, such as CRIP, allow

us to reason about refutability and obtain a counter-model since a single refutation

corresponds directly to a counter-model. Of course, they are not immediately suitable

for demonstrating validity.

Although derivation calculi and refutation calculi are usually studied as distinct

calculi, there are desirable meta-level relationships between derivability and refutabil-

ity (for the same logic). For example, for any input Γ and A, either there is a derivation

of Γ ⇒ A in LJT, or a refutation of Γ 6⇒ A in CRIP [94]. It therefore makes sense to

ask what would happen if we were to combine derivation calculi with refutation cal-

culi in one single setting. For example, the modus tollens rule used in some refutation

calculi combines a derivation of A → B and a refutation of B to obtain a refutation of

A. As Goranko suggests, we could also combine derivations and refutations to produce

derivations. Indeed, he predicts that such combined deductive systems “have a greater

potential efficiency than the orthodox ones, since they can employ on a syntactic level

self-reference to some of their meta-features, which are beyond the expressive abilities

of the traditional systems” [50].

To retain the link with semantics as well as the potential for backward (proof or

refutation) search, the combined calculus must be such that derivations/refutations

preserve validity / counter-models downwards while providing a decision proce-

dure if our logic is decidable. There is a subtlety here, for Larchey-Wendling [80]

has already combined proof search and explicit counter-model construction to obtain

an efficient decision procedure for an extension of intuitionistic logic called Gödel-

Dummett logic. But Larchey-Wendling constructs a counter-model merely as a tool

used at certain times during proof search. Thus his calculus does not contain deriva-

tions and refutations as first-class citizens.

2.3.2 Nested sequent calculi

In Part II of this thesis, we consider the broader problem of proof search in display cal-

culi (introduced shortly), and use display-like calculi to develop reasoning techniques

for bi-intuitionistic logic (Chapters 4 and 5), tense logic (Chapter 6) and a combination

of the two logics (Chapter 7).

Belnap’s Display Logic [12] (we prefer the term display calculi) is an extremely

general proof-theoretical framework; see also Chapter A for a more detailed intro-

duction to display calculi. A display calculus obeys the display property: any sequent

containing a particular formula occurrence A can be transformed into another sequent

in which the occurrence of A is either the whole of the antecedent or the whole of the

succedent, using only a subset of the rules called the display postulates. The occur-

§2.3 Motivation 29

...
A ⇒ B > C wR

A ⇒ C, (B > C)
rp<

(A < (B > C)) ⇒ C
wL

(A < (B > C)), B ⇒ C
rp>

A < (B > C) ⇒ B > C
rp<

A ⇒ (B > C), (B > C)
cR

A ⇒ B > C →R
A ⇒ B → C

Figure 2.10: Non-terminating backward proof search attempt in a display calculus for bi-

intuitionistic logic

rence of A is then said to be displayed. The most pleasing property of display calculi

however is that if the rules of the display calculus enjoy eight easily checked condi-

tions, then the calculus is guaranteed to obey cut-admissibility. That is, one single

cut-admissibility proof suffices for all display calculi. This modularity makes it an ex-

cellent framework for designing sequent calculi for logics, particularly when we wish

to mix and match the intuitionistic, modal, or substructural aspects of different logics

into a new logic [116; 51]. In particular, Goré has developed a display calculus for bi-

intuitionistic logic [53], and Wansing has recently extended a variant of Goré’s system

with constructive negation [120].

The generality of display calculi is obtained by adding a structural proxy for ev-

ery logical connective and using residuation principles to implement the display prop-

erty. For example, a display calculus for bi-intuitionistic logic contains Gentzen’s

“comma”, but also two binary structural connectives “>” and “<” which allow us

to hide structures by nesting them inside one another. The following are the logi-

cal rules for implication and exclusion in Goré’s display calculus for bi-intuitionistic

logic [53]:

X ⇒ A B ⇒ Y →L
A → B ⇒ X > Y

Z ⇒ A > B →R
Z ⇒ A → B

A < B ⇒ Z −<L
A−<B ⇒ Z

A ⇒ X Y ⇒ B −<R
X < Y ⇒ A−<B

Here > is a structural proxy for →, and < is a structural proxy for −<.

The following are the structural rules for the connectives “>” and “<”, where

rp> implements residuation between comma and >, and rp< implements residuation

between comma and <, and double lines indicate that the rule may be used both

reading from top to bottom and vice versa:

X, Y ⇒ Z
rp>

Y ⇒ X > Z

Z ⇒ X, Y
rp<

Z < Y ⇒ X

The main disadvantage of display calculi is that the display postulates can and

30 Background and motivation

must create large structures during the process of displaying a particular formula oc-

currence, making display calculi bad for backward proof-search. More specifically, the

invertible structural display postulate rules (for example, rp> and rp< above) allow

“pointless” shuffling of structures and easily lead to non-termination of proof search

if applied naively. These rules are at the heart of display calculi and guarantee the

display property, therefore eliminating them without losing the display property is

not obvious.

Another issue is the presence of explicit contraction and weakening rules in dis-

play calculi which are couched in terms of structures rather than formulae. Replacing

these rules with ones based on formulae can break one of the conditions for a display

calculus, namely, the (C6/C7) condition that “each rule is closed under simultaneous

substitution of arbitrary structures for congruent parameters” [75]. Absorbing them

completely to obtain a “contraction-free” calculus is thus not an obvious step. Fig-

ure 2.10 illustrates both problems.

To sum up, a disciplined proof-theoretic methodology for transforming a display

calculus into a more manageable traditional “contraction-free” and “residuation rule

free” calculus whilst preserving cut-admissibility is an important goal. Although dis-

play calculi were not designed for automated proof-search there is a surprising lack

of interest in the study of proof search for display logics: the only exceptions are the

works of Wansing [117] and Restall [101].

Our first step towards taming display calculi is to limit the structural connec-

tives used in the calculi and consequently, the number of display postulates. Specif-

ically, we work within display structures which can be viewed as a tree of tradi-

tional Gentzen’s sequents, called nested sequents, which have been used previously by

Kashima [73] and, independently, by Brünnler [17; 18] and Poggiolesi [97] to present

several modal and tense logics. We comment further on the various nested sequent

calculi in Section 8.2.

Nested sequent calculi allow either “shallow” or “deep” inference: in shallow in-

ference calculi inference rules are applied at the top/root level only, and residuation

rules are used to re-orient the trees to bring the required structures to the top-level.

In deep inference calculi, inference rules can be applied at any level, and propagation

rules move formulae around the trees. “Deep” inference is a refinement of shallow

inference, since we do need to bring the required structure to the top-level to apply

a rule to a formula in this structure, but we can simply apply the rule to the formula

inside the structure.

Since residuation rules are largely responsible for the difficulty in finding a proof

search procedure for display-like calculi, our second step is therefore to eliminate

these residuation rules without losing completeness; and we will do so by using deep

inference. More precisely, we will show that we can simulate residuation using deep

inference for a range of logics: bi-intuitionistic logic (chapter 5) and tense logic (chap-

ter 6), and finally bi-intuitionistic tense logic (chapter 7), as well as their sub-logics

and some extensions. Note that the idea of using deep inference for taming proof

search is not entirely new: Areces and Bernardi [3] appear to be the first to have no-

ticed the connection between deep inference and residuation in display logic in the

§2.4 Conclusion 31

context of categorial grammar. However, they do not give an explicit proof of this

correspondence as we do here for our calculi.

2.4 Conclusion

In this chapter, we have reviewed the concepts of syntax, semantics, proof calculi

and proof search in the context classical propositional logic. Additionally, we intro-

duced a number of object logics that we will use throughout the rest of the thesis:

modal, intuitionistic, dual-intuitionistic, bi-intuitionistic and, finally, tense logic. We

then discussed the limitations of traditional proof search methods for logics such as

bi-intuitionistic and tense logic, and introduced the two approaches we will use to

address these limitations.

32 Background and motivation

Part I

Bi-intuitionistic logic

33

Chapter 3

A calculus of derivations and

refutations for bi-intuitionistic logic

In this chapter, we give a purely syntactic cut-free sequent calculus for bi-intuitionistic

logic which combines derivations and refutations as first-class citizens. In particular,

both soundness and completeness are proved in a purely top-down manner. This is

the first cut-free and complete sequent calculus for bi-intuitionistic logic. Moreover,

it can be used for backward proof search. We remind the reader that the syntax and

semantics of bi-intuitionistic logic were described in Section 2.2.4.

In section 3.1, we give a high-level overview of our sequent calculus and show

an example derivation that illustrates our calculus, before we formally present the

calculus GBiInt in section 3.2. We prove the soundness and completeness of GBiInt

in section 3.3. In section 3.4, we describe a decision procedure for bi-intuitionistic

logic and analyse its computational complexity. In section 3.5, we compare GBiInt to

previous work.

Note. The results of this chapter have been published in [22] and [55].

3.1 An overview of GBiInt

A GBiInt sequent is an expression S Γ ⇒ ∆ P or S Γ 6⇒ ∆ P where Γ/∆ are tra-

ditional sets of formulae, S/P are sets of sets of formulae, and the turnstiles ⇒ and

6⇒ indicate whether we have a derivation or a refutation. The extra components S/P
are variables, which are a mechanism to pass information from premises to conclu-

sions [103], similarly to attributes in attribute grammars [74]. In our case, the vari-

ables are sets of sets of formulae containing subformulae discovered at the leaves of

refutation trees. Our rules transmit these essential formulae down towards the root

of refutations, and use these formulae to obtain a derivation from a refutation. In fact,

we obtain a demand-driven cut as viewed from a backward (proof/refutation) search

perspective: rather than having to guess cut formulae at each sequent, we perform

cut-free backward search as usual, and use the contents of variables when we find a

refutation: Section 3.2 gives details.

We then relate our generalised syntactic judgement
?
⇒ (either ⇒ or 6⇒) to a gener-

35

36 A calculus of derivations and refutations for bi-intuitionistic logic

alised semantic judgement (either validity or falsifiability) via a combined soundness

and completeness proof. We show that the rules preserve the generalised seman-

tic judgement downwards: validity/falsifiability is preserved downwards in deriva-

tion/refutation trees. Thus derivable sequents are valid and refutable sequents are

falsifiable. Additionally, we show that in certain special cases we can combine a refu-

tation with a derivation to obtain a derivation. Finally, we give a terminating proce-

dure which decides whether a generalised sequent Γ
?
⇒ ∆ is derivable or refutable

using a number of side conditions that the rules must obey. Thus completeness fol-

lows directly from our ability to derive or refute every input sequent, rather than

indirectly from the failure of a systematic proof search procedure.

We now give a high-level overview of how our sequent calculus GBiInt solves the

difficulties posed by interaction formulae in bi-intuitionistic logic that we discussed

in section 2.2.4.

Recall that the sequent p ⇒ q, r → ((p−<q) ∧ r) has a derivation using cut in

Rauszer’s calculus, but does not have a cut-free derivation [95]. A cut-free derivation

of this sequent in our calculus GBiInt ends as shown below:

· · ·
{· · · } p, r 6⇒ (p−<q) ∧ r {{p−<q}}

· · ·
p ⇒ q, r → ((p−<q) ∧ r), p−<q

→R2
p ⇒ q, r → ((p−<q) ∧ r)

In addition to the traditional antecedent and succedent, our sequents contain two

non-traditional components, which we call variables. In the derivation sketch above,

{{p−<q}} is one of the variables of the top left sequent; we have not shown the vari-

ables of the other sequents. The “ 6⇒” turnstile in the left premise denotes a refutation,

the “⇒” turnstile in the right premise denotes a derivation, and the →R2 rule allows

us to compose the refutation with a derivation to produce a derivation.

Notice that the variable {{p−<q}} in the left premise contains the crucial subfor-

mula p−<q, which is also present in the formula part of the right premise. This is a

crucial feature of our calculus; it can also be viewed in an operational way as a “flow”

of variables from a refutation in the left premise of the →R2 rule to the derivation in

the right premise of the rule.

3.2 The sequent calculus

We now present a Gentzen-style sequent calculus for BiInt. The sequents have a

non-traditional component in the form of variables that are sets of sets of formulae.

When our calculus is used for backward search, the variables are instantiated at cer-

tain leaves of the search tree, and passed to lower sequents from premises to conclu-

sion. Note that the variables are not names for Kripke worlds, so our sequents contain

no semantic features.

§3.2 The sequent calculus 37

3.2.1 Sequents

We introduce an extended syntax to simplify the presentation of some of our sequent

rules.

Definition 3.2.1. If A is a BiInt formula, then A is an extended BiInt formula. If Q is

a set {{A0
0, · · · , An0

0 }, · · · , {A0
m, · · · , Anm

m }} of sets of BiInt formulae, then
∨
Q and

∧
Q

are extended BiInt formulae with intended semantics

∨
Q ≡ (A0

0 ∧ · · · ∧ An0
0) ∨ · · · ∨ (A0

m ∧ · · · ∧ Anm
m) (3.2.1)

∧
Q ≡ (A0

0 ∨ · · · ∨ An0
0) ∧ · · · ∧ (A0

m ∨ · · · ∨ Anm
m). (3.2.2)

The following semantics follows directly from Definition 3.2.1:

Definition 3.2.2. Given a BiInt model M = 〈W,≤, V〉, a world w ∈ W, and two extended

BiInt formulae
∨
S and

∧
P , we write:

w

∨
S iff ∃Σ ∈ S .∀A ∈ Σ.w
 A w

∨
S iff ∀Σ ∈ S .∃A ∈ Σ.w

A

w

∧
P iff ∀Π ∈ P .∃A ∈ Π.w
 A w

∧
P iff ∃Π ∈ P .∀A ∈ Π.w

A.

We can now extend Definition 2.2.2 of forcing of sets of BiInt formulae to forcing of sets of

extended BiInt formulae in the obvious way. That is, if Γ and ∆ are sets of extended BiInt

formulae, and A is an extended BiInt formula, then:

w
 Γ iff ∀A ∈ Γ .w
 A w

∆ iff ∀A ∈ ∆.w

A

Definition 3.2.3 (Sequent). A GBiInt sequent/antisequent is an expression of one of the

forms

S Γ ⇒ ∆ P S Γ 6⇒ ∆ P

and consists of the following components: a left hand side (LHS) Γ which is a set of extended

BiInt formulae; a right hand side (RHS) ∆ which is a set of extended BiInt formulae; two

variables S , P , each of which is a set of sets of BiInt formulae; and a turnstile which is

either ⇒ for traditional sequents or 6⇒ for antisequents.

We shall often use the following simplifications when referring to sequents:

S Γ
?
⇒ ∆ P when we are referring to either a traditional sequent or an antisequent;

Γ ⇒ ∆ or Γ 6⇒ ∆ or Γ
?
⇒ ∆ when the values of the variables are not important.

We now define the semantics of a sequent. In the following, τ is a translation

from sequents to BiInt formulae, and σ is a translation from sequents to semantic

judgements, and Γ̂/∆̌ is a conjunction/disjunction of all the members of Γ/∆:

τ(S Γ
?
⇒ ∆ P) =

∨
S ∧ Γ̂ → ∆̌ ∨

∧
P (3.2.3)

σ(S Γ ⇒ ∆ P) = �BiInt τ(S Γ ⇒ ∆ P) (3.2.4)

σ(S Γ 6⇒ ∆ P) =

�

BiInt τ(S Γ 6⇒ ∆ P) (3.2.5)

38 A calculus of derivations and refutations for bi-intuitionistic logic

The reading of (3.2.4)/(3.2.5) is that the formula corresponding to a sequent/antisequent

is valid/falsifiable.

Definition 3.2.4. A sequent Γ
?
⇒ ∆ is saturated iff all of the following hold:

Γ ∩ ∆ = ∅
Γ and ∆ contain only BiInt formulae

if A ∧ B ∈ Γ then A ∈ Γ and B ∈ Γ if A ∧ B ∈ ∆ then A ∈ ∆ or B ∈ ∆

if A ∨ B ∈ Γ then A ∈ Γ or B ∈ Γ if A ∨ B ∈ ∆ then A ∈ ∆ and B ∈ ∆

if A → B ∈ Γ then A ∈ ∆ or B ∈ Γ if A−<B ∈ ∆ then A ∈ ∆ or B ∈ Γ

if A−<B ∈ Γ then A ∈ Γ if A → B ∈ ∆ then B ∈ ∆.

Definition 3.2.5. A sequent Γ
?
⇒ ∆ is strongly saturated iff all of the following hold:

(i) Γ
?
⇒ ∆ is saturated (ii) if A → B ∈ ∆ then A ∈ Γ (iii) if A−<B ∈ Γ then B ∈ ∆.

3.2.2 Sequent rules and various calculi

We now describe the sequent rules, axioms and anti-axioms that are used to build

derivation and refutation trees. Rather than summarising all the rules in one large

table, we break them into groups and describe each group in turn. We start with the

axioms and anti-axiom, which are the leaves of derivations and refutations respectively:

Axioms: ∅ Γ , A ⇒ ∆, A ∅ id ∅ ⊥, Γ ⇒ ∆ ∅ ⊥L ∅ Γ ⇒ ∆,> ∅ >R

Anti-axiom: {Γ} Γ 6⇒ ∆ {∆} Ret where Γ 6⇒ ∆ is strongly saturated.

The axioms id, ⊥L and >R have the traditional sequent turnstile “⇒”, while the

anti-axiom Ret has the antisequent turnstile “ 6⇒”. The rules will propagate these turn-

stiles down the trees, eventually arriving at the root, which will be a derivation if the

root sequent is a traditional sequent (“⇒”), or a refutation if the root sequent is an

antisequent (“ 6⇒”). Note that the anti-axiom Ret instantiates the values of the S and

P variables to {Γ} and {∆} respectively, while the axioms id, ⊥L and >R set the vari-

ables to empty sets ∅. The sequent rules will transmit the variables down the trees,

and combine variables from multiple premises in some cases.

Using terminology from [52], the static rules of our sequent calculus are:

α-rules:

S Γ , A ∧ B, A, B
?
⇒1 ∆ P

∧L

S Γ , A ∧ B
?
⇒0 ∆ P

S Γ
?
⇒1 ∆, A ∨ B, A, B P

∨R

S Γ
?
⇒0 ∆, A ∨ B P

S Γ , A−<B, A
?
⇒1 ∆ P

−<I
L

S Γ , A−<B
?
⇒0 ∆ P

S Γ
?
⇒1 ∆, A → B, B P

→I
R

S Γ
?
⇒0 ∆, A → B P

Where
?
⇒1 =

?
⇒0 ∈ {⇒, 6⇒}.

§3.2 The sequent calculus 39

β-rules:

S1 Γ , A ∨ B, A
?
⇒1 ∆ P1 S2 Γ , A ∨ B, B

?
⇒2 ∆ P2 ∨L

S1 ∪ S2 Γ , A ∨ B
?
⇒0 ∆ P1 ∪ P2

S1 Γ
?
⇒1 ∆, A ∧ B, A P1 S2 Γ

?
⇒2 ∆, A ∧ B, B P2 ∧R

S1 ∪ S2 Γ
?
⇒0 ∆, A ∧ B P1 ∪ P2

S1 Γ , A → B
?
⇒1 ∆, A P1 S2 Γ , A → B, B

?
⇒2 ∆ P2 →L

S1 ∪ S2 Γ , A → B
?
⇒0 ∆ P1 ∪ P2

S1 Γ , B
?
⇒1 ∆, A−<B P1 S2 Γ

?
⇒2 ∆, A−<B, A P2 −<R

S1 ∪ S2 Γ
?
⇒0 ∆, A−<B P1 ∪ P2

Where
?
⇒0 =

{

⇒ if
?
⇒1 = ⇒ and

?
⇒2 = ⇒

6⇒ otherwise.

These rules use many features of Dragalin’s GHPC [34] for intuitionistic logic (Int);

we have added symmetric rules for the dual intuitionistic logic (DualInt) connec-

tive −<. We chose Dragalin’s multi-succedent calculus since the restriction to single

succedents/antecedents for some sequents is one of the causes of incompleteness in

Rauszer’s calculus for BiInt [99]; see also Maehara [83] for early work on a multi-

succedent calculus for Int. But using Dragalin’s calculus and its dual does not give

us BiInt completeness. We therefore also follow Schwendimann’s approach [103] of

passing relevant information from premises to conclusions using variables, which we

instantiate at the refutation leaves: see Ret above.

We have also added the static rule →I
R for implication on the right (and symmet-

rically, −<I
L) originally given by Śvejdar [107]. Although Śvejdar himself does not

give the semantics behind this rule, or explain the precise role it plays in his calculus,

his rules are best explained by reading them from conclusion to premises, as used in

backward search. Consider the →I
R rule when

?
⇒0 =

?
⇒1 = 6⇒. As we shall show

later, finding a refutation of the conclusion involves falsifying the formula A → B.

Rather than immediately creating the successor that falsifies A → B, the →I
R rule first

pre-emptively adds B to the right hand side of the sequent. The rule effectively uses

the reverse persistence property: if some successor v forces A and rejects B, then the

current world w must reject B too. These rules are very useful in our termination proof

and saturation strategy in Section 3.4.

Contrary to GHPC and other traditional sequent calculi, our →L rule and the sym-

metric −<R contain implicit contractions on formulae other than just the principal

formula. That is, during backward search, they carry their principal formula and all

side formulae into the premises. Our rules ∧L, ∧R, ∨L and ∨R also carry their prin-

cipal formula into their premises. We chose this approach because it allows us to

give a semantic interpretation to the anti-axiom Ret. Because the static rules keep

the principal formula from conclusion to premises, we can immediately deduce that a

40 A calculus of derivations and refutations for bi-intuitionistic logic

strongly saturated sequent, i.e., an instance of Ret, has a counter-model. The proof of

Lemma 3.3.4, case “ 6⇒”, makes use of this property of our calculus.

Many of our rules use the generic “
?
⇒” turnstile, and a clause that specifies whether

the conclusion should have the “⇒” or the “ 6⇒” turnstile. This indicates that various

combinations of “⇒” and “ 6⇒” are possible for the premises, and determines the turn-

stile of the conclusion in each case, as illustrated by the following example.

Example 3.2.6. All of the following are possible instances of the ∧R rule:

1. An instance which combines two derivations into a derivation:

∅ q, r ⇒ q ∧ r, q ∅ ∅ q, r ⇒ q ∧ r, r ∅
∧R

∅ q, r ⇒ q ∧ r ∅

2. An instance which combines a derivation and a refutation into a refutation:

∅ q, r ⇒ q ∧ p, q ∅ {{q, r}} q, r 6⇒ q ∧ p, p {{q ∧ p, p}}
∧R

{{q, r}} q, r 6⇒ q ∧ p {{q ∧ p, p}}

3. An instance which combines a refutation and a derivation into a refutation:

{{q, r}} q, r 6⇒ p ∧ q, p {{p ∧ q, p}} ∅ q, r ⇒ p ∧ q, q ∅
∧R

{{q, r}} q, r 6⇒ p ∧ q {{p ∧ q, p}}

4. An instance which combines two refutations into a refutation:

{{t, r}} t, r 6⇒ q ∧ p, q {{q ∧ p, q}} {{t, r}} t, r 6⇒ q ∧ p, p {{q ∧ p, p}}
∧R

{{t, r}} t, r 6⇒ q ∧ p {{q ∧ p, q}, {q ∧ p, p}}

As Example 3.2.6 shows, the conclusion of each of our rules assigns the variables

based on the variables returned from the premise(s). In defining the rules, we use

the indices i, 1, 2 to indicate the premise from which the variable takes its value. For

rules with a single premise, the variables are simply passed down from premise to

conclusion. For example, the conclusion of ∧L has the same value of the variable S as

the premise. However, for rules with multiple premises, we take a union of the sets

of sets corresponding to each premise. For example, in Example 3.2.6(4) above, the

P variable contains both {q ∧ p, q} and {q ∧ p, p}, where the first set is from the left

premise and the second set is from the right premise.

Thus the sets of sets stored in our variables determinise the return of formulae to

lower sequents: semantically, each refutable premise corresponds to an open branch,

and at this point we do not know whether it will stay open once processed in conjunc-

tion with lower sequents. Therefore, we need to temporarily keep all open branches.

See also Remark 3.3.10 for a syntactic motivation for the set-of-sets concept.

The following are the transitional rules of our sequent calculus:

§3.2 The sequent calculus 41

S A ⇒ ∆, B P
−<L1S Γ , A−<B ⇒ ∆ P

S Γ , A ⇒ B P →R1
S Γ ⇒ ∆, A → B P

Prem�

1 · · · Prem�

m Prem→
1 · · · Prem→

n
Refute

{Γ ′} Γ , A1 � B1, · · · , Am � Bm 6⇒ ∆, C1 → D1, · · · , Cn → Dn {∆′}

where

(1) Γ ′ = Γ , A1 � B1, · · · , Am � Bm (2) ∆′ = ∆, C1 → D1, · · · , Cn → Dn

(3) Γ ′ 6⇒ ∆′ is saturated

(4) Γ does not contain � -formulae and ∆ does not contain → -formuale

(5) ∀i ∈ {1, · · · , m} ∀ j ∈ {1, · · · , n} :

(a) Prem�

i = S�

i Ai 6⇒ ∆′, Bi P
�

i (b) Prem→
j = S→

j Γ ′, C j 6⇒ D j P→
j

(c) ∃Σ ∈ S�

i .Σ ⊆ Γ ′ (d) ∃Π ∈ P→
j .Π ⊆ ∆′.

The →R1 rule is from Dragalin’s GHPC [34], and the −<L1 is symmetric for the

DualInt case: these rules introduce their principal →-formula on the right or −<-

formula on the left. The Refute rule composes refutations of its premises to give a

refutation of a sequent that may contain a number of →-formulae on the right and

−<-formulae on the left. That the premises be refutable is stipulated by side condi-

tions (5a) and (5b), which state that all premises have the “ 6⇒” turnstile and hence are

refutations. The extra side conditions (3), (4), (5c) and (5d) ensure that the conclusion

of an instance of Refute is falsifiable (see the proof of Lemma 3.3.7) meaning that only

certain refutations can be combined using this rule.

Example 3.2.7. The following is an example instance of Refute:

{s} s 6⇒ b, a → b, t {b, a → b, t} {r, s, q → r, s−<t, a} r, s, q → r, s−<t, a 6⇒ b {b}
Refute

{r, s, q → r, s−<t} r, s, q → r, s−<t 6⇒ b, a → b {b, a → b}

In this case:

• m = 1, n = 1, Γ = {r, s, q → r}, ∆ = {b}

• Prem�

1 = {s} s 6⇒ b, a → b, t {b, a → b, t}

• Prem→
1 = {r, s, q → r, s−<t, a} r, s, q → r, s−<t, a 6⇒ b {b}.

The following special logical rules are used to derive additional transitional rules:

S1 Γ , Π1 ⇒ ∆ P1 · · · Sm Γ , Πm ⇒ ∆ Pm ∨

L⋃m
1 Si Γ ,

∨
({Π1, · · · , Πm}) ⇒ ∆

⋃m
1 Pi

S1 Γ ⇒ Σ1, ∆ P1 · · · Sn Γ ⇒ Σn, ∆ Pn ∧

R⋃n
1 Si Γ ⇒

∧
({Σ1, · · · , Σn}), ∆

⋃n
1 Pi

S1 Γ , A1 ⇒ ∆ P1 · · · Sk Γ , Ak ⇒ ∆ Pk ∧

L⋃k
1 Si Γ ,

∧
({{A1, · · · , An}}) ⇒ ∆

⋃k
1 Pi

S Γ ,
∧

Σ1,
∧

Σ2 ⇒ ∆ P ∧∪
LS Γ ,

∧
(Σ1 ∪ Σ2) ⇒ ∆ P

S1 Γ ⇒ A1, ∆ P1 · · · Sk Γ ⇒ Ak, ∆ Pk ∨

R⋃k
1 Si Γ ⇒

∨
({{A1, · · · , Ak}}), ∆

⋃k
1 Pi

S Γ ⇒
∨

Π1,
∨

Π2, ∆ P ∨∪
RS Γ ⇒

∨
(Π1 ∪ Π2), ∆ P

42 A calculus of derivations and refutations for bi-intuitionistic logic

These rules simply allow us to introduce extended BiInt formulae. The
∨

L rule

allows us to introduce
∨

-formulae on the left, and the symmetric
∧

R rule allows

us to introduce
∧

-formulae on the right. The
∧

L allows us to introduce a
∧

-formula,

containing a single set containing a set of formulae, on the left, and the
∧∪

L rule allows

us to introduce a larger
∧

-formula from two smaller ones; the
∨

R and
∨∪

R rules are

dual.

The following structural rules are also used to derive additional transitional rules:

S1 Γ ⇒ ∆, A P1 S2 A, Γ ⇒ ∆ P2
cut

S1 ∪ S2 Γ ⇒ ∆ P1 ∪ P2

S Γ ⇒ ∆ P (LW)
S A, Γ ⇒ ∆ P

S Γ ⇒ ∆ P (RW)
S Γ ⇒ ∆, A P

Finally, the following derived transitional rules are used to achieve cut-free com-

pleteness, and their derived status will be explained shortly:

S A 6⇒ ∆, B P S1 Γ , A−<B, Σ1
?
⇒1 ∆ P1 · · · Sn Γ , A−<B, Σn ∆

?
⇒n Pn −<L2⋃n

1 Si Γ , A−<B
?
⇒0 ∆

⋃n
1 Pi

Where S = {Σ1, · · · , Σn} for n ≥ 1 and
?
⇒0 =

{

⇒ if
?
⇒i = ⇒ for all 1 ≤ i ≤ n

6⇒ otherwise

S Γ , A 6⇒ B P S1 Γ
?
⇒1 Π1, ∆, A → B P1 · · · Sm Γ

?
⇒m Πm, ∆, A → B Pm →R2

⋃m
1 Si Γ

?
⇒0 ∆, A → B

⋃m
1 Pi

WhereP = {Π1, · · · , Πm} for m ≥ 1 and
?
⇒0 =

{

⇒ if
?
⇒i = ⇒ for all 1 ≤ i ≤ m

6⇒ otherwise

These rules compose a refutation of the left-most premise with one or more deriva-

tions/refutations of the right premises, where the formula-parts of the right premises

contain formula sets like Σi and Πi found in the variables of the left-most premise.

That is, the right premise Si Γ
?
⇒i Πi, ∆, A → B Pi of the →R2 rule contains the

formula set Πi ∈ P , where P is one of the variables of the left-most premise.

We now explain how we can use the →R2 and −<L2 rules during backward search

by giving an operational left-to-right reading for the rules. We first refute the left-most

premise, which gives an instantiation of S and P . In the →R2 case, we then extract the

variable P , and create m ≥ 1 right premises, where each right premise corresponds

to the conclusion together with additional formulae found in one of the members of

P . We then attempt to derive/refute the right premises using backward search, and

put
?
⇒0 equal to “⇒” or “ 6⇒” depending on whether or not all the right premises are

derivable.

Having introduced all the sequent rules, we now define several sub-calculi that we

shall use throughout the rest of the chapter: see Figure 3.1. GBiInt0 is the base system,

which is sound (Lemma 3.3.8) and complete (although we do not show it), but uses

§3.2 The sequent calculus 43

GBiInt0 GBiInt1 GBiInt

Axioms, anti-axioms, static and transitional rules X X X

Special logical rules X X

Structural rules X X

Derived transitional rules X X

Figure 3.1: Calculi GBiInt0, GBiInt1 and GBiInt

the cut rule. GBiInt1 is obtained from GBiInt0 by adding two rules →R2 and −<L2,

which are GBiInt0-derivable and hence sound (Lemma 3.3.11). GBiInt is obtained

from GBiInt1 by removing the special rules and structural rules and is cut-free, sound

(Theorem 3.3.14) and complete (Theorem 3.4.15). GBiInt with additional blocking

conditions is also the sequent calculus we use for backward search in Section 3.4. We

use the generic name GBiInt• when we refer to any of the calculi, for example, in

definitions, descriptions of rules and so on. Note that all these calculi are equivalent

in terms of provability, and we only use separate calculi to structure soundness and

completeness proofs.

Note that our main calculus GBiInt is cut-free: the cut rule is used only for show-

ing the soundness of our derived transitional rules →R2 and −<L2. Intuitively, we

show how variable-passing absorbs essential instances of (cut) in a demand-driven

way. Proving that variables absorb all essential cuts would give syntactic cut-admissi-

bility.

GBiInt also has the subformula property. This is obvious for the LHS- and RHS-

components of the sequents. For the variables, the subformula property is of a global

nature: when the variables are instantiated at instances of the Ret anti-axiom, they

take values from the LHS- and RHS-components of this anti-axiom. When the vari-

ables are passed down towards the root of refutations, they are combined using the

union operator, so no new formulae are created. Thus all formulae are subformulae

of the end-sequent.

GBiInt is also free of all other structural rules; that is, explicit contraction and

weakening is not required to achieve completeness. We could have also started with

sequents as multisets instead of sets and shown that contraction is admissible, but

since all our static rules contain implicit contractions, this would be a simple and

redundant exercise.

Definition 3.2.8. A GBiInt• tree is a tree of sequents where each leaf is an instance of

the GBiInt• axioms or anti-axiom, and parents are obtained from children by instantiating

a GBiInt• rule. The height of a GBiInt• tree is the number of sequents on the longest

branch. A derivation is a GBiInt• tree rooted at S Γ ⇒ ∆ P . A sequent is derivable if

there exists a derivation for it; we write ` S Γ ⇒ ∆ P . A refutation is a GBiInt• tree

rooted at S Γ 6⇒ ∆ P . A sequent is refutable if there exists a refutation for it; we write

` S Γ 6⇒ ∆ P .

We deliberately use ` for both derivability and refutability to emphasise their first-

class status.

44 A calculus of derivations and refutations for bi-intuitionistic logic

3.2.3 Example

We now revisit Uustalu’s example [95] that we first saw in Section 2.2.4, and show the

full derivation of this example using GBiInt. In all cases below, X := (p−<q) ∧ r.

Let (1) be the refutation below:

Ret
{{p, r, q}} p, r, q 6⇒ X, p � q {{X, p � q}}

id
∅ p, r ⇒ X, p � q, p ∅

�R
{{p, r, q}} p, r 6⇒ X, p � q {{X, p � q}}

Let (2) be the derivation below:

id
∅ p, q ⇒ q, r → X, X, p � q ∅

id
∅ p ⇒ q, r → X, X, p � q, p ∅

�R
∅ p ⇒ q, r → X, X, p � q ∅

Then the following is a cut-free derivation of Uustalu’s [95] formula p → (q ∨ (r →

((p−<q) ∧ r)), simplified to the sequent p
?
⇒ q, r → ((p−<q) ∧ r):

(1)
id

∅ p, r ⇒ X, r ∅
∧R

{{p, r, q}} p, r 6⇒ (p � q) ∧ r {{X, p � q}} (2)
→R2

∅ p ⇒ q, r → ((p � q) ∧ r) ∅

The top left anti-axiom in (1) is an instance of Ret because the sequent is strongly

saturated. The variables S and P that are assigned at this Ret anti-axiom transmit

information down to the parents and across to their siblings via the →R2 rule.

The key to the derivation is the bolded p−<q formula that occurs in the variable

P of the left-most leaf of (1) and in the RHS of the right premise (2) of →R2. Note

that →R2 has only one right premise here, since the P variable contains only one set

of formulae.

We can also read the above derivation as a backward search. We start with the

end-sequent p
?
⇒ q, r → ((p � q) ∧ r), which we want to prove or refute. Since the

only possible principal formula is a →-formula on the right, we know that we need

to use either →R1, →R2 or Refute. In all cases, we need to consider the sequent p, r
?
⇒

(p � q) ∧ r. We then find a refutation of the sequent p, r
?
⇒ (p � q) ∧ r, obtaining

{{p, r, q}} p, r 6⇒ (p � q) ∧ r {{X, p � q}} and thus receiving back the variables S =
{{p, r, q}} and P = {{X, p � q}}. We then apply the →R2 rule since its side conditions

are met. The left premise is {{p, r, q}} p, r 6⇒ (p � q) ∧ r {{X, p � q}}, and we create

a single right premise because the P variable contains a single member {X, p � q}.

Since the right premise is derivable, so is the end-sequent, so we put
?
⇒ = ⇒ and

obtain ∅ p ⇒ q, r → ((p � q) ∧ r) ∅.

3.3 Soundness and completeness

In this section, we prove the soundness and completeness of GBiInt with respect to

the semantics of BiInt (recall Section 2.2.4.4 where we introduced BiInt semantics).

We start by proving that the base rules of GBiInt0 are sound.

§3.3 Soundness and completeness 45

3.3.1 Soundness of GBiInt0

We first observe that the variables are empty at the root of derivations.

Lemma 3.3.1. If S Γ ⇒ ∆ P is derivable then S = ∅ and P = ∅.

Proof. By induction on the height of the given derivation. This is obvious for all

GBiInt• rules which combine “⇒”-premises into a “⇒”-conclusion since the union

of empty sets is ∅.

The more interesting cases are the rules →R2 and −<L2, which combine a refutation

(“ 6⇒”) of the left-most premise with a combination of refutations (“ 6⇒”) or derivations

(“⇒”) of the right premises. Here, the variables at the conclusion are the union of

the variables of the right premises only. Since the condition in these rules specifies

that a derivation of the conclusion is obtained only when all the right premises are

derivations, again the variables at the conclusion are the union of empty sets, giving

the empty set as required. Q.E.D.

We will prove soundness of the rules by showing that each rule preserves the

semantic judgement σ from (3.2.4) and (3.2.5) downwards, so we start by formally

defining this concept.

Definition 3.3.2. A GBiInt• rule ρ with conclusion S0 Γ0
?
⇒0 ∆0 P0 and n ≥ 1 premises,

with i-th premise Si Γi
?
⇒i ∆i Pi, preserves the semantic judgement σ downwards if every

premise is the conclusion of a GBiInt• derivation or refutation and:

∀i ∈ {1, · · · , n}. if σ(Si Γi
?
⇒i ∆i Pi) then σ(S0 Γ0

?
⇒0 ∆0 P0).

Lemma 3.3.3. The static, special, →R1 and −<L1 logical rules, and all structural rules pre-

serve the semantic judgement σ downwards.

Proof. Easily follows from translations 3.2.4 and 3.2.5 and the definitions of the rules.

Q.E.D.

Lemma 3.3.4. The semantic judgement σ holds at the leaves of GBiInt• trees. That is, the

⇒-leaves are valid, and the 6⇒-leaves are falsifiable.

Proof.

⇒: A leaf Γ ⇒ ∆ must be an instance of id, ⊥L or >R. In all cases, the corresponding

formula shown below is valid:

id
∨
∅ ∧ Γ̂ ∧ A → ∆̌ ∨ A ∨

∧
∅ = Γ̂ ∧ A → ∆̌ ∨ A

⊥L
∨
∅ ∧ Γ̂ ∧⊥ → ∆̌ ∨

∧
∅ = Γ̂ ∧⊥ → ∆̌

>R
∨
∅ ∧ Γ̂ → ∆̌ ∨>∨

∧
∅ = Γ̂ → ∆̌ ∨>.

6⇒: A leaf Γ 6⇒ ∆ must be an instance of Ret. We show that the corresponding formula
∨
S ∧ Γ̂ → ∆̌ ∨

∧
P is falsifiable. Since Ret assigns S := {Γ} and P := {∆}, the

46 A calculus of derivations and refutations for bi-intuitionistic logic

corresponding formula under translation τ is

∨
{Γ} ∧ Γ̂ → ∆̌ ∨

∧
{∆} = Γ̂ ∧ Γ̂ → ∆̌ ∨ ∆̌ = Γ̂ → ∆̌.

To falsify Γ̂ → ∆̌, we create a model with a single reflexive world w0, and for

every atom p in Γ , we let V(p) = {w0}, and for every atom q in ∆, we let V(q) =
∅. An atom cannot be both in Γ and ∆ since Γ 6⇒ ∆ must be strongly saturated

and thus Γ ∩ ∆ = ∅.

To show that Γ̂ → ∆̌ is falsifiable at w0, we need to show that w0
 Γ and w0

∆.

For every atom in Γ and ∆, the valuation ensures both. For every composite for-

mula A, we do a simultaneous induction on its length. Since the side condition

of Ret implies that Γ 6⇒ ∆ is strongly saturated, we know that the required sub-

formulae are already in Γ or ∆ as appropriate, and they fall under the induction

hypothesis.

Thus we know that w0
 Γ and w0

∆, therefore Γ̂ → ∆̌ is falsifiable.

Q.E.D.

Definition 3.3.5. Given an instance of Refute, we use →-premises to refer to the premises

Prem→
1 , · · · , Prem→

n , and −<-premises to refer to the premises Prem�

1 , · · · , Prem�

m.

Definition 3.3.6. Given two valuations ϑ1 = Atoms1 ∪ {>,⊥} → 2W1 and ϑ2 = Atoms2 ∪
{>,⊥} → 2W2 with W1 ∩W2 = ∅, we define the disjoint union of ϑ1 and ϑ2 as a set of pairs:

ϑ1 ∪ ϑ2 := {(p, S) | p ∈ Atoms1 ∪ Atoms2 ∪ {>,⊥}
and S = {w | w ∈ W1 ∪ W2 and [w ∈ ϑ1(p) or w ∈ ϑ2(p)]}.

The proof of the next lemma has similarities to parts of a traditional completeness

proof.

Lemma 3.3.7. The Refute rule preserves the semantic judgement downwards.

Proof. We assume that the semantic judgement σ holds for all the premises, and show

that σ holds for the conclusion. That is, we assume that all the premises are falsifiable

and show that the conclusion is falsifiable. To show that the conclusion is falsifiable,

we need to show that there exists a BiInt model M = 〈W,≤, V〉 and a world w ∈ W

such that w
 Γ ′ and w

∆′. We construct the model as follows:

Step 1. Let W := {w0} and ≤0:= {(w0, w0)}.

Step 2. For all atoms p ∈ Γ , let V(p) := {w0}. For all atoms q ∈ ∆, let V(q) := ∅.

That is, the valuation makes every atom in Γ true at w0. Since side condition

(3) of Refute ensures that the conclusion is saturated, Definition 3.2.4 implies

Γ ∩ ∆ = ∅, and hence the valuation makes every atom in ∆ false at w0. Then,

since the conclusion is saturated, induction on the size of members of Γ and ∆

gives w0
 Γ and w0

∆.

Step 3. For each Ai−<Bi ∈ Γ ′:

§3.3 Soundness and completeness 47

(a) Since the premise Prem�

i = S�

i Ai 6⇒ ∆′, Bi P
�

i is falsifiable by assump-

tion, we know there exists a BiInt model Mi = 〈Wi,≤i, ϑi〉 and a world

wi ∈ Wi such that wi

∨
S�

i , Ai and wi

∆′, Bi,
∧
P�

i . If necessary, we re-

name the worlds in Wi to ensure their names are disjoint from the names of

worlds already in W.

(b) Let W := W ∪ Wi.

(c) Let ≤0:=≤0 ∪ ≤i ∪{(wi, w0)} thus making wi an ≤0-predecessor of w0.

(d) Let V := V ∪ ϑi using Definition 3.3.6.

Step 4. For each C j → D j ∈ ∆′, perform an analogous procedure to Step 3, using

Prem→
j = S→

j Γ ′, C j 6⇒ D j P
→
j , except sub-step (c) becomes ≤0:=≤0 ∪ ≤ j

∪{(w0, w j)}.

Step 5. Let ≤ be the transitive closure of ≤0.

Step 6. We now have that 〈W,≤〉 is a BiInt frame.

Step 7. To show that M = 〈W,≤, V〉 is a BiInt model, we also need to show that it

obeys persistence. From Steps 3 and 4 we know that w0 has ≤0-predecessors wi

and ≤0-successors w j. Forward persistence holds between all wi and w0, and

between w0 and all w j because:

(a) Step 3 gives (i) wi

∨
S�

i , Ai. We have Ai ∈ Γ ′ because Ai−<Bi ∈ Γ ′ and

condition (3) of Refute implies Γ ′ 6⇒ ∆′ is saturated. Therefore (ii) w0
 Ai.

We have (iii) w0

∨
S�

i because of side condition (5c) of Refute and the

semantics of the
∨

connective: see Definition 3.2.2. From (ii) and (iii) we

get w0

∨
S�

i , Ai, and so every formula forced by the i-th ≤0-predecessor

wi is also forced by w0.

(b) By inspection, all →-premises 1 to n contain Γ ′. This gives us that every for-

mula found in Γ ′ and hence forced by w0 is also forced by all ≤0-successors

in Step 4.

Similarly, reverse persistence holds because of side condition (5d) of Refute and

the fact that all −<-premises 1 to m contain ∆′.

To show that persistence holds for all ≤-related worlds, we use transitivity of the

subset relation and the initial assumption, specifically the fact that persistence

holds in all models Mi and M j used in Steps 3 and 4.

Q.E.D.

Lemma 3.3.8. GBiInt0 is sound.

Proof. By Lemmas 3.3.3 to 3.3.7. Q.E.D.

48 A calculus of derivations and refutations for bi-intuitionistic logic

3.3.2 Soundness of GBiInt1

The only difference between GBiInt0 and GBiInt1 is that GBiInt1 contains the extra

transitional rules →R2 and −<L2. We now show that each of these rules is derivable

in GBiInt0. In particular, instances of →R2 and −<L2 can be seen as absorbing certain

instances of cut and weakening. Since GBiInt0 is sound, so are the extra derived

rules.

The following lemma is crucial for showing the soundness of →R2 and −<L2 be-

cause it shows that the variables at the root of a refutation in fact contain the infor-

mation required to turn the refutation into a derivation. More specifically, we will

use the S variable to obtain a derivation from the refutation when we apply the −<L2

rule, and will use the P variable when we apply the →R2 rule. Reading GBiInt• trees

top-down, we do not know which variable will be required at a lower sequent, so we

keep both S and P .

Lemma 3.3.9. For all S , Γ , ∆,P :

if ` S Γ 6⇒ ∆ P , then ` ∅
∧
P , Γ ⇒ ∆ ∅ and ` ∅ Γ ⇒ ∆,

∨
S ∅.

Proof. By induction on the height of the refutation of S Γ 6⇒ ∆ P .

Base Case: A refutation of height 1 must be an instance of Ret:

{Γ} Γ 6⇒ ∆ {∆} Ret where Γ 6⇒ ∆ is strongly saturated

That is, S = {Γ} and hence ∅ Γ ⇒ ∆,
∨
S ∅ is ∅ Γ ⇒ ∆,

∨
{Γ} ∅. Then the

following is a derivation of ∅ Γ ⇒ ∆,
∨
{Γ} ∅, where Γ = {γ1, · · · , γk} for some

k ≥ 1:

id
∅ Γ ⇒ ∆, γ1 ∅ · · ·

id
∅ Γ ⇒ ∆, γk ∅ ∨

R∅ Γ ⇒ ∆,
∨
{Γ} ∅

Dually for
∧
P on the left.

IH: Assume the lemma holds for all refutations of height ≤ k, and for all S , Γ , ∆,P .

Induction step: Consider a refutation of height k + 1, and the lowest rule application.

There are two cases:

Case 1: For all rules except Refute, we can use the induction hypothesis for the

premises to easily obtain the required derivation. For example, consider the ∧R rule:

S1 Γ
?
⇒1 ∆, A ∧ B, A P1 S2 Γ

?
⇒2 ∆, A ∧ B, B P2 ∧R

S1 ∪ S2 Γ
?
⇒0 ∆, A ∧ B P1 ∪ P2

Where
?
⇒0=

{

⇒ if
?
⇒1 = ⇒ and

?
⇒2 = ⇒

6⇒ otherwise

Since the conclusion is refutable by assumption, we know that
?
⇒0 = 6⇒, then by

the condition of the rule one or both of
?
⇒1 and

?
⇒2 is also 6⇒.

The cases when either
?
⇒1 = 6⇒ or

?
⇒2 = 6⇒ are straightforward. If both

?
⇒1 = 6⇒

and
?
⇒2 = 6⇒ then both premises are the roots of refutations of height ≤ k. Then

the induction hypothesis gives derivations δ1 of ∅
∧
P1, Γ ⇒ ∆, A ∧ B, A ∅ and δ2 of

∅
∧
P2, Γ ⇒ ∆, A ∧ B, B ∅, from which we obtain the following derivation:

§3.3 Soundness and completeness 49

δ1

∅
∧
P1, Γ ⇒ ∆, A ∧ B, A ∅

LW
∅

∧
P1,

∧
P2, Γ ⇒ ∆, A ∧ B, A ∅

δ2

∅
∧
P2, Γ ⇒ ∆, A ∧ B, B ∅

LW
∅

∧
P1,

∧
P2, Γ ⇒ ∆, A ∧ B, B ∅

∧R
∅

∧
P1,

∧
P2, Γ ⇒ ∆, A ∧ B ∅ ∧∪

L∅
∧

(P1 ∪ P2), Γ ⇒ ∆, A ∧ B ∅

Dually for
∨
S on the right.

Case 2: Consider the Refute rule. That is, S = {Γ ′} and hence ∅ Γ ′ ⇒ ∆′,
∨
S ∅

is ∅ Γ ′ ⇒ ∆′,
∨
{Γ ′} ∅. Then a derivation of ∅ Γ ′ ⇒ ∆′,

∨
{Γ ′} ∅, where Γ ′ =

Γ , A1−<B1, · · · , An−<Bn = {γ1, · · · , γk} for some k ≥ 1 is:

id
∅ Γ ′ ⇒ ∆′, γ1 ∅ · · ·

id
∅ Γ ′ ⇒ ∆′, γk ∅ ∨

R∅ Γ ′ ⇒ ∆′,
∨
{Γ ′} ∅

Dually for
∧
P on the left. Q.E.D.

Remark 3.3.10. Case 1 of the induction step in the previous proof shows why we need to keep

variables as sets of sets and form the union of variables from all premises. If we only kept, say

P1, at the conclusion of the ∧R rule, the above case would not go through since we would not

be able to show that the right premise is derivable.

We now show that the →R2 and −<L2 rules are sound by showing how they absorb

certain instances of cut. Intuitively, we show that instead of guessing the cut formula

required for a derivation, we can combine the variables at the root of the refutation of

the left premise with a derivation of the right premise to obtain the derivation of the

conclusion.

Lemma 3.3.11. The →R2 and −<L2 rules are sound.

Proof. We show the case for →R2, the case for −<L2 is symmetric.

S Γ , A 6⇒ B P S1 Γ
?
⇒1 Π1, ∆, A → B P1 · · · Sm Γ

?
⇒m Πm, ∆, A → B Pm →R2

⋃m
1 Si Γ

?
⇒0 ∆, A → B

⋃m
1 Pi

There are two cases: either all the right premises are derivable, or at least one is

refutable.

1. If all the right premises are derivable, then
?
⇒0 = ⇒, i.e. the conclusion is also

derivable. We show how to replace an instance of →R2 with a sound instance of

the cut rule.

The left-most premise S Γ , A 6⇒ B P of →R2 is refutable. Then by Lemma 3.3.9,

there is a derivation δ1 of the sequent ∅
∧
P , Γ , A ⇒ B ∅.

All the right premises of →R2 are derivable, that is, Si Γ ⇒ ∆, A → B, Πi Pi has

a derivation δi
2, for 1 ≤ i ≤ n and n ≥ 1. By Lemma 3.3.1, we have that Si = ∅

and Pi = ∅, thus each δi
2 is a derivation of ∅ Γ ⇒ ∆, A → B, Πi ∅. Then let δ2

be a derivation of ∅ Γ ⇒ ∆, A → B,
∧
P ∅, where P = {Π1, · · · , Πn} for n ≥ 1,

as shown below:

50 A calculus of derivations and refutations for bi-intuitionistic logic

δ1
2

∅ Γ ⇒ ∆, A → B, Π1 ∅ · · ·

δn
2

∅ Γ ⇒ ∆, A → B, Πn ∅ ∧

R∅ Γ ⇒ ∆, A → B,
∧
P ∅

Then a cut on
∧
P gives a sound derivation of the conclusion of →R2 as follows:

δ2

∅ Γ ⇒ ∆, A → B,
∧
P ∅

δ1

∅
∧
P , Γ , A ⇒ B ∅ →R1

∅
∧
P , Γ ⇒ ∆, A → B ∅

cut
∅ Γ ⇒ ∆, A → B ∅

Thus, if ∅ Γ ⇒ ∆, A → B ∅ is the conclusion of →R2 in GBiInt1, then there

is a GBiInt0 derivation of ∅ Γ ⇒ ∆, A → B ∅. We have used only the part of

Lemma 3.3.9 relating to P . The symmetric case of −<L2 requires the part relating

to S .

2. If any right premise is refutable, then
?
⇒0 = 6⇒, i.e. the conclusion is also refutable.

But the RHS of each right premise contains the RHS of the conclusion, while the

LHSs are the same, so if any right premise is falsifiable, then the conclusion is

also falsifiable.

Q.E.D.

We now illustrate the effect of the transformation in the previous lemma by show-

ing the example derivation of Section 3.2.3 using an instance of cut instead of an in-

stance of →R2.

Example 3.3.12 (Derivation using cut). Below is a GBiInt1-derivation of Uustalu’s [95]

interaction formula p → (q ∨ (r → ((p−<q) ∧ r)), simplified to the sequent p
?
⇒ q, r →

((p−<q) ∧ r). Let X := (p−<q) ∧ r and Y = r → X. This derivation uses a cut on p−<q

instead of →R2 and variables. All variables have a value of ∅ so we omit them to save space.

Id
q, p ⇒ q, Y, p � q

Id
p ⇒ p, q, Y, p � q

�R
p ⇒ q, Y, p � q

Id
p � q, p, r ⇒ X, p � q

Id
p � q, p, r ⇒ X, r

∧R
p � q, p, r ⇒ (p � q) ∧ r

→R1
p � q, p ⇒ q, r → ((p � q) ∧ r)

cut
p ⇒ q, r → ((p � q) ∧ r)

Comparing the derivation of Example 3.3.12 with that of Uustalu’s original deriva-

tion (Example 2.2.4) shows that their basic structure is the same. There are some nota-

tional differences since GBiInt1 uses variables (which are empty and omitted in this

case). Also, the cut rule in GBiInt1 is additive rather than multiplicative to ensure an

easy transformation of instances of →R2 and −<L2 into cut. A more significant differ-

ence is the hidden contraction in �R and ∧R, where the principal formula is carried

from the conclusion to the premises. As a consequence, the axioms of the derivation

§3.3 Soundness and completeness 51

of Example 3.3.12 contain additional formulae to those found in Example 2.2.4. The

additional formulae, and hence the contractions, are redundant in this case since the

rules have produced a derivation, but would be essential otherwise.

3.3.3 Soundness and completeness of GBiInt

The difference between GBiInt1 and GBiInt is that GBiInt omits the structural rules

and the special rules for
∧

and
∨

. Thus GBiInt is sound, since it is a subset of

GBiInt1, whose soundness we showed in the previous section. To show the complete-

ness of GBiInt, we will use the fact that all the rules preserve the semantic judgement

σ downwards, and that if a sequent is not derivable, then it is refutable. That is, a

refutation gives a semantically correct counter-model, and we can obtain such a refu-

tation whenever we cannot obtain a derivation. We now prove the precursor to the

soundness and completeness corollaries.

Theorem 3.3.13. For all S , Γ , ∆,P :

1. If ` S Γ ⇒ ∆ P then �BiInt τ(S Γ ⇒ ∆ P).

2. If ` S Γ 6⇒ ∆ P then

�

BiInt τ(S Γ 6⇒ ∆ P).

Proof. We proceed by simultaneous induction on the height of the derivation or refuta-

tion. If the height is 1, we have a leaf node, so both cases 1 and 2 follow by Lemma 3.3.4.

For all S , Γ , ∆,P , assume the lemma holds for all derivations/refutations of height

≤ k. Let ρ be the lowest rule application of a derivation/refutation of height k + 1.

The premises of ρ obey the IH. By Lemmas 3.3.3, 3.3.11 and 3.3.7, ρ preserves the

semantic judgement σ downwards. Thus, cases 1 and 2 hold for the conclusion of

ρ. Q.E.D.

In some sense, Theorem 3.3.13 is our main result, since it shows that derivabil-

ity/refutability captures validity/falsifiability. But traditionally, we wish to obtain

soundness, which says that derivability implies validity, and completeness, which

says that validity implies derivability. The traditional soundness result easily follows

from Theorem 3.3.13, as shown below:

Corollary 3.3.14 (Soundness). If ` S Γ ⇒ ∆ P then �BiInt Γ̂ → ∆̌.

Proof. By case 1 of Theorem 3.3.13, we have �BiInt τ(S Γ ⇒ ∆ P). Then by

Lemma 3.3.1, we have S = ∅ = P and thus �BiInt Γ̂ → ∆̌. Q.E.D.

Corollary 3.3.15 (Pre-completeness). If ` S Γ 6⇒ ∆ P then

�

BiInt Γ̂ → ∆̌.

Proof. By case 2 of Theorem 3.3.13, if ` S Γ 6⇒ ∆ P then

�

BiInt τ(S Γ 6⇒ ∆ P). That

is, there exists a BiInt model M = 〈W,≤, V〉 and a world w ∈ W such that w

∨
S , Γ

and w

∆,
∧
P . Then clearly w
 Γ and w

∆, that is,

�

BiInt Γ̂ → ∆̌. Q.E.D.

For full completeness, we also need decidability, which we establish next.

52 A calculus of derivations and refutations for bi-intuitionistic logic

3.4 Decision procedure and complexity

In this and the subsequent section, we concentrate only on GBiInt, that is, the sequent

calculus without cut and special rules, but with the derived transitional rules →R2 and

−<L2. We show that GBiInt is terminating and gives a decision procedure for BiInt.

Indeed, we can even create GBiInt trees automatically, using backward search.

We start with Γ
?
⇒ ∆, where

?
⇒ is unknown, and we want to determine whether

?
⇒ = ⇒ or

?
⇒ = 6⇒. We apply the rules of GBiInt backwards, using the systematic

procedure outlined in Figure 3.2. When the recursive calls of the procedure return,

they replace
?
⇒ with either ⇒ or 6⇒, depending on the derivability/refutability of the

subtrees and thus the appropriate rule form. At the end, our rules will deliver either

∅ Γ ⇒ ∆ ∅ or S Γ 6⇒ ∆ P .

We first outline a simple blocking condition to ensure termination.

Definition 3.4.1 (Blocking condition). Let ρ be a rule with n ≥ 1 premises πi, for 1 ≤ i ≤
n, and conclusion γ. Apply ρ backwards only if: ∀πi.(LHSπi

6⊆ LHSγ or RHSπi
6⊆ RHSγ).

Intuitively, the general blocking condition of Definition 3.4.1 states that we apply

a rule backwards only if the application results in a premise which is a strict superset

of the conclusion, for otherwise we would be in a loop. This simple condition, the

persistence property of BiInt and the contractions built into our static rules ensures

termination, as we show later in this section.

Remark 3.4.2. Note that Definition 3.4.1 implicitly includes the following:

if ρ = →R2 then ∀Π ∈ P .Π 6⊆ RHSγ (3.4.1)

if ρ = −<L2 then ∀Σ ∈ S .Σ 6⊆ LHSγ (3.4.2)

From a backward search perspective, the only difference between →R2, −<L2 and

the other rules is that we must receive the variables from the left-most premise, before

we can determine whether or not to create the right premises and fully apply the rule.

The intuition behind the classification of the logical rules in Section 3.2.2 is that

backwards applications of static rules add formulae to the current world in the counter-

model, transitional rules →R1 and −<L1 create new worlds and add formulae to them,

transitional rules →R2 and −<L2 update existing worlds with new interaction formu-

lae received from successors/predecessors, and the transitional rule Refute moves

back towards the root of the counter-model when successors/predecessors do not re-

turn any new information. The classification justifies the search strategy defined in

Figure 3.2.

Definition 3.4.3. For a BiInt-formula A, the subformulae s f (A) are defined as usual. The

subformulae of an extended BiInt-formula
∨
Q or

∧
Q are the subformulae of its members.

To show that the procedure in Figure 3.2 gives us a decision procedure, we need

to show that for all input Γ
?
⇒ ∆, it terminates and returns either true, meaning `

∅ Γ ⇒ ∆ ∅, or false, meaning ` S Γ 6⇒ ∆ P . We show termination first. So let

m = |s f (Γ ∪ ∆)| in the following definitions and lemmas.

§3.4 Decision procedure and complexity 53

Function Decide
Input: sequent π0 = Γ

?
⇒ ∆

Output: true (meaning ` ∅ Γ ⇒ ∆ ∅) or false (meaning ` S Γ 6⇒ ∆ P)

1. If ρ ∈ {id,⊥L ,>R} is applicable to π0 then return true

2. Else if ρ = Ret is applicable to π0 then return false

3. Else if ρ is a static rule that is applicable to π0 then

(a) Let π1, · · · , πn be the premises of ρ obtained from π0

(b) Return
∧n

i=1 Decide(πi)

4. Else if Decide(π1) = true for some premise instance π1 obtained from π0 via
ρ = →R1 then return true

5. Else if Decide(π1) = true for some premise instance π1 obtained from π0 via
ρ = −<L1 then return true

6. Else if Decide(π) = false for some left premise instance π obtained from π0 via
ρ = →R2 and condition 3.4.1 is met then

(a) Let πi for 1 ≤ i ≤ n and n ≥ 1 be the right premises of ρ obtained from π0

(b) Return
∧n

i=1 Decide(πi)

7. Else if Decide(π) = false for some left premise instance π of obtained from π0

via ρ = −<L2 and condition 3.4.2 is met then

(a) Let πi for 1 ≤ i ≤ n and n ≥ 1 be the right premises of ρ obtained from π0

(b) Return
∧n

i=1 Decide(πi)

8. Else ρ = Refute must be applicable to π0. Apply ρ and return false.

9. Endif

We have left out the variables for simplicity, but in each return statement it is implicit
that the variables are returned as specified in the conclusion of the rules defined in
Section 3.2.2. Also,

∧n
i=1 Decide(πi) is true iff Decide(πi) is true for all premises πi for

1 ≤ i ≤ n.

Figure 3.2: A proof search strategy for GBiInt

Definition 3.4.4 (LEN). Let >len be a lexicographic ordering of sequents:

(Γ2
?
⇒ ∆2) >len (Γ1

?
⇒ ∆1) iff [(|Γ2| > |Γ1|) or (|Γ2| = |Γ1| and |∆2| > |∆1|)] .

Definition 3.4.5. We use the following terms:

• successor rules to refer to →R1, →R2 and Refute.

• predecessor rules to refer to −<L1, −<L2 and Refute.

54 A calculus of derivations and refutations for bi-intuitionistic logic

• successor premises to refer to the premise of →R1, the left premise of →R2, and the

→-premises of Refute.

• predecessor premises to refer to the premise of −<L1, the left premise of −<L2, and

the −<-premises of Refute.

• transitional premises to refer to both predecessor premises and successor premises.

Definition 3.4.6. Given a GBiInt-tree T and a branch or part thereof B in T , we say that

B is successor-only if B contains only applications of static rules, →R1, →R2, and successor

premises. Similarly, B is predecessor-only if B contains only applications of static rules,

−<L1, −<L2, and predecessor premises. A branch is single-directional if it is successor-

only or predecessor-only. Finally, a branch contains a direction switch if it is not single-

directional.

Lemma 3.4.7. Every single-directional branch of every GBiInt-tree is O(m2) long.

Proof. We prove only the successor-only case since the predecessor-only case is sym-

metric.

We show that on every successor-only branch, the length of a sequent defined via

>len increases with every rule application, and that it can increase O(m2) times.

Consider a rule ρ, and a backwards application of ρ to some Γ
?
⇒ ∆, which yields n

premises Γi
?
⇒ ∆i, where 1 ≤ i ≤ n. If ρ is a static rule, then for all premises i, we have

(Γi
?
⇒ ∆i) >len (Γ

?
⇒ ∆) from the generalised blocking condition (Definition 3.4.1).

We only show the case for ρ = →R1 since the other cases are similar:

Case ρ = →R1: The principal formula is A → B. Consider the premise Γ1
?
⇒ ∆1.

According to our strategy, the →I
R rule has already been applied and thus B ∈ ∆,

so →R1 is applied only if A 6∈ Γ . Therefore, for the premise, we have |Γ1| > |Γ |.

The length of a sequent can increase either by adding a subformula to the LHS, or

by keeping the LHS unchanged and adding a subformula to the RHS. We can add a

subformula to the LHS at most m times. After each such addition, the length of the

RHS either remains the same (if a static rule was applied) or decreases to 1 (if →R1,

→R2 or Refute was applied). In the latter case, we can again add a subformula to the

RHS at most m − 1 times. Hence the length can increase O(m2) times. Q.E.D.

Definition 3.4.8 (Degree). The degree of a BiInt formula A is the number of → and −<

connectives in A. The degree of a sequent Γ
?
⇒ ∆ is defined as:

deg(Γ
?
⇒ ∆) = ∑

A∈s f (Γ∪∆)

deg(A)

Corollary 3.4.9. By the subformula property, the degree of a sequent cannot increase in back-

ward search. For any sequents γ1 and γ2, deg(γ2) < deg(γ1) if s f (γ2) (s f (γ1).

§3.4 Decision procedure and complexity 55

...

π1 = (A1
?
⇒ B1, ∆1)−<L1

Γ1, A1−<B1
?
⇒ ∆1

...

Γ0, A0
?
⇒ B0→R1

π0 = (Γ0
?
⇒ ∆0, A0 → B0)

...

Figure 3.3: GBiInt switching premises

That is, removing some formula A from a sequent during backward search de-

creases the degree of the sequent if A is not a subformula of any other formula in the

sequent since A no longer contributes to the sum of degrees of subformulae.

Lemma 3.4.10. Every rule of GBiInt has a finite number of premises.

Proof. Obvious for all rules except →R2 and −<L2. For →R2 and −<L2, the number

of premises is 1 + n, where n is the number of sets in the variable S or P of the left

premise. But both S and P are subsets of the powerset of s f (Γ ∪∆) of the end sequent

Γ
?
⇒ ∆. Therefore, each of S and P are of finite size O(2m), where m = |s f (Γ ∪

∆)|. Q.E.D.

Lemma 3.4.11. Let B be any branch of any GBiInt tree that contains a direction switch, and

let π0 be the conclusion of a successor (resp. predecessor) rule and let π1 be the premise of a

predecessor (resp. successor) rule. Then deg(π1) < deg(π0).

Proof. We do the case where B contains →R1 and −<L1: see Figure 3.3. An inspec-

tion of the rules in Section 3.2.2 shows that expanding π0 during backward search

using →R2 with the principal formula A0 → B0 yields the same successor premise

Γ0, A0
?
⇒ B0 as using →R1. Similarly for the corresponding →-premise of Refute, and

symmetrically for predecessor premises. Thus all other cases of direction switches are

equivalent from a backward search perspective.

Let C ∈ s f (π0) be some formula such that deg(C) = max({deg(A) | A ∈ s f (π0)}):

that is, C is one of the subformulae with the maximum degree. In particular, this

means that C is not a subformula of any formula with a larger degree. We shall now

show that C 6∈ s f (π1).

There are two cases:

C 6∈ s f (Γ0): Then C ∈ s f (∆0) or C = A0 → B0. In both cases, C 6∈ s f (π1).

C ∈ s f (Γ0): Then C ∈ s f (A1) or C ∈ s f (B1) implies deg(A1−<B1) > deg(C), contra-

dicting our assumption that deg(C) = max({deg(A) | A ∈ s f (π0)}). Therefore,

either:

56 A calculus of derivations and refutations for bi-intuitionistic logic

• C and all its occurrences in subformulae disappear from the sequent at the

premise of −<L1, in which case C 6∈ s f (π1), or

• C is moved to the RHS of the sequent by applying the →L rule to some for-

mula C → D ∈ s f (Γ0). However, since deg(C → D) > deg(C), this again

contradicts our assumption that deg(C) = max({deg(A) | A ∈ s f (π0)}).

We have shown that for some formula C we have C ∈ s f (π0) and C 6∈ s f (π1).

Also, by the subformula property of GBiInt we have s f (π1) ⊆ s f (π0). Together with

C ∈ s f (π0) and C 6∈ s f (π1), this means s f (π1) (s f (π0). Then by Corollary 3.4.9 we

have deg(π1) < deg(π0). Note that the steps indicated by vertical ellipses (dots) in

Figure 3.3 are arbitrary, since by Corollary 3.4.9 no rule can increase the degree of a

sequent. Since deg(π1) < deg(π0), every direction switch must decrease the degree of

the sequent. Q.E.D.

Lemma 3.4.12. Any branch in any GBiInt tree built via the strategy of Figure 3.2 is O(m3)
long.

Proof. By Lemma 3.4.7, we can move in one direction O(m2) times, before we must

stop or change direction. By Lemma 3.4.11, every direction change decreases the de-

gree of the sequent. We can change direction O(m) times since the degree of the end

sequent is
(

∑A∈s f (Γ∪∆) deg(A)
)

= O(m). Thus, every branch has length O(m2) ×

O(m) = O(m3). Q.E.D.

Theorem 3.4.13 (Termination). Every GBiInt-tree built via the strategy of Figure 3.2 is

finite.

Proof. By Lemmas 3.4.10 and 3.4.12, every tree is finitely branching, and every branch

is finite. Q.E.D.

Note that the strategy of Figure 3.2 is required for both completeness and termina-

tion. In particular, transitional rules must be applied only to saturated sequents as this

blocks the transitional rules from creating an infinite branch by repeatedly using the

same formula as the principal formula. The other aspects of the strategy are required

for completeness.

Theorem 3.4.14 (Decision procedure). For every Γ
?
⇒ ∆, there is an effective decision

procedure to decide whether ` ∅ Γ ⇒ ∆ ∅ or ` S Γ 6⇒ ∆ P , where S ⊆ 2s f (Γ∪∆) and

P ⊆ 2s f (Γ∪∆).

Proof. By Theorem 6.4.6, the backward search procedure of Figure 3.2 terminates for

all Γ , ∆. It is clear that cases 1 to 8 of Figure 3.2 are exhaustive, thus it is fully

deterministic and always returns an answer of either true (` ∅ Γ ⇒ ∆ ∅) or false (

` S Γ 6⇒ ∆ P). Q.E.D.

We can now obtain traditional completeness and its “dual” as corollaries:

Corollary 3.4.15 (Completeness). If �BiInt Γ̂ → ∆̌ then ` ∅ Γ ⇒ ∆ ∅.

§3.4 Decision procedure and complexity 57

Proof. Suppose �BiInt Γ̂ → ∆̌. Run our procedure on Γ
?
⇒ ∆, and obtain by Theo-

rem 3.4.14 that either ` ∅ Γ ⇒ ∆ ∅ or ` S Γ 6⇒ ∆ P . In the first case we are done,

since we have shown what was required. In the second, Theorem 3.3.15 gives us that

�

BiInt Γ̂ → ∆̌. But this contradicts our assumption that �BiInt Γ̂ → ∆̌. Hence the

second case is impossible. Q.E.D.

Corollary 3.4.16. If

�

BiInt Γ̂ → ∆̌ then ` S Γ 6⇒ ∆ P for some S and P .

Proof. Symmetric to the proof of Corollary 3.4.15. Q.E.D.

Lemma 3.4.17. A GBiInt sequent takes O(2m) space.

Proof. A GBiInt sequent S Γ
?
⇒ ∆ P consists of 4 components. Each of Γ and ∆

are of size O(m), and each of the variables S and P are subsets of the powerset of

s f (Γ ∪ ∆). Therefore, each of P and S are of size O(2m), and the overall sequent is of

size O(2m). Q.E.D.

Theorem 3.4.18 (Complexity). Our decision procedure GBiInt takes O(2m) space.

Proof. Since our decision procedure performs depth-first construction/traversal of

GBiInt trees, it suffices to show that any path of a GBiInt tree takes O(2m) space.

By Lemma 3.4.12, any path is at most of polynomial length, and by Lemma 3.4.17,

each sequent on such a path uses at most exponential space. Therefore, any path of a

GBiInt tree takes O(2m) space. Q.E.D.

Given a graph, a cluster is a set of nodes which form a strongly connected compo-

nent. A cluster is proper if it contains more than one node. A BiInt frame is rooted

if there exists a root world w such that every world u can be reached from w by fol-

lowing ≤-edges or ≤−1-edges. The next corollary follows directly from termination

and from our construction in the proof of Lemma 3.3.7 since we never create proper

clusters, i.e., we do not reuse worlds.

Corollary 3.4.19. BiInt is characterised by finite rooted reflexive and transitive frames with

no proper clusters.

An exponential-space decision procedure for a PSPACE problem may seem sub-

optimal, especially since a PSPACE decision procedure for a very similar logic [68]

already exists. But the situation is not that simple as we show next. While the ini-

tial algorithm given by Horrocks et al. is indeed in PSPACE , it is too inefficient in

practice due to the many restarts: “the technique is not used in practice as rebuilding the

discarded parts of the completion tree can be very costly” [65]. In fact, the usual approach is

to implement decision procedures for logics with inverse roles without the depth-first

strategy, but this makes it necessary to “save the state of the whole completion tree at each

∨-rule application” [65], which is similar to our encoding of the open branches using

sets-of-sets. Thus practical decision procedures do not necessarily have to be optimal,

meaning that our suboptimal approach for BiInt is not as bad as it may appear.

58 A calculus of derivations and refutations for bi-intuitionistic logic

Finally, the space usage of our algorithm is amenable to optimisation. We can

make a number of observations about how the formulae in the variables are passed

down from leaves towards the root, and store them in more efficient data structures

than sets of sets. For example, an approach like frequent-pattern trees [61] can be used

to efficiently store sets containing overlapping elements. Additionally, it is likely that

some of the traditional optimisations for tableau calculi [67] are still applicable in the

intuitionistic case.

3.5 Comparison with related work

3.5.1 Other sequent calculi for BiInt

As mentioned before, Uustalu has recently given a counter-example [95] to Rauszer’s

cut-elimination theorem [99]. Uustalu’s counterexample also shows that Crolard’s se-

quent calculus [27] for BiInt is not cut-free. Uustalu’s counterexample fails in both

Rauszer’s and Crolard’s calculi because they limit certain sequent rules to singleton

succedents or antecedents in the conclusion, and the rules do not capture the “for-

ward” and “backward” interaction between implication and exclusion.

Pinto and Uustalu have recently given a cut-free sequent-calculus for BiInt [95].

Their calculus uses labelled formulae, thereby utilising some semantic aspects, such

as explicit worlds and accessibility, directly in the rules. On the other hand, our calcu-

lus GBiInt is purely syntactic and our variables S and P have no semantic content,

although they clearly have some proof/refutation search content. Nevertheless, some

aspects of our work bear similarities to Pinto and Uustalu’s work. In particular, our

termination proof relies on the fact that no branch of a GBiInt• derivation can have

an infinite number of direction switches: essentially the same result is shown by Pinto

and Uustalu for their proof search procedure [95].

If we were interested only in decision procedures, we could obtain a decision pro-

cedure for BiInt by embedding it into the tense logic Kt.S4 [121], and using tableaux

for description logics with inverse roles [68]. However, an embedding into Kt.S4

provides no proof-theoretic insights into BiInt itself. Moreover, the restart tech-

nique of Horrocks et al. [68] involves non-deterministic expansion of disjunctions,

which is complicated by inverse roles. Their actual implementation avoids this non-

determinism by keeping a global view of the whole counter-model under construc-

tion. In contrast, we handle this non-determinism by syntactically encoding it using

variables and extended sequents. Moreover, the persistence and reverse persistence

properties of BiInt are not present in classical modal or tense logics. These properties

of BiInt are in fact very helpful in developing our decision procedure, in particular

the saturation process.

3.5.2 Comparison with other calculi for Int

Recall that LJT [36] is a traditional sequent calculus for Int, and CRIP [94] is a refu-

tation calculus for Int. Although we developed GBiInt independently from these

§3.5 Comparison with related work 59

calculi, we now compare the three calculi.

In LJT and in other traditional sequent calculi, one relates the syntactic judgement

of derivability to the semantic judgement of validity by showing that the rules pre-

serve validity downwards (if the premises are valid, then the conclusion is valid).

Similarly, in CRIP, one shows that the rules preserve falsifiability downwards (if the

premises are falsifiable then the conclusion is falsifiable). Both are local notions refer-

ring to a single rule. For completeness or sufficiency in traditional sequent calculi, one

typically shows that a counter-model can be constructed from a failed proof search,

referring to a global notion of failure.

Because GBiInt contains both derivations and refutations, we show that GBiInt

rules preserve the generalised semantic judgement (either validity or falsifiability)

downwards. In addition, the side conditions in some of our refutation rules incre-

mentally encode aspects of proof search failure that allow us to directly construct a

counter-model from a refutation; thus proof search and refutation search are inter-

leaved in our decision procedure. Then all we need to show for completeness or suf-

ficiency is that for every input sequent, our calculus will produce either a derivation

or a refutation.

Since the Refute rule of GBiInt serves a similar function to rule (11) in CRIP [94],

our proof of Lemma 3.3.7 bears similarities to a part of the counter-model construction

for CRIP. Indeed, if we were to restrict GBiInt to the Int (or the DualInt) fragment of

BiInt, we would obtain a calculus whose refutation part is similar to CRIP, with the

major difference being the termination mechanism. CRIP and LJT achieve termination

using four separate contraction-free implication left rules each of which inspects the

structure of the formula A in A → B. A previous attempt to extend this idea to the

case where A is of the form C−<D was unsuccessful [32]. Thus the technique of in-

specting the form of A in A → B and B in A−<B is unlikely to succeed for BiInt.

In a certain sense, this is because in Int/DualInt the transitional rules always create

successors/predecessors. That is, there is no interaction as there is in BiInt. Addi-

tionally, because BiInt requires contraction in the implication left and exclusion right

rules for completeness, our termination mechanism relies on the implicit contractions

in all our static rules and the generalised blocking conditions.

3.5.3 Other termination mechanisms

There are other ways to obtain a terminating sequent calculus for Intusing contraction-

free calculi [36] or history methods [63; 71]. However, as explained above, contraction-

free methods are less suitable when the interaction between Int and DualInt formulae

needs to be considered, since they erase potentially relevant formulae too soon during

backward proof search.

Our saturation-based termination mechanism, which relies on the persistence prop-

erty of BiInt, may be seen as a replacement for Heuerding’s history-based loop checks.

But we found it easier to prove semantic completeness with our method than with

history-based methods since both Heuerding et al. [63] and Howe [71] prove com-

pleteness using syntactic transformations of derivations. Dynamic blocking [68] is

60 A calculus of derivations and refutations for bi-intuitionistic logic

another possible solution for termination, but it also requires histories in a sequent

calculus setting.

Part II

Towards taming proof search in

display logic

61

Chapter 4

A shallow inference nested sequent

calculus for bi-intuitionistic logic

We begin our quest for a proof search method for display logic by using bi-intuitionistic

logic as our first case study. This chapter gives two shallow inference calculi for

BiInt, while the next one gives deep inference calculi. The shallow calculi LBiInt1

and LBiInt2 which we present now sit somewhere in between display calculi and

traditional sequent calculi in terms of cut-elimination and proof-search:

LBiInt1: The calculus LBiInt1 shares some features of display calculi, in that it has

certain structural rules that allow shuffling of structures in a sequent, akin to

the display postulates used in display calculi to display a formula in a struc-

ture. The syntactic judgments in LBiInt1 can be seen as a tree of (traditional)

sequents, and the structural rules can be used to “display” a sequent by bring-

ing it to the root of an equivalent tree. The logical rules of LBiInt1 are simi-

lar to those in Gentzen’s traditional sequent calculus, as they apply only to the

topmost sequent in the tree of sequents. The virtue of LBiInt1 is twofold: its

contraction and weakening rules can be restricted to formulae while its purely

syntactic cut-elimination proof is simple and very similar to the cut-elimination

proof for display calculi.

LBiInt2: The calculus LBiInt2 is a refinement of LBiInt1 and is obtained by absorb-

ing all the structural rules of LBiInt1 into the logical rules. The calculus LBiInt2

is easily shown to be sound, since its rules are derivable in LBiInt1. But from

a proof-search perspective, we are able to associate a terminating and system-

atic backward proof-search strategy for applying the rules of LBiInt2. The idea

behind backward proof search for LBiInt2 is that the introduction rules for im-

plication and subtraction can be used to ‘suspend’ proof search of a (top-level)

sequent and to ‘restart’ it at a later stage. Such restart rules are already known

in the literature, but as far as we are aware, our work is the first time they have

been given a purely proof-theoretic setting.

We do not have a direct syntactic proof of completeness of LBiInt2 with respect

to LBiInt1. Instead, we prove the semantic completeness of LBiInt2 directly by

63

64 A shallow inference nested sequent calculus for bi-intuitionistic logic

τ−(A) = A τ+(A) = A
τ−(X, Y) = τ−(X) ∧ τ−(Y) τ+(X, Y) = τ+(X) ∨ τ+(Y)
τ−(X . Y) = τ−(X)−<τ+(Y) τ+(X . Y) = τ−(X) → τ+(Y)

τ(X ⇒ Y) = τ−(X) → τ+(Y)

Figure 4.1: Formula translation of nested sequents

showing how to construct a counter-model from a failed proof search attempt in

LBiInt2.

Sections 4.1 to 4.3 present the calculus LBiInt1 and its meta theory via theorems on

cut elimination, soundness and completeness. While the structural rules in LBiInt1

are somewhat more restrictive than display calculi, and hence reduce slightly the non-

determinism arising from the structural rules of display calculi, they still pose some

difficulty in proof search. In Section 4.4, we present a restricted version of LBiInt1,

called LBiInt2, in which all the structural rules are omitted and are instead absorbed

into logical rules. In the same section we also give a terminating proof search strategy

for LBiInt2, and a direct semantic completeness proof of LBiInt2.

Note. Some of the results of this chapter have been published in [57].

4.1 The sequent calculus LBiInt1

Our methodology is to use nested sequents which are similar to the structures in dis-

play calculi but which are more restricted than those used in display calculi. In par-

ticular, not all the display structural connectives used in Goré’s display calculus for

BiInt [53] are allowed and certain display postulates are missing. The idea is to get

as close as possible to sequent calculus, because then we may be able to use the stan-

dard saturation techniques for proof search common in sequent calculus. Chapter A

in the Appendix provides a more detailed comparison between LBiInt1 and Goré’s

calculus.

A structure is defined by the following grammar, where A is a BiInt formula:

X := ∅ | A | (X, X) | X . X.

The structural connective “,” is associative and commutative and ∅ is its unit. We

always consider structures modulo these equivalences. To reduce parentheses, we

assume that “,” binds tighter than “.”. Thus, we write X, Y . Z to mean (X, Y) . Z.

If X and Y are structures, then X ⇒ Y is a nested shallow sequent. The structural

connective comma “,” is a proxy for conjunction (on the left) and disjunction (on the

right), while . is a proxy for exclusion (on the left) and implication (on the right): see

Figure 4.1 for a formula-translation of nested sequents. Note that our structures are a

§4.1 The sequent calculus LBiInt1 65

Identity and cut:

X, A ⇒ A, Y
id

X1 ⇒ Y1, A A, X2 ⇒ Y2

X1, X2 ⇒ Y1, Y2
cut

Structural rules:

X ⇒ Y
X, A ⇒ Y

wL
X ⇒ Y

X ⇒ A, Y
wR

X, A, A ⇒ Y

X, A ⇒ Y
cL

X ⇒ A, A, Y

X ⇒ A, Y
cR

(X1 . Y1), X2 ⇒ Y2

X1, X2 ⇒ Y1, Y2
sL

X1 ⇒ Y1, (X2 . Y2)

X1, X2 ⇒ Y1, Y2
sR

X2 ⇒ Y2, Y1

X2 . Y2 ⇒ Y1
.L

X1, X2 ⇒ Y2

X1 ⇒ X2 . Y2
.R

Logical rules:

X, Bi ⇒ Y

X, B1 ∧ B2 ⇒ Y
∧L i ∈ {1, 2}

X ⇒ A, Y X ⇒ B, Y

X ⇒ A ∧ B, Y
∧R

X, A ⇒ Y X, B ⇒ Y

X, A ∨ B ⇒ Y
∨L

X ⇒ Bi, Y

X ⇒ B1 ∨ B2, Y
∨R i ∈ {1, 2}

X ⇒ A, Y X, B ⇒ Y

X, A → B ⇒ Y
→L

X, A ⇒ B

X ⇒ Y, A → B
→R

A ⇒ B, Y

X, A−<B ⇒ Y
−<L

X ⇒ A, Y X, B ⇒ Y

X ⇒ A−<B, Y
−<R

Figure 4.2: LBiInt1: a shallow inference nested sequent calculus for BiInt

simplification of Goré’s structures, since we overload the “.” connective by interpret-

ing it differently in positive and negative contexts, just as the structural connective “,”

can be overloaded to represent both disjunction and conjunction in different contexts.

In order to formally describe the “zooming-in” to a substructure within a nested

sequent, we will use the notion of a context. A context is a structure with a hole or

a placeholder []. Contexts are ranged over by Σ[]. We write Σ[X] for the structure

obtained by filling the hole [] in the context Σ[] with a structure X.

A simple context is defined via:

Σ[] ::= [] | Σ[], (Y) | (Y), Σ[]

Intuitively, the hole in a simple context is never under the scope of .. The hole in a

simple context is of neutral polarity. Positive and negative contexts are defined induc-

66 A shallow inference nested sequent calculus for bi-intuitionistic logic

tively as follows:

• If Σ[] is a simple context then Σ[] . Y is a negative context and Y . Σ[] is a positive

context.

• If Σ[] is a positive/negative context then so are (Σ[], Y) and (Y, Σ[]) and Σ[] . Y

and Y . Σ[].

The hole in a negative context has negative polarity, and the hole in a positive

context has positive polarity. We write Σ−[] to indicate that Σ[] is a negative context

and Σ+[] to indicate that it is a positive context.

Note that our definition of polarities is non-traditional since further nesting within

. does not change polarity. As we explain later, this becomes useful when we want to

nest and un-nest X . Y-substructures of sequents: the . connective is effectively a

nested turnstile.

Example 4.1.1. The context [], (X . Y) is a simple context but ([], X) . Y is not. (([], X) .
Y) . Z is a negative context and (X . Y, []) . Z is a positive context.

A k-hole context is a context with k holes. Given a k-hole context Z[· · ·] we write

Z[Xk] to stand for the structure obtained from Z[· · ·] by replacing each hole with

an occurrence of the structure X. A k-hole context is positive if every hole in it has

positive polarity, and it is quasi-positive if every hole in it is either neutral or positive.

A k-hole context is negative if every hole in it has negative polarity, and it is quasi-

negative if every hole in it is either neutral or negative.

Example 4.1.2. The 3-hole context [], ([] . Y) . ([] . Z) is quasi-negative. The 2-hole context

(Y . []) . (Z . []) is positive.

Our first sequent calculus LBiInt1 for bi-intuitionistic logic is given in Figure 4.2.

The introduction rules for the logical connectives are the standard ones. The logi-

cal rules →L for implication on the left and −<R for exclusion on the right are non-

invertible, since they lose structures or formulas going upwards. Since we have con-

traction and weakening, on both sides of the sequent, it is possible to formulate in-

vertible logical rules by implicit contraction, as we shall see later. LBiInt1 is very

similar to the display calculus for bi-intuitionistic logic of Goré [51], but with some

differences:

• The contraction and the weakening rules are applicable to formulae only, not

structures in general like in display calculi. But we shall see that the general con-

traction and weakening rules are derivable from the “atomic” ones in LBiInt1,

which is not the case for Goré’s system.

• The structural rules sL and sR are more general than the display postulates in

display logic. These rules are derivable in Goré’s system, but one needs to use

contraction and weakening on structures. We give the detailed derivation in

Lemma A.1.4 in the Appendix.

§4.1 The sequent calculus LBiInt1 67

As a consequence of these differences, cut elimination for LBiInt1 does not necessarily

follow from cut elimination for its display calculus counterpart. However, it may be

possible to modify Goré’s system in such a way that there is a mapping between the

cut free proofs of both LBiInt1 and the modified calculus. We leave the details of such

a connection to future work.

Display property. A nested sequent can be seen as a tree of traditional sequents.

The structural rules of LBiInt1 allow shuffling of structures to display/un-display

a particular node in the tree, so inference rules can be applied to it. This is similar

to the display property in traditional display calculi, where any substructure can be

displayed and un-displayed. We state the display property of LBiInt1 more precisely

in subsequent lemmas. We shall use two “display” rules which are easily derivable

using sL, sR, .L and .R; double lines indicate that the rules may be applied both top-

to-bottom and vice versa:

(X1 . X2) ⇒ Y
rp.

LX1 ⇒ X2, Y

X1 ⇒ (X2 . Y)
rp.

RX1, X2 ⇒ Y

Let DP = {rp.
R , rp.

L} and let DP-derivable mean “derivable using rules only from

DP”.

Lemma 4.1.3 (Display property for simple contexts). Let Σ[] be a simple context. Let

X be a structure and p a propositional variable not occurring in X nor Σ[]. Then there exist

structures Y and Z such that:

1. Y ⇒ p is DP-derivable from X ⇒ Σ[p] and

2. p ⇒ Z is DP-derivable from Σ[p] ⇒ X.

Proof. By induction on the size of the context Σ[]. The non-trivial cases are when

Σ = Σ1[], (W) or Σ = (W), Σ1[]. We give the required derivations for the first case; the

second case is analogous due to the commutativity of comma.

1. We first obtain the following derivation:

X ⇒ Σ1[p], W
rp.

LX . W ⇒ Σ1[p]

Now we apply the induction hypothesis to the smaller context Σ1[] to obtain the

required derivation:
X ⇒ Σ1[p], W

rp.
LX . W ⇒ Σ1[p]

...
Y ⇒ p

2. We first obtain the following derivation:

Σ1[p], W ⇒ X
rp.

R
Σ1[p] ⇒ W . X

68 A shallow inference nested sequent calculus for bi-intuitionistic logic

Now we apply the induction hypothesis to the smaller context Σ1[] to obtain the

required derivation:
Σ1[p], W ⇒ X

rp.
R

Σ1[p] ⇒ W . X

...
p ⇒ Z

Q.E.D.

Lemma 4.1.4 (Display property for positive contexts). Let Σ[] be a positive context. Let

X be a structure and p a propositional variable not occurring in X nor Σ[]. Then there exist

structures Y and Z such that:

1. Y ⇒ p is DP-derivable from X ⇒ Σ[p], and

2. Z ⇒ p is DP-derivable from Σ[p] ⇒ X

Proof. We prove both statements simultaneously by induction on the size of the con-

text Σ[]. The non-trivial cases are when Σ[] = W .Σ1[] or Σ[] = Σ1[] .W. The following

are the required derivations:

1. • Case when Σ[] = W . Σ1[]. We first obtain the following derivation:

X ⇒ (W . Σ1[p])
rp.

RX, W ⇒ Σ1[p]

If Σ1[] is simple context, we apply Lemma 4.1.3 to X, W . Σ1[p], otherwise

Σ1[] is a positive context and we apply statement (1) of the induction hy-

pothesis to X, W . Σ1[p]. In both cases, we obtain the required derivation:

X ⇒ (W . Σ1[p])
rp.

RX, W ⇒ Σ1[p]

...
Y ⇒ p

• Case when Σ[] = Σ1[] . W. We first obtain the following derivation:

X ⇒ (Σ1[p] . W)
rp.

RX, Σ1[p] ⇒ W
rp.

R
Σ1[p] ⇒ (X . W)

Here Σ1[] must be a positive context, so we apply statement (2) of the in-

§4.1 The sequent calculus LBiInt1 69

duction hypothesis to Σ1[] ⇒ (X . W) and obtain the required derivation:

X ⇒ (Σ1[p] . W)
rp.

RX, Σ1[p] ⇒ W
rp.

R
Σ1[p] ⇒ (X . W)

...
Z ⇒ p

2. • Case when Σ[] = W . Σ1[]. We first obtain the following derivation:

(W . Σ1[p]) ⇒ X
rp.

LW ⇒ Σ1[p], X
rp.

L(W . X) ⇒ Σ1[p]

If Σ1[] is simple context, we apply Lemma 4.1.3 to (W . X) ⇒ Σ1[p], oth-

erwise Σ1[] is a positive context and we apply statement (1) of the induc-

tion hypothesis to (W . X) ⇒ Σ1[p]. In both cases, we obtain the required

derivation:
(W . Σ1[p]) ⇒ X

rp.
LW ⇒ Σ1[p], X

rp.
L(W . X) ⇒ Σ1[p]

...
Y ⇒ p

• Case when Σ[] = Σ1[] . W. We first obtain the following derivation:

(Σ1[p] . W) ⇒ X
rp.

L
Σ1[p] ⇒ W, X

Here Σ1[] must be a positive context, so we apply statement (2) of the in-

duction hypothesis to Σ1[p] ⇒ W, X and obtain the required derivation:

(Σ1[p] . W) ⇒ X
rp.

L
Σ1[p] ⇒ W, X

...
Z ⇒ p

Q.E.D.

Lemma 4.1.5 (Display property for negative contexts). Let Σ[] be a negative context. Let

X be a structure and p a propositional variable not occurring in X nor Σ[]. Then there exist

structures Y and Z such that:

1. p ⇒ Y is DP-derivable from X ⇒ Σ[p] and

2. p ⇒ Z is DP-derivable from Σ[p] ⇒ X.

70 A shallow inference nested sequent calculus for bi-intuitionistic logic

Proof. Symmetric to the proof of Lemma 4.1.4. Q.E.D.

Note that since the rules in DP are all invertible, the derivations constructed in the

above lemmas are invertible derivations. That is, we can derive Y ⇒ p from X ⇒ Σ[p]
and vice versa. Note also that since the rules in DP are closed under substitution, this

also means Y ⇒ Z is derivable from X ⇒ Σ[Z], and vice versa, for any Z.

The display property of pure display calculi is the ability to display/un-display

a particular structure with respect to a top-level turnstile ` (say) as the whole of the

antecedent or succedent. For example, we have to display V . W as the whole of the

antecedent or succedent as V . W ` Z or Z ` V . W.

Our nested sequent calculus instead enables us to “zoom in” to V . W in X ⇒ Y by

explicitly transforming the latter into X′, V ⇒ W, Y′ so we can apply a rule to any top-

level formula/structure of V or W. Indeed, this is why the notion of polarity in our

nested sequent calculus is non-traditional: when we display a structure V . W at the

top level as X′, V ⇒ W, Y′, we want V to be negative and W to be positive regardless

of how deep V . W is nested.

The following two propositions state the admissibility of the general contraction

and weakening rules. These can be proved by using the structural rules sL, sR, .L and

.R.

Proposition 4.1.6 (Admissibility of general contraction). The two contraction rules shown

below are cut-free admissible in LBiInt1:

X, Y, Y ⇒ Z

X, Y ⇒ Z
gcL

X ⇒ Y, Y, Z

X ⇒ Y, Z
gcR

Proof. We prove this simultaneously by induction on the size of Y. We show a deriva-

tion of the gcL rule; the case for gcR is symmetric. The non-trivial case is when

Y = Y1 . Y2. We show that in this case, the contraction rule can be reduced to con-

tractions on smaller structures, which therefore are admissible by the induction hy-

pothesis (IH):
X, (Y1 . Y2), (Y1 . Y2) ⇒ Z

(Y1 . Y2), (Y1 . Y2) ⇒ X . Z
.R

(Y1 . Y2), Y1 ⇒ Y2, (X . Z)
sL

Y1, Y1 ⇒ Y2, Y2, (X . Z)
sL

Y1, Y1 ⇒ Y2, (X . Z)
gcR (IH)

Y1 ⇒ Y2, (X . Z)
gcL (IH)

Y1 . Y2 ⇒ X . Z
.L

X, (Y1 . Y2) ⇒ Z
sR

Q.E.D.

Proposition 4.1.7 (Admissibility of general weakening). The two weakening rules below

§4.1 The sequent calculus LBiInt1 71

are cut-free admissible in LBiInt1:

X ⇒ Z
X, Y ⇒ Z

gwL
X ⇒ Z

X ⇒ Y, Z
gwR

Proof. We prove this simultaneously by induction on the size of Y. We show a deriva-

tion of the gwL rule; the case for gwR is symmetric. The non-trivial case is when

Y = Y1 . Y2. We show that in this case, the weakening rule can be reduced to weaken-

ing on smaller structures, which therefore are admissible by the induction hypothesis

(IH):
X ⇒ Z .R

⇒ (X . Z)
gwR (IH)

⇒ Y2, (X . Z)
gwL (IH)

Y1 ⇒ Y2, (X . Z)
.L

(Y1 . Y2) ⇒ (X . Z)
sR

X, (Y1 . Y2) ⇒ Z

Q.E.D.

Proposition 4.1.8. The id rule can be restricted to the atomic form:

X, p ⇒ p, Y
id

Proof. We show that the general id rule is derivable given the atomic id rule, that is,

for any BiInt formula A, there is an LBiInt1 derivation of X, A ⇒ A, Y whose leaves

are instances of the atomic id rule. We prove this by induction on the length of A; the

base case when A is an atom is trivial. We show two example cases; the others are

similar or easier.

• Case when A = C ∧ D. We construct the following derivation, where the induc-

tion hypothesis gives us that X, C ⇒ C, Y and X, D ⇒ D, Y have derivations

whose leaves are instances of the atomic id rule.

X, C ⇒ C, Y
∧L

X, C ∧ D ⇒ C, Y

X, D ⇒ D, Y
∧L

X, C ∧ D ⇒ D, Y
∧R

X, C ∧ D ⇒ C ∧ D, Y

• Case when A = C → D.

X, C ⇒ C, Y
wR

X, C ⇒ C, D, Y

X, D ⇒ D, Y
wL

X, C, D ⇒ D, Y →L
X, C → D, C ⇒ D, Y →R

X, C → D ⇒ C → D, Y

Q.E.D.

So from now on, we assume that all id rules are of the atomic form.

72 A shallow inference nested sequent calculus for bi-intuitionistic logic

Π1
X1 ⇒ Y1, p

Π2
p, X2 ⇒ Y2

X1, X2 ⇒ Y1, Y2
cut

Π

p ⇒ p id · · · p ⇒ p id
....

X1 ⇒ Y1, p

Π2
p, X2 ⇒ Y2

p ⇒ (X2 . Y2)
.R

· · ·

Π2
p, X2 ⇒ Y2

p ⇒ (X2 . Y2)
.R

....
X1 ⇒ Y1, (X2 . Y2)

X1, X2 ⇒ Y1, Y2
sR

Π1 Π′

Figure 4.3: Cut-elimination example

4.2 Cut elimination

Since our calculi are not display calculi, Belnap’s general cut elimination theorem [12]

cannot be used directly to prove cut elimination for our calculi. One way of showing

cut elimination for LBiInt1 would be an indirect proof via a detour through display

calculus. That is, one first designs a corresponding display calculus for LBiInt1 for

which Belnap’s cut elimination theorem can be used, e.g., by modifying Goré’s calcu-

lus to work with a more restricted form of structures, and then showing that the cut

free proofs of this display calculus can be mapped to cut-free proofs of LBiInt1. We

show here a simple and direct cut elimination proof instead.1

Although the proof system LBiInt1 shares some similarity with traditional Gentzen

systems, cut elimination for LBiInt1 as presented here follows a different technique

from the standard cut elimination technique for sequent calculus. In particular, when

the cut formula is not principal in either one of the premises of the cut rule, no cut re-

ductions are required in our cut elimination proof. Instead, the structural rules sL and

sR allow us to carry the context of one premise of the cut to its other premise result-

ing in a “proof substitution” akin to the normalisation proofs in natural deduction.

Apart from Belnap’s cut-elimination proof for display logic, the closest technique we

know of is the cut elimination proof for classical logic in a proof system using deep

inference [16].

For example, suppose we have a derivation which ends with an instance of cut

on the atom p, as illustrated in the top of Figure 4.3. Suppose also that Π1 is the cut-

free derivation on the bottom left in Figure 4.3 where the occurrence of p in the root

sequent participates in n instances of id in the leaves of Π1.

Then a cut free derivation Π′ for X1, X2 ⇒ Y1, Y2 can be obtained by replacing the

instances of the cut formula p in Π1 with the structure (X2 . Y2) and replacing the

1The cut-elimination proof in this chapter is due to Alwen Tiu, and is included in this thesis for
completeness.

§4.2 Cut elimination 73

leaves of Π1, where the cut formula p is used, with the derivation Π2. This cut-free

derivation is schematically presented on the right in Figure 4.3. Note that the parts of

derivations indicated by vertical and horizontal ellipses remain the same, except for

the substitution of p by X2 . Y2.

The reductions for the cases where the cut formula is non-atomic follow essentially

the same idea. That is, we substitute the cut formula in one premise of the cut rule

with the context of the other premise, and expand this context when the cut formula

is used. The only difference is that in the case of non-atomic cut formula, we need to

produce extra cuts to make this substitution work. But all the cuts produced are of

smaller size, therefore the whole process terminates.

In the following, we write |A| for the size of the formula A: the number of logical

operators appearing in A. In an instance of a cut rule

X1 ⇒ Y1, A A, X2 ⇒ Y2

X1, X2 ⇒ Y1, Y2
cut

the formula A is called the cut formula of the cut instance. The cut-rank of the cut

instance is |A|. Given a derivation Π, we denote with mc(Π) the maximum of the

cut-ranks in Π. If there are no cuts in Π then mc(Π) = 0.

Lemma 4.2.1 states the proof substitutions needed to eliminate atomic cuts.

Lemma 4.2.1. Suppose p, X ⇒ Y is cut-free derivable for some fixed p, X and Y. Then for

any k-hole positive context Z1[· · ·] and any l-hole quasi-positive context Z2[· · ·], if Z1[p
k] ⇒

Z2[p
l] is cut-free derivable, then Z1[(X . Y)k] ⇒ Z2[(X . Y)l] is cut-free derivable.

Proof. Let Π be a cut-free derivation of p, X ⇒ Y and let Θ be a cut-free derivation

of Z1[p
k] ⇒ Z2[p

l]. We construct a cut-free derivation Θ′ of Z1[(X . Y)k] ⇒ Z2[(X .
Y)l] by induction on the height of Θ. Most cases follow straightforwardly from the

induction hypothesis. The only non-trivial case is when p is active in the derivation,

i.e., when Θ ends with an id rule or a contraction rule applied to an occurrence of p to

be substituted for:

• Suppose Θ is

Z′
1[p

k], p ⇒ p, Z′
2[p

l−1]
id

Note that the p immediately to the left of the turnstile cannot be part of the pk

by the restrictions on the context Z1[· · ·]. The derivation Θ′ is then constructed

as follows, where we use dashed lines to abbreviate derivations:

Π
p, X ⇒ Y

.R
p ⇒ (X . Y)

gwR; gwL
Z′

1[(X . Y)k], p ⇒ (X . Y), Z′
2[(X . Y)l−1]

74 A shallow inference nested sequent calculus for bi-intuitionistic logic

• Suppose Θ is
Θ1

Z1[p
k] ⇒ p, p, Z′

2[p
l−1]

Z1[p
k] ⇒ p, Z′

2[p
l−1]

cR

By induction hypothesis, we have a cut-free derivation Θ′
1 of

Z1[(X . Y)k] ⇒ (X . Y), (X . Y), Z′
2[(X . Y)l−1].

The derivation Θ′ is then constructed as follows:

Θ′
1

Z1[(X . Y)k] ⇒ (X . Y), (X . Y), Z′
2[(X . Y)l−1]

Z1[(X . Y)k] ⇒ (X . Y), Z′
2[(X . Y)l−1]

gcR

Note that gwR and gcR and gwL are cut-free derivable in LBiInt1 by Proposition 4.1.6

and Proposition 4.1.7. Q.E.D.

Lemmas 4.2.2-4.2.6 state the proof substitutions needed for non-atomic cuts.

Lemma 4.2.2. Let Θ be a derivation of

Z1[(A1 ∨ A2)
k] ⇒ Z2[(A1 ∨ A2)

l]

for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context Z2[· · ·], such that

mc(Θ) < |A1 ∨ A2|. Let Πi be a derivation of X ⇒ Y, Ai, for some i ∈ {1, 2}, such that

mc(Πi) < |A1 ∨ A2|. Then there is a derivation Θ′ with mc(Θ′) < |A1 ∨ A2| of

Z1[(X . Y)k] ⇒ Z2[(X . Y)l].

Proof. By induction on the height of Θ. In the following, we let A = A1 ∨ A2. Most

cases follow straightforwardly from the induction hypothesis. The only interesting

case is when a left-rule is applied to an occurrence of A1 ∨ A2 which is to be replaced

by X . Y. That is, Θ is

Θ1

Z′
1[A

k−1], A1 ⇒ Z2[A
l]

Θ2

Z′
1[A

k−1], A2 ⇒ Z2[A
l]

Z′
1[A

k−1], A1 ∨ A2 ⇒ Z2[A
l]

∨L

By induction hypothesis, we have a derivation Θ′
i, for each i ∈ {1, 2}, of

Z′
1[(X . Y)k−1], Ai ⇒ Z2[(X . Y)l]

§4.2 Cut elimination 75

with mc(Θ′
i) < |A1 ∨ A2|. The derivation Θ′ is then constructed as follows:

Πi
X ⇒ Y, Ai

X . Y ⇒ Ai
.L

Θ′
i

Z′
1[(X . Y)k−1], Ai ⇒ Z2[(X . Y)l]

Z′
1[(X . Y)k−1], (X . Y) ⇒ Z2[(X . Y)l]

cut

Q.E.D.

Lemma 4.2.3. Let Θ be a derivation of

Z1[(A1 ∧ A2)
k] ⇒ Z2[(A1 ∧ A2)

l]

for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context Z2[· · ·] with mc(Θ) <
|A1 ∧ A2|. Let Π1 be a derivation of X ⇒ Y, A1 and let Π2 be a derivation of X ⇒ Y, A2

with mc(Π1) < |A1 ∧ A2| and mc(Π2) < |A1 ∧ A2|. Then there is a derivation Θ′ with

mc(Θ′) < |A1 ∧ A2| of

Z1[(X . Y)k] ⇒ Z2[(X . Y)l].

Proof. Analogous to the proof of Lemma 4.2.2. Q.E.D.

Lemma 4.2.4. Let Θ be a derivation of

Z1[(A → B)k] ⇒ Z2[(A → B)l]

for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context Z2[· · ·] with mc(Θ) <
|A → B|. Let Π be a derivation of X, A ⇒ B with mc(Π) < |A → B|. Then there is a deriva-

tion Θ′ with mc(Θ′) < |A → B| of

Z1[X
k] ⇒ Z2[X

l].

Proof. By induction on the height of Θ. As in the previous lemmas, the non-trivial

case is when Θ ends with →L on A → B:

Θ1

Z′
1[(A → B)k−1] ⇒ A, Z2[(A → B)l]

Θ2

Z′
1[(A → B)k−1], B ⇒ Z2[(A → B)l]

Z′
1[(A → B)k−1], A → B ⇒ Z2[(A → B)l]

→L

By induction hypothesis, we have derivations Θ′
1 and Θ′

2 respectively of the sequents

below where mc(Θ′
1) < |A → B| and mc(Θ′

2) < |A → B|:

Z′
1[X

k−1] ⇒ A, Z2[X
l] Z′

1[X
k−1], B ⇒ Z2[X

l]

In the following, we let V1 denote Z′
1[X

k−1] and V2 denote Z2[X
l]. The derivation Θ′

76 A shallow inference nested sequent calculus for bi-intuitionistic logic

is constructed as follows:

Θ′
1

V1 ⇒ A, V2

Π
X, A ⇒ B

Θ′
2

V1, B ⇒ V2
cut

V1, A, X ⇒ V2
cut

V1, V1, X ⇒ V2, V2 gcL ; gcR
V1, X ⇒ V2

Q.E.D.

Lemma 4.2.5. Let Θ be a derivation of

Z1[(A−<B)k] ⇒ Z2[(A−<B)l]

for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context Z2[· · ·] with mc(Θ) <
|A−<B|. Let Π1 be a derivation of X ⇒ Y, A and let Π2 be a derivation of X, B ⇒ Y

with mc(Π1) < |A−<B| and mc(Π2) < |A−<B|. Then there is a derivation Θ′ with

mc(Θ′) < |A−<B| of

Z1[(X . Y)k] ⇒ Z2[(X . Y)l].

Proof. The non-trivial case is when Θ ends with −<L on A−<B :

Θ1

A ⇒ B, Z2[(A−<B)l]

Z′
1[(A−<B)k−1], A−<B ⇒ Z2[(A−<B)l]

−<L

By induction hypothesis, we have a derivation Θ′
1 of

A ⇒ B, Z2[(X . Y)l]

with mc(Θ′
1) < |A−<B|. Let V denote the structure Z2[(X . Y)l]. Then Θ′ is con-

structed as follows:

Π1

X ⇒ Y, A

Θ′
1

A ⇒ B, V

Π2

X, B ⇒ Y
cut

A, X ⇒ Y, V
cut

X, X ⇒ Y, Y, V gcL; gcR
X ⇒ Y, V .L

X . Y ⇒ V gwL
Z′

1[(X . Y)k−1], X . Y ⇒ V

Q.E.D.

Lemma 4.2.6. Let Θ be a derivation of Z1[A
k] ⇒ Z2[A

l] where A is a non-atomic formula,

Z1[· · ·] is a k-hole positive context, Z2[· · ·] is an l-hole quasi-positive context, and mc(Θ) <
|A|. Let Π be a derivation of A, X ⇒ Y with mc(Π) < |A|. Then there is a derivation Θ′

with mc(Θ′) < |A| of Z1[(X . Y)k] ⇒ Z2[(X . Y)l].

§4.2 Cut elimination 77

Proof. By induction on the height of Θ and case analysis on A. The non-trivial case

is when Θ ends with a right-introduction rule on A. That is, in this case, we have

Z2[A
l] = (Z′

2[A
l−1], A) for some quasi-positive context Z′

2[· · ·]. We distinguish sev-

eral cases depending on A. We show here the cases where A is either a disjunction

C ∨ D, or an implication C → D.

• Suppose A = C ∨ D and Θ is the following derivation:

Θ1

Z1[(C ∨ D)k] ⇒ Z′
2[(C ∨ D)l−1], C

Z1[(C ∨ D)k] ⇒ Z′
2[(C ∨ D)l−1], C ∨ D

∨R

By induction hypothesis, we have a derivation Θ′
1 of

Z1[(X . Y)k] ⇒ Z′
2[(X . Y)l−1], C

such that mc(Θ′
1) < |C ∨ D|. Let W1 = Z1[(X . Y)k] and let W2 = Z2[(X . Y)l−1].

Applying Lemma 4.2.2 to Π and Θ′
1, we obtain a derivation θ of

(W1 . W2), X ⇒ Y

such that mc(θ) < |C ∨ D|. The derivation Θ′ is then constructed as follows:

Θ′
1

(W1 . W2), X ⇒ Y

W1 . W2 ⇒ X . Y
.R

W1 ⇒ W2, (X . Y)
sL

Clearly, mc(Θ′) < |C ∨ D|.

• Suppose A = C → D and Θ is

Θ1

Z1[(C → D)k], C ⇒ D

Z1[(C → D)k] ⇒ Z′
2[(C → D)l−1], C → D

→R

By induction hypothesis, we have a derivation Θ′
1 of

Z1[(X . Y)k], C ⇒ D

Then the derivation Θ′ is constructed as follows:

θ

Z1[(X . Y)k], X ⇒ Y
.R

Z1[(X . Y)k] ⇒ (X . Y)
gwR

Z1[(X . Y)k] ⇒ Z2[(X . Y)l−1], (X . Y)

where θ is obtained by applying Lemma 4.2.4 to Π and Θ′
1.

78 A shallow inference nested sequent calculus for bi-intuitionistic logic

The other cases are treated analogously, using Lemmas 4.2.3 and Lemma 4.2.5. Q.E.D.

Finally, cut elimination is proved by simple proof substitutions, the construction

of which is given by the preceding lemmas.

Theorem 4.2.7. If X ⇒ Y is LBiInt1-derivable then it is also cut-free derivable.

Proof. As typical in cut elimination proofs, we remove topmost cuts in succession. Let

Π be a derivation of LBiInt1 with a topmost cut instance

Π1
X1 ⇒ Y1, A

Π2
X2, A ⇒ Y2

X1, X2 ⇒ Y1, Y2
cut

Note that Π1 and Π2 are both cut-free since this is a topmost instance in Π. We use

induction on the size of A to eliminate this topmost instance of cut.

If A is an atomic formula p then the cut free derivation is constructed as follows

where Θ is obtained from applying Lemma 4.2.1 to Π2 and Π1:

Θ
X1 ⇒ Y1, (X2 . Y2)

X1, X2 ⇒ Y1, Y2
sR

If A is non-atomic, using Lemma 4.2.6 we get the following derivation θ:

Θ
X1 ⇒ Y1, (X2 . Y2)

X1, X2 ⇒ Y1, Y2
sR

We have mc(θ) < |A| by Lemma 4.2.6, therefore by induction hypothesis, we can

remove all the cuts in θ to get a cut-free derivation of X1, X2 ⇒ Y1, Y2. Q.E.D.

4.3 Soundness and completeness of LBiInt1

To prove soundness, we refer to the interpretation of sequents as formulae given in

Figure 4.1.

Theorem 4.3.1 (Soundness). Every LBiInt1-derivable formula is BiInt-valid.

Proof. We show that for every rule ρ of LBiInt1

X1 ⇒ Y1 · · · Xn ⇒ Yn

X ⇒ Y
ρ

the following holds: if for every i ∈ {1, . . . , n}, the formula τ−(Xi) → τ+(Yi) is valid

then the formula τ−(X) → τ+(Y) is valid. Since the formula-translation (τ−(X) ∧
A) → (A ∨ τ+(Y)) of the id rule is obviously valid, it then follows that every formula

derivable in LBiInt1 is also valid.

§4.4 Proof search 79

For all the rules of LBiInt1, except .L and −<L, we can show the stronger state-

ment that the following formula is valid:

[(τ−(X1) → τ+(Y1)) ∧ · · · ∧ (τ−(Xn) → τ+(Yn))] → (τ−(X) → τ+(Y)).

Soundness of .L and −<L are shown in the standard way, by reasoning about the forc-

ing relation
 and the reflexive and transitive relation ≤ (recall the BiInt semantics

we introduced in Section 2.2.4.4). For each rule, we show that if the premise of the

rule is valid, then the conclusion is also valid.

We show the case for .L; the case for −<L is very similar. We assume that the

formula translation of the premise X2 ⇒ Y2, Y1 is valid, and show that the formula

translation of the conclusion X2 . Y2 ⇒ Y1 is valid. That is, we assume that τ−(X2) →
(τ+(Y2) ∨ τ+(Y1)) is valid. This means that for every world w in every BiInt model

〈M,≤ V〉, we have w
 τ−(X2) → (τ+(Y2) ∨ τ+(Y1)). From the semantics of →
(recall Figure 2.7), this means:

∀〈M,≤ V〉 ∀w ∈ W ∀u ≥ w. if u
 τ−(X2) then u
 (τ+(Y2) ∨ τ+(Y1)) (4.3.1)

Now we want to show that (τ−(X2)−<τ+(Y2)) → τ+(Y1) is valid. We will do so by

contradiction. That is, we suppose this formula is falsifiable, i.e., there exists a BiInt

model 〈W,≤, V〉 and a world z′ ∈ W such that z′
 τ−(X2)−<τ+(Y2) but z′

τ+(Y1).

From the semantics of −<, this means there exists a world u′ ∈ W such that u′ ≤ z′

and u′
 τ−(X2) and u′

τ+(Y2). By the reverse persistence property of BiInt, we

also have that u′

τ+(Y1). Moreover, since the relation ≤ is reflexive, we have that

u′ ≥ u′. That is, we have a world u′ ≥ u′ such that u′
 τ−(X2) and u′

τ+(Y2)

and u′

τ+(Y1). But this contradicts (4.3.1), therefore (τ−(X2)−<τ+(Y2)) → τ+(Y1)
is not falsifiable, therefore (τ−(X2)−<τ+(Y2)) → τ+(Y1) is valid. Q.E.D.

Completeness is shown by embedding Rauszer’s sequent calculus G1 [99] for

BiInt into LBiInt1. The calculus G1 contains the cut rule, and is shown to be com-

plete by Rauszer [99]. The encoding of G1 into LBiInt1 is obvious since all the rules

of G1 are easily derivable from the rules of LBiInt1.

Theorem 4.3.2 (Completeness). Every BiInt-valid formula is LBiInt1-derivable.

4.4 Proof search

The calculus LBiInt1 is not suitable for proof search, since the structural rules sL,

sR, .L and .R can easily lead to non-termination if applied naively. In addition, we

also have the usual problems with the contraction rules since they can be applied ad

infinitum: recall the example in Figure 2.10.

We now present a refined version of LBiInt1, called LBiInt2, in which all the struc-

tural rules, except for .L and .R, are absorbed into logical rules. The resulting calculus,

for the intuitionistic fragment, resembles contraction-free calculi for the traditional

Gentzen systems for intuitionistic logic, e.g., the system G3i in [111]. The underlying

80 A shallow inference nested sequent calculus for bi-intuitionistic logic

{|X|} = {A | X = (A, Y) for some A and Y}

X, A ⇒ A, Y
id

X2 ⇒ Y2, {|Y1|}

X1, (X2 . Y2) ⇒ Y1
.L {|Y1|} 6⊆ {|Y2|}

{|X1|}, X2 ⇒ Y2

X1 ⇒ Y1, (X2 . Y2)
.R {|X1|} 6⊆ {|X2|}

X, B1 ∧ B2, Bi ⇒ Y

X, B1 ∧ B2 ⇒ Y
∧L i ∈ {1, 2}

X ⇒ A ∧ B, A, Y X ⇒ A ∧ B, B, Y

X ⇒ A ∧ B, Y
∧R

X, A ∨ B, A ⇒ Y X, A ∨ B, B ⇒ Y

X, A ∨ B ⇒ Y
∨L

X ⇒ B1 ∨ B2, Bi, Y

X ⇒ B1 ∨ B2, Y
∨R i ∈ {1, 2}

X, A → B ⇒ A, Y X, A → B, B ⇒ Y

X, A → B ⇒ Y
→L

X ⇒ Y, A → B, B

X ⇒ Y, A → B
→R1

X, A−<B, A ⇒ Y

X, A−<B ⇒ Y
−<L1

X ⇒ A, A−<B, Y X, B ⇒ A−<B, Y

X ⇒ A−<B, Y
−<R

A ⇒ B, {|Y|}, (X, A−<B . Y)

X, A−<B ⇒ Y
−<L2

(X . Y, A → B), {|X|}, A ⇒ B

X ⇒ Y, A → B
→R2

Figure 4.4: LBiInt2: a nested sequent calculus for proof search in BiInt

idea behind LBiInt2 is that the right-introduction rule for → and the left introduction

rule for −< act as an instruction to store the current state (of proof search), and the

rules .L and .R act as an instruction to restart previously stored computation states.

Recall that our definition of polarities means that each structure X . Y, which is stored

in a nested sequent, is effectively a traditional sequent in its own right, with X the

negative left hand side and Y the positive right hand side.

The inference rules for LBiInt2 are given in Figure 4.4 using the notation {|X|} to

denote the set of formulae that appear at the top-level of X:

{|X|} = {A | X = (A, Y) for some A and Y}.

Intuitively, the set {|X|} denotes X with all the substructures of the form Y . Z or Y . Z

removed. For example, if X is (A, B, (C . D)), then {|X|} is the set {A, B}.

The right introduction rule for → splits into two rules: →R1 and →R2. The →R1

rule is strictly speaking not necessary as it can be derived using →R2 and .L. However,

it is useful in our proof search strategy which relies on a saturation process on sequents,

§4.4 Proof search 81

as we shall see later. Indeed, this rule is very similar to →I
R from GBiInt in Chapter 3,

and performs essentially the same function. The rule →R2 incorporates some features

of the structural rule sL. The left introduction rule for −< splits also into two rules

with roles symmetric to those for → .

4.4.1 Soundness of LBiInt2

For soundness of LBiInt2 we show that every LBiInt2 rule is derivable in LBiInt1.

Theorem 4.4.1 (Soundness of LBiInt2). If the sequent X ⇒ Y is derivable in LBiInt2 then

it is also derivable in LBiInt1.

Proof. We show that every LBiInt2 rule is derivable in LBiInt1. The non-trivial cases

are rules −<L1, →R1, −<L2 and →R2. We show derivations of the rules −<L2 (below

left) and −<L1 (below right); the other two cases are symmetric. Note that the deriva-

tion of −<L1 uses the derived rule −<L2.

A ⇒ B, {|Y|}, (X, A−<B . Y)
gwR

A ⇒ B, Y, (X, A−<B . Y)
−<L

A−<B ⇒ Y, (X, A−<B . Y)
sR

X, A−<B, A−<B ⇒ Y, Y gcL , gcR
X, A−<B ⇒ Y

X, A−<B, A ⇒ Y .R
A ⇒ (X, A−<B . Y)

gwR
A ⇒ B, {|Y|}, (X, A−<B . Y)

−<L2
X, A−<B ⇒ Y

Q.E.D.

4.4.2 A terminating proof search strategy

We classify the rules of LBiInt2 into three groups:

Static Rules: = {id,∧L ,∧R,∨L, ∨R,→L, −<R,−<L1,→R1};

Jump Rules: = {−<L2,→R2} ; and

Return Rules: = {.L, .R}.

We refer to the −<L2 rule as a backward jump, and the →R2 rule as a forward jump.

We call a sequence of static rule applications a saturation.

Definition 4.4.2. A sequent X ⇒ Y is saturated iff it satisfies 1-8, and is strongly satu-

rated iff it additionally satisfies 9:

1. {|X|} ∩ {|Y|} = ∅

2. If A ∧ B ∈ {|X|} then A ∈ {|X|} and B ∈ {|X|}

3. If A ∧ B ∈ {|Y|} then A ∈ {|Y|} or B ∈ {|Y|}

4. If A ∨ B ∈ {|X|} then A ∈ {|X|} or B ∈ {|X|}

82 A shallow inference nested sequent calculus for bi-intuitionistic logic

Function Prove
Input: sequent γ0

Output: true (i.e. γ0 is derivable) or false (i.e. γ0 is not derivable)

1. If id is applicable to γ0 then return true

2. Else if a static rule ρ is applicable to γ0 then

(a) Let γ1, · · · , γn be the premises of ρ obtained from γ0

(b) Return
∧n

i=1 Prove(γi)

3. Else if Prove(γ1) = true for some premise instance γ1 obtained from γ0 by ap-
plying ρ ∈ {−<L2,→R2, .L , .R} backward then return true

4. Else return false.

Figure 4.5: A proof search strategy for LBiInt2

5. If A ∨ B ∈ {|Y|} then A ∈ {|Y|} and B ∈ {|Y|}

6. If A → B ∈ {|X|} then A ∈ {|Y|} or B ∈ {|X|}

7. If A−<B ∈ {|Y|} then A ∈ {|Y|} or B ∈ {|X|}

8. If A → B ∈ {|Y|} then B ∈ {|Y|} If A−<B ∈ {|X|} then A ∈ {|X|}

9. If A → B ∈ {|Y|} then A ∈ {|X|} If A−<B ∈ {|X|} then B ∈ {|Y|}.

The following definition expresses the same idea as Definition 3.4.1, but here we

apply the concept to the top level formulae of the nested sequent.

Definition 4.4.3 (Generalised blocking condition). We say that an LBiInt2 rule ρ is appli-

cable to a sequent γ0 = (X0 ⇒ Y0) if for every premise Xi ⇒ Yi of ρ we have {|Xi|} * {|X0|}
or {|Yi|} * {|Y0|}.

Thus only jump and return rules are applicable to saturated sequents. We shall

show that the search strategy given in Figure 4.5 terminates, if given an input sequent

with a certain simple structure, which is defined in the following.

Definition 4.4.4. A structure is a flat structure if it contains no occurrences of the structural

connective .. We use Γ and ∆ to stand for flat structures since flat structures can be viewed as

sets of formulae. The set of (right/left) linear structures is the smallest set of structures that

satisfies the following:

1. The empty structure is both a right linear structure and a left linear structure.

2. If X is a right (left) linear structure and ∆ is a flat structure, then (X, ∆) is a right

(resp. left) linear structure.

§4.4 Proof search 83

3. If Γ is a flat structure and X is a right linear structure, then Γ . X is a left linear

structure.

4. If X is a left linear structure and ∆ is a flat structure, then X . ∆ is a right linear

structure.

A sequent X ⇒ Y is a linear sequent if either X is a flat structure and Y is a right linear

structure, or X is a left linear structure and Y is a flat structure.

The intuition of Definition 4.4.4 is that a linear sequent X ⇒ Y can take the form

(X′ . Y′), Γ ⇒ ∆ or Γ ⇒ ∆, (X′′ . Y′′) or Γ ⇒ ∆ where X′ . Y′ and X′′ . Y′′ store the

sequent corresponding to the previous state of computation, and Γ and ∆ are sets of

formulae.

Lemma 4.4.5. Let X ⇒ Y be a linear sequent. Then for every LBiInt2-derivation Π of

X ⇒ Y, every sequent in Π is a linear sequent.

Proof. Given a derivation Π of a linear sequent X ⇒ Y, we show by induction on

the length of Π that every sequent in Π is a linear sequent. This is straightforward

by showing that in every rule of LBiInt2, if the conclusion of the rule is a linear se-

quent, then every premise of the rule is also a linear sequent, which can be verified by

inspection of the rules of LBiInt2. We give the case for the .L rule as an example:

X2 ⇒ Y2, {|Y1|}
.L {|Y1|} 6⊆ {|Y2|}

X1, (X2 . Y2) ⇒ Y1

We assume that the conclusion X1, (X2 . Y2) ⇒ Y1 is a linear sequent and show

that the premise X2 ⇒ Y2, {|Y1|} is a linear sequent. Since X1, (X2 . Y2) is not a flat

structure, we have that Y1 is a flat structure and X1, (X2 . Y2) is a left linear structure

from Definition 4.4.4. Then we obtain the following:

1. (X2 . Y2) is a left linear structure from Definition 4.4.4, case 2.

2. X2 is a flat structure and Y2 is a right linear structure from Definition 4.4.4, case 3.

3. {|Y1|} is a flat structure by the definition of top-level formulae of a structure.

4. Y2, {|Y1|} is a right linear structure from Definition 4.4.4, case 2.

Finally, the premise X2 ⇒ Y2, {|Y1|} is a linear sequent from Definition 4.4.4, case 3,

since X2 is a flat structure and Y2, {|Y1|} is a right linear structure. Q.E.D.

Note that as a consequence of Lemma 4.4.5, every sequent that arises during proof

search for a linear sequent X ⇒ Y, using the search procedure given in Figure 4.5, is a

linear sequent.

We now define a translation from linear sequents to linked lists, consisting of

nodes that are pairs of sets of formulae, linked by labels marked either ≤ or ≥.

84 A shallow inference nested sequent calculus for bi-intuitionistic logic

Definition 4.4.6.

list(Γ ⇒ ∆) = 〈Γ , ∆〉
list((X′ . Y′), Γ ⇒ ∆) = list(X′ ⇒ Y′) ≤ 〈Γ , ∆〉
list(Γ ⇒ ∆, (X′′ . Y′′)) = list(X′′ ⇒ Y′′) ≥ 〈Γ , ∆〉

We write length(L) to mean the number of nodes in the list L.

Corollary 4.4.7. A backward LBiInt2 rule application to a linear sequent X ⇒ Y can be

viewed as an operation on list(X ⇒ Y), where the conclusion (resp. premise) is the list before

(resp. after) the operation. The jump rules append a node to the list, and the static rules saturate

the end node. The return rules remove a node from the end of the list, and add subformulae to

the penultimate node.

For example, below left is is an instance of →R2 with the corresponding list struc-

tures of the premise and conclusion on the right:

(C . B, A → B), C, A ⇒ B

C ⇒ B, A → B
→R2

〈{C}, {B, A → B}〉 ≤ 〈{C, A}, {B}〉

〈{C}, {B, A → B}〉

We now define a function that we will use in the termination proof.

Definition 4.4.8. The degree of a formula is:

deg(p) = 0

deg(A ∧ B) = deg(A ∨ B) = max(deg(A), deg(B))
deg(A → B) = deg(A−<B) = 1 + max(deg(A), deg(B)).

The degree of a sequent is:

degL(X ⇒ Y) = max{deg(A) | A ∈ {|X|}}
degR(X ⇒ Y) = max{deg(B) | B ∈ {|Y|}}

deg(X ⇒ Y) = max(degL(X ⇒ Y), degR(X ⇒ Y)).

Note that only logical connectives contribute to these functions.

We denote with s f (A) the set of subformulae of A, and

s f (Γ) =
⋃

A∈Γ

s f (A)

the set of subformulae of Γ . In the following, we assume that the initial input to the

search procedure Prove is a linear sequent Γ0 ⇒ ∆0, and we define m = |s f (Γ0 ∪ ∆0)|.

Lemma 4.4.9. Let X ⇒ Y be any sequent encountered during proof search. Using jump

rules, list(X ⇒ Y) can be extended at most O(m2) times.

Proof. We show that the number of jump rule applications is bounded by O(m2).

First, we show that there can be at most m consecutive jumps in the same direction.

In the forward case, consider an application of →R2 with principal formula A → B.

§4.4 Proof search 85

After this application, A will be added to the LHS of the sequent, and remain on the

LHS during saturation and forward jumps. Should A → B reappear on the RHS, B

will be added to the RHS by the →R1 rule during saturation, so a repeated application

of →R2 to A → B will be blocked by the generalised blocking condition of Defini-

tion 4.4.3. Thus since the number of →-formulae is bounded by m and we can only

jump on each →-formula once, there can be at most m consecutive forward jumps.

The backward case is symmetric.

We now show that we can switch direction at most m times. Consider a direction

switch, e.g., a forward jump using →R2 followed by a backward jump −<L2 (the other

case is symmetric), and any static rule applications in between. Note that static rules

do not increase the degree of a sequent. Let γ0 and γ1 be the conclusion and premise

of the →R2 rule respectively, and let γ2 and γ3 be the conclusion and premise of the

−<R2 rule respectively, as shown below:

...
γ3 = C ⇒ D, ∆, ((X . Y, A → B), Γ , C−<D . ∆)

γ2 = (X . Y, A → B), Γ , C−<D ⇒ ∆
...

γ1 = (X . Y, A → B), {|X|}, A ⇒ B

−<L2

γ0 = X ⇒ Y, A → B
→R2

...

Let d0 = deg(γ0). We will show that deg(γ3) ≤ d0 − 1. By inspection of the rules

and Definition 4.4.8, we have the following:

degL(γ1) ≤ d0

degR(γ1) ≤ d0 − 1

degL(γ2) = degL(γ1) ≤ d0

degR(γ2) ≤ max(degL(γ1) − 1, degR(γ1)) = d0 − 1

degL(γ3) ≤ degL(γ2) − 1 = d0 − 1

degR(γ3) ≤ max(degL(γ2) − 1, degR(γ2)) = d0 − 1

Therefore deg(γ3) = max(degL(γ3), degR(γ3)) ≤ d0 − 1.

After a direction switch, we can again make at most m jumps in one direction.

Therefore the total number of jump rule applications is bounded by O(m2). Q.E.D.

Note that the non-trivial part of the proof for Lemma 4.4.9 is showing that proof

search cannot create infinite zig-zags of forward and backward looking edges. Thus,

it is showing essentially the same result as Lemma 3.4.11 in Chapter 3, as well as that

of Pinto and Uustalu’s work [95]. The similarity between our work and that of Pinto

and Uustalu is not surprising, given their recent work [96] on relating their labelled

sequent calculus [95] to LBiInt1. In [96], Pinto and Uustalu showed that a derivation

in LBiInt1 can be translated into a derivation in their labelled sequent calculus for

BiInt and vice versa.

86 A shallow inference nested sequent calculus for bi-intuitionistic logic

Lemma 4.4.10. Let X ⇒ Y be any sequent encountered during proof search. Then the satu-

ration process for X ⇒ Y terminates after O(m) steps.

Proof. Every application of a static rule adds a subformula of s f (Γ0 ∪ ∆0) to the se-

quent. After at most m applications of static rules, the sequent will contain all subfor-

mulae of the original sequent, and hence will be saturated. Q.E.D.

Theorem 4.4.11. The proof search strategy of Figure 4.5 terminates.

Proof. Suppose for a contradiction that the strategy does not terminate. From Lem-

mas 4.4.9 and 4.4.10, we can conclude that the only way to get non-termination is for

the jump and return rules to repeatedly create and remove nodes.

The length of the list is at least 1 because the first node cannot be removed. We call

a node that cannot be removed stable. Every time a return rule removes node i from

the list, it adds one or more new subformulae of Γ0 ∪∆0 to node i − 1. After at most m

such updates, node i − 1 will contain every subformula, and the return rules will no

longer be applicable to node i because their side conditions will not hold. Then node

i − 1 will become stable. Eventually all nodes will become stable, and the return rules

will no longer be applicable to the end of the list. Contradiction. Q.E.D.

4.4.3 Completeness of LBiInt2

We will now prove that the proof search strategy of Figure 4.5 is complete with re-

spect to BiInt semantics. We will do so by showing how we can use a trace of the

Prove procedure to construct a counter-model if Prove returns false. Due to the back-

propagation of formulae in BiInt (as well as tense logic as we shall see later), we can-

not construct the counter-model by simply stitching together smaller counter-models

as in basic modal logics. Therefore, rather than constructing a counter-model directly,

we will use the notion of a pre-model that will contain an intermediate counter-model

being constructed. Note that the pre-model construction in our proof is very similar

to the restart technique for the description logic ALCI by Horrocks et al. [69]. In fact,

LBiInt2 can be seen as a proof-theoretic formalisation of the restart technique used by

Horrocks et al.

In the following, we use the assignment operator “:=” to emphasize the algorith-

mic aspect of the construction.

Definition 4.4.12. Let Γ and ∆ be sets of formulae. We say that a pair 〈Γ , ∆〉 has a counter-

model iff there exists a BiInt model M = 〈W,≤, V〉 such that w
 Γ and w

∆ for some

w ∈ W.

We say that a node 〈Γ , ∆〉 is saturated if the LBiInt2 sequent Γ ⇒ ∆ is saturated.

Lemma 4.4.13. For every sequent X ⇒ Y, if no LBiInt2 rule is applicable to X ⇒ Y, then

〈{|X|}, {|Y|}〉 has a counter-model.

Proof. Let W := {w}, let ≤:= {(w, w)} and let V(p) := {w} for all atoms p ∈ {|X|},

V(p) := ∅ otherwise. Then using the strong saturation conditions of Definition 4.4.2,

§4.4 Proof search 87

we can easily show that w
 {|X|} and w

{Y} by simultaneous induction on the

length of formulae in {|X|} and {|Y|}. Then M = 〈W,≤, V〉 is a counter-model for

〈{|X|}, {|Y|}〉. Q.E.D.

Definition 4.4.14. A pre-model is a tree of nodes that are pairs of sets of formulae, linked by

edges labeled with ≤ or ≥, such that:

1. Every node is marked either C (complete) or I (incomplete).

2. Every internal node is marked C.

3. Every C-node is saturated.

4. A leaf node may be marked either C or I.

5. Every C-leaf has a counter-model.

6. For every two C-nodes 〈Γ , ∆〉 and 〈Γ ′, ∆′〉 such that 〈Γ , ∆〉 ≤ 〈Γ ′, ∆′〉 or 〈Γ ′, ∆′〉 ≥
〈Γ , ∆〉, it is the case that Γ ⊆ Γ ′ and ∆′ ⊆ ∆. We say that 〈Γ , ∆〉 and 〈Γ ′, ∆′〉 are

compatible in this case.

7. For every C-node 〈Γ , ∆〉 and for every A−<B ∈ Γ , either A ∈ Γ and B ∈ ∆, or there

exists a node 〈Γ1, ∆1〉 such that 〈Γ , ∆〉 ≥ 〈Γ1, ∆1〉, and {A} ⊆ Γ1 and ∆ ∪ {B} ⊆ ∆1.

8. For every C-node 〈Γ , ∆〉 and for every C → D ∈ ∆, either C ∈ Γ and D ∈ ∆, or there

exists a node 〈Γ2, ∆2〉 such that 〈Γ , ∆〉 ≤ 〈Γ2, ∆2〉, and Γ ∪ {C} ⊆ Γ2 and {D} ⊆ ∆2.

Lemma 4.4.15. For every pre-model M, if all leaves are marked C, then there exists a counter-

model for the root of M.

Proof. By induction on the height of M. For the base case, we use property 5 of Defini-

tion 4.4.14.

For the induction hypothesis (IH1), assume that the lemma holds for all pre-models

of height ≤ k, and consider a pre-model M of height k + 1. Consider the root γ =
〈Γ , ∆〉 of M. By properties 2 and 3 of Definition 4.4.14, we know that γ = 〈Γ , ∆〉 is

saturated. We obtain a counter-model M = 〈W,≤, V〉 for γ as follows:

Let W := {w}, let ≤:= {(w, w)}, and let V(p) := {w} for every atom p ∈ Γ . We

want to show that w
 Γ and w

∆. We do this by simultaneous induction on the

length of formulae in Γ and ∆. For atoms, the valuation gives the required. For the

induction hypothesis (IH2), we assume that for every formula E of length ≤ l, if E ∈ Γ

then w
 E, and if E ∈ ∆ then w

E.

Consider a formula F of length l + 1. If F is a ∧- or ∨-formula in Γ or ∆, or an

→-formula in Γ or an −<-formula in ∆, we use the saturation conditions of Defini-

tion 4.4.2 and the induction hypothesis (IH2). The remaining cases are:

1. If F = A−<B and F ∈ Γ :

(a) By property 7 of Definition 4.4.14, either A ∈ Γ and B ∈ ∆, or there exists

a node γ′ = 〈Γ1, ∆1〉, such that 〈Γ , ∆〉 ≥ 〈Γ1, ∆1〉, and {A} ⊆ Γ1 and ∆ ∪
{B} ⊆ ∆1.

88 A shallow inference nested sequent calculus for bi-intuitionistic logic

(b) In the first case, the induction hypothesis (IH2) gives us w
 A and w

B.

Combined with w ≤ w, we have w
 A−<B.

(c) In the second case:

i. 〈Γ1, ∆1〉 is rooted at a pre-model M’ of height ≤ k such that all its leaves

are marked C. By the induction hypothesis (IH1), there exists a counter-

model M′ = 〈W1,≤1, V1〉 for 〈Γ1, ∆1〉. Let u ∈ W1 be the world such

that u
 Γ1 and u

∆1. Then u
 A and u

B, ∆.

ii. Let W := W ∪ W1, let ≤ := ≤ ∪ ≤1 ∪{(u, w)}, and let V := V ∪ V1.

iii. Since u
 A and u

B, ∆ and u ≤ w, we have w
 A−<B.

2. If F = C → D and F ∈ ∆, then we perform a symmetric construction to Steps 1a

to 1c above, using property 8 of Definition 4.4.14 and the induction hypotheses

(IH1) and (IH2).

We update≤ to contain the transitive closure of ≤. We know that M obeys persistence,

because by property 6 of Definition 4.4.14, γ is compatible with each γ′ used in the

above construction, and each sub-model M′ above obeys persistence. Therefore M is

a counter-model for 〈Γ , ∆〉. Q.E.D.

We now define some transformations on a pre-model that correspond to the var-

ious kinds of LBiInt2 rules. Given a pre-model M and nodes γ and γ1 in M, we say

that γ1 is a predecessor of γ if either γ1 ≤ γ or γ1 ≥ γ in M.

Lemma 4.4.16. Let M be a pre-model, and let γ = 〈Γ , ∆〉 be some leaf I-node in M and

γ1 = 〈Γ1, ∆1〉 its predecessor. Let X ⇒ Y be any LBiInt2 sequent such that γ is the last

element of list(X ⇒ Y), and γ1 is the penultimate element of list(X ⇒ Y). Let M’ be a tree

obtained from M by one of the following transformations:

(i) Let γ := 〈Γ ′, ∆′〉, where X ⇒ Y is the conclusion of a static rule application, and

〈Γ ′, ∆′〉 contain the top-level formulae of the premise.

(ii) If γ is strongly saturated and γ1 and γ are compatible, mark γ with C.

(iii) If γ is saturated and γ1 and γ are compatible, mark γ with C, add an ≥-successor

〈A, {B} ∪ ∆〉 for every A−<B ∈ Γ such that A 6∈ Γ or B 6∈ ∆, and an ≤-successor

〈Γ ∪{C}, D〉 for every C → D ∈ ∆ such that C 6∈ Γ or D 6∈ ∆. Mark all the successors

I.

(iv) Remove γ, mark γ1 with I and let γ1 := 〈Γ ′
1, ∆′

1〉, where X ⇒ Y is the conclusion of a

return rule application, and 〈Γ ′
1, ∆′

1〉 contain the top-level formulae of the premise.

Then M’ is also a pre-model that satisfies properties 1 to 8 of Definition 4.4.14.

The non-trivial cases are to show that transformations (ii), (iii) and (iv) preserve

properties 3, 5 and 6.

§4.4 Proof search 89

• Property 3: we only mark γ with C using transformation (ii) if γ is strongly

saturated, or using transformation (iii) if γ is saturated. Transformation (iv)

resets a node to I, since the addition of formulae could potentially cause the

node to become non-saturated.

• Property 5: transformation (ii) only marks a leaf node C if it is strongly satu-

rated and compatible with its predecessor, which means that no LBiInt2 rule

is applicable to it, and Lemma 4.4.13 gives us a counter-model. Transforma-

tion (iv) resets a node to I, since the addition of formulae could potentially cause

the node to become non-saturated.

• Property 6: transformation (ii) only marks a leaf node C if it is compatible with

its predecessor. Transformation (iv) resets a node to I, since the addition of for-

mulae could potentially cause the node to become incompatible with its prede-

cessor.

The proof of the main completeness lemma will use an induction on the height of

a failed trace of Prove, which we define now.

Definition 4.4.17. Let X ⇒ Y be some sequent. A failed trace of Prove for X ⇒ Y is a

tree T of sequents, linked by edges labeled with LBiInt2 rules, such that:

• The root of T is X ⇒ Y;

• If a call of Prove(γ) returns at Step 4 without invoking Prove again, then γ is a

leaf node of T;

• If a call of Prove(γ) invokes Prove(γi) at Step 3 for 1 ≤ i ≤ n and corresponding

jump or static rules ρi, for some n ≥ 1, and the call to each Prove(γi) returns

false, then γ is an inner node of T, and its children are γi, linked by labels ρi;

• If a call of Prove(γ) invokes Prove(γi) at Step 2 for 1 ≤ i ≤ 2 and corresponding

static rule ρ, and some call to Prove(γi) returns false, then γ is an inner node of

T, and its child is γi, linked by label ρ.

We now give the main completeness lemma. It shows that every recursive call

of Prove that returns false can be used to update a pre-model, whilst retaining the

required properties, and that the calls of Prove that return at Step 4 can be used to

complete the pre-model and turn it into a proper counter-model.

Lemma 4.4.18. Let M be some pre-model rooted at some node 〈Γ0, ∆0〉. If for every I-leaf

〈Γ , ∆〉 of M, there exists a failed trace T of Prove for the sequent X ⇒ Y such that list(X ⇒
Y) is a branch 〈Γ0, ∆0〉 · · · 〈Γ , ∆〉 of M, then there exists another pre-model M’ rooted at

〈Γ ′
0, ∆′

0〉 such that all leaves of M’ are marked C and Γ ′
0 ⊇ Γ0 and ∆′

0 ⊇ ∆0.

Proof. Let L be the set of I-leaves in M. We prove the lemma by induction on the

maximum height of traces T across all members of L.

In the base case, the height of all traces is 1. That is, for each 〈Γ , ∆〉, no rules were

applicable to X ⇒ Y and Prove returned at Step 4. Since no rules are applicable to

90 A shallow inference nested sequent calculus for bi-intuitionistic logic

X ⇒ Y, we know in particular that each 〈Γ , ∆〉 is strongly saturated, and that it is

compatible with its predecessor. Then we obtain M’ from M by marking each 〈Γ , ∆〉
with C. By Lemma 4.4.16, using transformation (ii), M’ is a pre-model.

For the induction hypothesis, assume the lemma holds for all failed traces of Prove

of height ≤ k. Consider a leaf 〈Γ , ∆〉 in L such that the trace T rooted at γ = X ⇒ Y

has height k + 1. For each ρi linking γ and γi for 1 ≤ i ≤ n, we can use one of the

transformations of Lemma 4.4.16 to obtain an M’ with leaves γi, such that properties 2

to 8 of Definition 4.4.14 hold in M’. In particular:

1. If n = 1 and ρ is a static rule, then we use transformation (i).

2. If some ρi is a return rule, then we use transformation (iv).

3. If all ρi are jump rules, then we use transformation (iii).

We now have another pre-model M’ with leaves γi, as well as the other leaves in L, if

any. The maximum height of the traces rooted at the leaves γi is k. If any other leaves

in L are rooted at traces of height k + 1, we repeat this process for all such leaves.

Eventually, all members of L are rooted at traces of height ≤ k, and then the induction

hypothesis applies, and we can obtain a pre-model M’ such that all leaves of M’ are

marked C. Q.E.D.

Theorem 4.4.19. If A is BiInt-valid then Prove(∅ ⇒ A) returns true.

Proof. As is usual in semantic completeness proofs, we show the contrapositive: if

Prove(∅ ⇒ A) returns false, then A is not BiInt-valid.

Suppose that Prove(∅ ⇒ A) returns false. Let T be the failed trace of Prove for ∅ ⇒
A. Let M be a pre-model consisting of one I-node 〈∅, {A}〉. Then by Lemma 4.4.18,

there exists a pre-model rooted at 〈∅, {A}〉 such that all leaves are complete. Then by

Lemma 4.4.15, 〈∅, {A}〉 has a counter-model, that is, there exists an M = 〈W,≤, V〉
such that w

A for some w ∈ W. Then A is not BiInt-valid. Q.E.D.

By Theorems 4.4.1 and 4.4.19, we have:

Theorem 4.4.20. Any formula A is LBiInt2-derivable if and only if Prove(∅ ⇒ A) returns

true.

Thus LBiInt2 gives us a decision procedure for BiInt. The fact that BiInt is de-

cidable is already known, as we showed in Chapter 2.

Chapter 5

A deep inference nested sequent

calculus for bi-intuitionistic logic

In this chapter we present a deep inference calculus DBiInt for BiInt, and show that it

is complete with respect to the shallow inference calculus LBiInt1 we presented in the

previous chapter. First, in Section 5.1, we recall the syntax of our nested sequents and

present our deep inference calculus DBiInt. In Section 5.2, we show that provability

in DBiInt is equivalent to provability in LBiInt1, which is the central result of this

chapter. The non-trivial part is showing that the residuation rules of LBiInt1 can be

simulated by the propagation rules and deep inference of DBiInt. In Section 5.3, we

give a simple restriction of DBiInt that allows terminating backward proof search.

Note. Some of the results of this chapter have been published in [98].

5.1 The sequent calculus DBiInt

Recall that a structure is defined by the following grammar, where A is a BiInt for-

mula:

X := ∅ | A | (X, X) | X . X.

If X and Y are structures, then X ⇒ Y is a nested shallow sequent as defined pre-

viously, and X . Y is a nested deep sequent. The definitions of polarities and contexts

remain unchanged from the previous chapter.

We define the immediate super-structure of a context as:
︷︸︸︷

Σ[] = X . Y such that

X . Y is a sub-structure of Σ and X = [], X′ for some structure X′ or Y = [], Y′ for some

structure Y′.

We define the top-level formulae of a structure as before:

{|X|} = {A | X = (A, Y) for some A and Y}.

For example, if Σ[] = A, B . C, (D, (E . F) . []), then
︷︸︸︷

Σ[G] = (D, (E . F) . G), and

{|D, (E . F)|} = {D}.

While deep inference allows us to “zoom-in” to any sub-structure deep inside the

nested sequent, the concept of an immediate super-structure acts the opposite way in

91

92 A deep inference nested sequent calculus for bi-intuitionistic logic

that it allows us to “zoom-out” from a context to its immediate surrounding nested

structure. This will be useful when we restrict our rules for terminating proof-search,

allowing us to impose local checks on the rules.

The display property of pure display calculi is the ability to display/un-display

a particular structure with respect to a top-level turnstile ` (say) as the whole of the

antecedent or succedent. For example, we have to display V . W as the whole of the

antecedent or succedent as V . W ` Z or Z ` V . W. As mentioned previously in

Chapter 4, our shallow nested sequent calculus LBiInt1 instead enables us to “zoom

in” to V . W in X ⇒ Y by explicitly transforming the latter into X′, V ⇒ W, Y′ so

we can apply a rule to any top-level formula/structure of V or W. Our deep nested

sequent calculus DBiInt is even more efficient since it allows us to “zoom in” to V . W

by treating it as the filler of a hole Σ[V . W], requiring no explicit transformations.

Figure 5.1 gives the rules of our deep inference calculus DBiInt. Here the inference

rules can be applied at any level of the nested sequent, indicated by the use of contexts.

Notably, there are no residuation rules; indeed the main goal of this chapter is to

show that the residuation rules of LBiInt1 can be simulated by deep inference and

propagation rules in DBiInt. We write `DBiInt Π : X . Y to mean that there exists a

DBiInt-derivation Π of the sequent X . Y.

We write |Π| for the height of a derivation, i.e., the number of sequents on the

longest branch, where Π is either an LBiInt1-derivation or a DBiInt-derivation.

5.1.1 Examples

We give two examples to illustrate the difference between shallow inference in LBiInt1

and deep inference in DBiInt.

Example 5.1.1. The following is a derivation of Uustalu’s formula [95] in LBiInt1:

idp ⇒ q, p idp, q ⇒ q
−<Rp ⇒ q, p−<q

.Lp . q ⇒ p−<q
wLp . q, r ⇒ p−<q

id
(p . q), r ⇒ r

∧R
(p . q), r ⇒ (p−<q) ∧ r

→R
p . q ⇒ r → ((p−<q) ∧ r)

sL
p ⇒ q, r → ((p−<q) ∧ r)

This example uses the rules .L and sL to bring the required sub-structures to the top-level to

apply the inference rules.

Example 5.1.2. The following is a derivation of Uustalu’s formula in DBiInt where we ab-

breviate A = r → ((p−<q) ∧ r), B = (p−<q) ∧ r and X = r . B, p−<q to save space.

For readability, we draw a box around the conclusion structure of the inference rule instance,

§5.2 Soundness and completeness of DBiInt 93

Identity and logical constants:

id
Σ[X, A . A, Y]

⊥L
Σ−[⊥]

>R
Σ+[>]

Propagation rules:

Σ−[A, (A, X . Y)]
.L1

Σ−[A, X . Y]

Σ+[(X . Y, A), A]
.R1

Σ+[X . Y, A]

Σ[A, X . (W, (A, Y . Z))]
.L2

Σ[A, X . (W, (Y . Z))]

Σ[((X . Y, A), W) . Z, A]
.R2

Σ[((X . Y), W) . Z, A]

Logical rules:

Σ−[A ∧ B, A, B]
∧L

Σ−[A ∧ B]

Σ+[A ∧ B, A] Σ+[A ∧ B, B]
∧R

Σ+[A ∧ B]

Σ−[A ∨ B, A] Σ−[A ∨ B, B]
∨L

Σ−[A ∨ B]

Σ+[A ∨ B, A, B]
∨R

Σ+[A ∨ B]

Σ−[A−<B, (A . B)]
−<L

Σ−[A−<B]

Σ+[A → B, (A . B)]
→R

Σ+[A → B]

Σ[X, A → B . A, Y] Σ[X, A → B, B . Y]
→L

Σ[X, A → B . Y]

Σ[X . Y, A−<B, A] Σ[X, B . Y, A−<B]
−<R

Σ[X . Y, A−<B]

Figure 5.1: DBiInt: a deep inference nested sequent calculus for BiInt

unless it is the top-level structure:

id
p . q, A, X, p−<q, p

id
p, q . q, A, X, p−<q

−<R
p . q, A, (r . B, p−<q) , p−<q

.R1

p . q, A, (r . B, p−<q)
id

p . q, A, (r . B, r)
∧R

p . q, A, (r . (p−<q) ∧ r)
→R

p . q, r → ((p−<q) ∧ r)

This example uses deep inference to apply the inference rules at any level. The formula propaga-

tion rule .R1 ensures that the required formula is propagated to the appropriate sub-structure.

5.2 Soundness and completeness of DBiInt

We now show that DBiInt is equivalent to the cut-free fragment of the sequent calcu-

lus LBiInt1 that we presented in Chapter 4.

94 A deep inference nested sequent calculus for bi-intuitionistic logic

5.2.1 Soundness of DBiInt

We show the soundness of DBiInt first, that is, that every rule of DBiInt can be de-

rived in LBiInt1. This involves showing that the propagation rules of DBiInt can

be derived in LBiInt1 using residuation. This is not a surprising result, since the

residuation rules in display logics are used exactly for the purpose of displaying and

un-displaying sub-sequents so that inference rules can be applied to them.

Theorem 5.2.1 (Soundness). For any structures X and Y, if `DBiInt Π : X . Y then `LBiInt1

Π′ : X ⇒ Y.

Proof. We show that each deep inference rule ρ of DBiInt is derivable in LBiInt1. This

is done by case analysis of the context Σ[] in which the deep rule ρ applies. Note that

if a deep inference rule ρ is applicable to X . Y, then the context Σ[] in this case is

either [], a positive context or a negative context. In the first case, it is easy to show

that each instance of ρ where Σ[] = [] is derivable in the shallow system.

For the case where Σ[] is either positive or negative, we use the display properties

of LBiInt1. We show here the case where ρ is a rule with a single premise; the other

cases are analogous. Suppose ρ is

Σ+[U]
ρ

Σ+[V]

By the display properties of LBiInt1 (Lemmas 4.1.3 to 4.1.5), we only need to show

that the following rules are derivable in the shallow system for some structure W ′:

W ′ ⇒ U
W ′ ⇒ V

U ⇒ W ′

V ⇒ W ′

For example, to show soundness of .L1 it is enough to show that the following are

derivable:

W ′ ⇒ (A, (A, X . Y) . Z)

W ′ ⇒ ((A, X . Y) . Z)

(A, (A, X . Y) . Z) ⇒ W ′

((A, X . Y) . Z) ⇒ W ′

Both reduce to showing that the following is derivable:

A, (A, X . Y) . Z

(A, X . Y) . Z

The following is the required derivation:

A, (A, X . Y) ⇒ Z
sL

A, A, X ⇒ Y, Z
cL

A, X ⇒ Y, Z .L
(A, X . Y) ⇒ Z

Below are the other non-trivial cases (we give the DBiInt rule on the left and its

derivation in LBiInt1 on the right):

§5.2 Soundness and completeness of DBiInt 95

Z . (X . Y, A), A
.R1

Z . (X . Y, A)

Z ⇒ (X . Y, A), A
sR

Z, X ⇒ Y, A, A
cR

Z, X ⇒ Y, A .R
Z ⇒ (X . Y, A)

A, X . (W, (A, Y . Z))
.L2

A, X . (W, (Y . Z))

A, X ⇒ W, (A, Y . Z)
.L

A, X . W ⇒ A, Y . Z
sR

(A, X . W), A, Y ⇒ Z
.R

(A, X . W), A ⇒ Y . Z
.R

A, X . W ⇒ A . (Y . Z)
sL

A, X ⇒ W, (A . (Y . Z))
sR

A, A, X ⇒ W, (Y . Z)
cL

A, X ⇒ W, (Y . Z)

((X . Y, A), W) . Z, A
.R2

((X . Y), W) . Z, A

(X . Y, A), W ⇒ Z, A
.R

X . Y, A ⇒ W . Z, A
sL

X ⇒ Y, A, (W . Z, A)
.L

X . Y ⇒ A, (W . Z, A)
.L

(X . Y) . A ⇒ W . Z, A
sR

((X . Y) . A), W ⇒ Z, A
sL

(X . Y), W ⇒ Z, A, A
cR

(X . Y), W ⇒ Z, A

Q.E.D.

5.2.2 Completeness of DBiInt

Our aim is to show that DBiInt is complete w.r.t. LBiInt1. But first we need some

basic lemmas. Note that all the rules of DBiInt have been deliberately designed with

backward proof search in mind, so it is not surprising that the proofs of the following

three lemmas are so simple.

Lemma 5.2.2 (Admissibility of general weakening). For any context Σ and any structures

X and Y: if `DBiInt Π : Σ[X] then `DBiInt Π′ : Σ[X, Y] such that |Π′| = |Π|.

Proof. We give one case where Π ends with a propagation rule, and one case where Π

ends with a logical rule; all other cases are analogous. In each of the following cases,

we use induction on |Π|, and obtain Π′
1 from Π1 using the induction hypothesis.

Π1

Σ−[A, (A, X1 . X1)] .L1
Σ−[A, X1 . X2]

;

Π′
1

Σ−[A, (A, X1 . X1), Y]
.L1

Σ−[(A, X1 . X2), Y]

Π1

Σ+[A → B, (A . B)]
→R

Σ+[A → B]

;

Π′
1

Σ+[A → B, (A . B), Y]
→R

Σ+[(A → B), Y]

96 A deep inference nested sequent calculus for bi-intuitionistic logic

Q.E.D.

Lemma 5.2.3 (Admissibility of formula contraction). For any context Σ and any structure

X and formula A: if `DBiInt Π : Σ[X, A, A] then `DBiInt Π′ : Σ[X, A] such that |Π′| = |Π|.

Proof. We give two cases where Π ends with a propagation rule, and two cases where

Π ends with a logical rule; all other cases are analogous. In each of the following cases,

we use a induction on |Π|, and obtain Π′
1 from Π1 using the induction hypothesis.

Π1

Σ−[A, (A, A, X1 . X1)] .L1
Σ−[A, A, X1 . X2]

;

Π′
1

Σ−[A, (A, X1 . X1)] .L1
Σ−[(A, X1 . X2)]

Π1

Σ[((X . Y, A), W) . Z, A, A]
.R2

Σ[((X . Y), W) . Z, A, A]

;

Π′
1

Σ[((X . Y, A), W) . Z, A]
.R2

Σ[((X . Y), W) . Z, A]

Π1

Σ−[A−<B, A−<B, (A . B)]
−<L

Σ−[A−<B, A−<B]

;

Π′
1

Σ−[A−<B, (A . B)]
−<L

Σ−[A−<B]

Π1

Σ+[A ∨ B, A ∨ B, A, B]
∨R

Σ+[A ∨ B, A ∨ B]

;

Π′
1

Σ+[A ∨ B, A, B]
∨R

Σ+[A ∨ B]

Q.E.D.

Invertibility of our rules follows immediately, since or each of our rules, the premise

is a superset of the conclusion, and weakening is height-preserving.

Lemma 5.2.4 (Invertibility). All DBiInt rules are invertible: if the conclusion is derivable,

then each premise is derivable.

We now show that the residuation rules of LBiInt1 are admissible in DBiInt; that

is, they can be simulated by the propagation rules of DBiInt. Actually, what we show

is next is a stronger result: the admissibility of “deep” versions of these rules, which

is important for later showing the completeness of our proof search calculus in Sec-

tion 5.3.

Lemmas 5.2.5 to 5.2.8 are proved by structural induction on Σ[], and a sub-induction

on |Π|. In each of the derivations, a dashed inference line means that the conclusion

is obtained from the premise using the respective Lemma.

Lemma 5.2.5 (Admissibility of sL). For any context Σ[], if `DBiInt Π : Σ[(X . Y), Z . W]
then `DBiInt Π′ : Σ[X, Z . Y, W] such that |Π′| ≤ |Π|.

Proof.

§5.2 Soundness and completeness of DBiInt 97

• First we show the base case when Σ[] = []. We use a sub-induction on the height

of the derivation Π, and obtain Π′
1 (resp. Π′

2) from Π1 (resp. Π2) using the sub-

induction hypothesis.

– Cases when Π ends with a propagation rule that moves formulae within

the structures X and Y:

Π1

(A, (A, X1 . X2) . Y), Z . W
.L1

((A, X1 . X2) . Y), Z . W

;

Π′
1

A, (A, X1 . X2), Z . Y, W
.L1

(A, X1 . X2), Z . Y, W

Π1

(X . (Y1 . Y2, A), A), Z . W
.R1

(X . (Y1 . Y2, A)), Z . W

;

Π′
1

X, Z . (Y1 . Y2, A), A, W
.R1

X, Z . (Y1 . Y2, A), W

– Cases when Π ends with a propagation rule that moves formulae between

the structures X, Y, Z, W:

Π1

(A, X . (A, Y1 . Y2)), Z . W
.L2

(A, X . (Y1 . Y2)), Z . W

;

Π′
1

A, X, Z . (A, Y1 . Y2), W
.L2

A, X, Z . (Y1 . Y2), W

Π1

(X . Y, A), Z . W1, A
.R2

(X . Y), Z . W1, A

;

Π′
1

X, Z . Y, W1, A, A
Lemma 5.2.3

X, Z . Y, W1, A

– Case when Π ends with the logical rule →L where the principal formula is

in X:
Π1

(X1, A → B . A, Y), Z . W

Π2

(X1, A → B, B . Y), Z . W
→L

(X1, A → B . Y), Z . W

;

Π′
1

X1, A → B, Z . A, Y, W

Π′
2

X1, A → B, B, Z . Y, W →L
X1, A → B, Z . Y, W

– Case when Π ends with the logical rule −<R where the principal formula

is in Y:
Π1

(X . Y1, A−<B, A), Z . W

Π2

(X, B . Y1, A−<B), Z . W
−<L

(X . Y1, A−<B), Z . W

;

Π′
1

X, Z . Y1, A−<B, A, W

Π′
2

X, B, Z . Y1, A−<B, W
−<L

X, Z . Y1, A−<B, W
– The cases involving other rules follow immediately from the sub-induction

hypothesis, since they do not move formulae across .-structures.

98 A deep inference nested sequent calculus for bi-intuitionistic logic

• For the inductive cases, we have either (1) Σ[] = Σ1[([], U) . V] or (2) Σ[] =
Σ1[U . (V, [])] for some (possibly empty) structures U and V and some context

Σ1[].

We first show case (1) when Σ[] = Σ1[([], U) . V]. We consider sub-cases when

a formula is either propagated out from the context Σ[] to U, or from V into

the context Σ[]. In each case below, we obtain Π′
1 from Π1 using the induction

hypothesis, applied to the context Σ1[].

– Case when Π ends with a propagation rule that moves a formula out from

Σ[] to U:
Π1

Σ1[(((X . Y), Z1, A . W), A, U) . V]
.L1

Σ1[(((X . Y), Z1, A . W), U) . V]

;

Π′
1

Σ1[((X, Z1, A . Y, W), A, U) . V]
.L1

Σ1[((X, Z1, A . Y, W), U) . V]

– Case when Π ends with a propagation rule that moves a formula from V

into Σ[]:
Π1

Σ1[(((X . Y), Z . W, A), U) . V1, A]
.R2

Σ1[(((X . Y), Z . W), U) . V1, A]

;

Π′
1

Σ1[(X, Z . Y, W, A), U . V1, A]
.R2

Σ1[(X, Z . Y, W), U . V1, A]

– The cases when formulae are propagated within the context can be proven

identically to the case when Σ[] = [].

We now show case (2) when Σ[] = Σ1[U . (V, [])]. We consider sub-cases when

a formula is either propagated out from the context Σ[] to V, or from U into

the context Σ[]. In each case below, we obtain Π′
1 from Π1 using the induction

hypothesis, applied to the context Σ1[].

– Case when Π ends with a propagation rule that moves a formula from Σ[]
into V:

Π1

Σ1[U . (V, ((X . Y), Z . W1, A), A)]
.R1

Σ1[U . (V, ((X . Y), Z . W1, A))]

;

Π′
1

Σ1[U . (V, (X, Z . Y, W1, A), A)]
.R1

Σ1[U . (V, (X, Z . Y, W1, A))]

– Case when Π ends with a propagation rule that moves a formula from U

into Σ[]:

§5.2 Soundness and completeness of DBiInt 99

Π1

Σ1[U1, A . (V, (A, (X . Y), Z . W))]
.L2

Σ1[U1, A . (V, ((X . Y), Z . W))]

;

Π′
1

Σ1[U1, A . (V, (A, X, Z . Y, W))]
.L2

Σ1[U1, A . (V, (X, Z . Y, W))]

Q.E.D.

Lemma 5.2.6 (Admissibility of sR). For any context Σ[], if`DBiInt Π : Σ[X . Y, (Z . W)]
then `DBiInt Π′ : Σ[X, Z . Y, W] such that |Π′| ≤ |Π|.

Proof. Symmetric to the proof of Lemma 5.2.5; detailed in Section B.1. Q.E.D.

While the rules sL and sR are deeply admissible in any context, the rule .L is only

admissible at the top level and in a negative context, and the rule .L is only admissible

at the top level and in a positive context. Note also that unlike sL and sR, the rules .L

and .R are not height-preserving admissible.

Lemma 5.2.7 (Admissibility of .L). For any context Σ[] such that either Σ[] = [] or Σ[] is

a negative context, if `DBiInt Π : Σ[X . Y, Z] then `DBiInt Π′ : Σ[(X . Y) . Z].

Proof.

• First we show the base case when Σ[] = []. We use a sub-induction on the height

of the derivation Π, and obtain Π′
1 (resp. Π′

2) from Π1 (resp. Π2) using the sub-

induction hypothesis.

– Cases when Π ends with a propagation rule that moves formulae between

the structures X and Y:

Π1

A, X1 . (A, Y1 . Y2), Z
.L2

A, X1 . (Y1 . Y2), Z

;

Π′
1

(A, X1 . (A, Y1 . Y2)) . Z
.L2

(A, X1 . (Y1 . Y2)) . Z

Π1

(X1 . X2, A) . Y1, A, Z
.R2

(X1 . X2) . Y1, A, Z

;

Π′
1

((X1 . X2, A) . Y1, A) . Z
.R2

((X1 . X2) . Y1, A) . Z

– Cases when Π ends with a propagation rule that moves formulae between

the structures X and Z:

100 A deep inference nested sequent calculus for bi-intuitionistic logic

Π1

A, X1 . Y, (A, Z1 . Z2) .L2
A, X1 . Y, (Z1 . Z2)

;

Π′
1

(A, X1 . Y) . (A, Z1 . Z2)
Lm. 5.2.2

A, (A, X1 . Y) . (A, Z1 . Z2) .L2
A, (A, X1 . Y) . (Z1 . Z2) .L1
(A, X1 . Y) . (Z1 . Z2)

Π1

(X1 . X2, A) . Y, Z1, A
.R2

(X1 . X2) . Y, Z1, A

;

Π′
1

((X1 . X2, A) . Y) . Z1, A
Lm. 5.2.2

((X1 . X2, A) . Y, A) . Z1, A
.R2

((X1 . X2) . Y, A) . Z1, A
.R2

((X1 . X2) . Y) . Z1, A

– Cases when Π ends with a propagation rule that moves formulae within

the structures X and Y:

Π1

A, (A, X1 . X2) . Y, Z
.L1

(A, X1 . X2) . Y, Z

;

Π′
1

(A, (A, X1 . X2) . Y) . Z
.L1

((A, X1 . X2) . Y) . Z

Π1

X . (Y1 . Y2, A), A, Z
.R1

X . (Y1 . Y2, A), Z

;

Π′
1

(X . (Y1 . Y2, A), A) . Z
.R1

(X . (Y1 . Y2, A)) . Z

– Case when Π ends with a →L rule where the principal formula is in X:

Π1

X1, A → B . A, Y, Z

Π2

X1, A → B, B . Y, Z →L
X1, A → B . Y, Z

;

Π′
1

(X1, A → B . A, Y) . Z

Π′
2

(X1, A → B, B . Y) . Z
→L

(X1, A → B . Y) . Z

– Case when Π ends with a −<R rule where the principal formula is in Y:

Π1

X . Y1, A−<B, A, Z

Π2

X, B . Y1, A−<B, Z
−<R

X . Y1, A−<B, Z

;

Π′
1

(X . Y1, A−<B, A) . Z

Π′
2

(X, B . Y1, A−<B) . Z
−<R

(X . Y1, A−<B) . Z

– Case when Π ends with a −<R rule where the principal formula is in Z:

§5.2 Soundness and completeness of DBiInt 101

Π1

X . Y, Z1, A−<B, A

Π2

X, B . Y, Z1, A−<B
−<R

X . Y, Z1, A−<B

;

Π′
1

(X . Y, A−<B, A) . Z1

Π′
2

(X, B . Y, A−<B) . Z1 −<R
(X . Y, A−<B) . Z1

Lemma 5.2.2
(X . Y, A−<B) . Z1, A−<B

.R2
(X . Y) . Z1, A−<B

– The cases involving other rules follow immediately from the induction hy-

pothesis, since they do not move formulae across .-structures.

• For the inductive case, we have Σ[] = Σ1[([], U) . V] for some (possibly empty)

structures U and V and some context Σ1[]. We now consider sub-cases when

a formula is either propagated out from the context Σ[] to U, or from V into

the context Σ[]. In each case below, we obtain Π′
1 from Π1 using the induction

hypothesis, applied to the context Σ1[].

– Case when Π ends with a propagation rule that moves a formula out from

Σ[] to U:
Π1

Σ1[((X1, A . Y, Z), A, U) . V]
.L1

Σ1[((X1, A . Y, Z), U) . V]

;

Π′
1

Σ1[(((X1, A . Y) . Z), A, U) . V]
Lemma 5.2.2

Σ1[((A, (X1, A . Y) . Z), A, U) . V]
.L1

Σ1[((A, (X1, A . Y) . Z), U) . V]
.L1

Σ1[(((X1, A . Y) . Z), U) . V]

– Case when Π ends with a propagation rule that moves a formula from V

into Σ[]:
Π1

Σ1[((X . Y, Z, A), U) . V1, A]
.R2

Σ1[((X . Y, Z), U) . V1, A]

;

Π′
1

Σ1[(((X . Y) . Z, A), U) . V1, A]
.R2

Σ1[(((X . Y) . Z), U) . V1, A]

– The cases when formulae are propagated within the context can be proven

identically to the case when Σ[] = [].

Q.E.D.

Lemma 5.2.8 (Admissibility of .R). For any context Σ[] such that either Σ[] = [] or Σ[] is

a positive context, if `DBiInt Π : X, Y . Z then `DBiInt Π′ : X . (Y . Z).

Proof. Symmetric to the proof of Lemma 5.2.7; detailed in Section B.1. Q.E.D.

102 A deep inference nested sequent calculus for bi-intuitionistic logic

In order to show the admissibility of general contraction, we first need to show a

distribution lemma.

Lemma 5.2.9 (Distribution lemma). For any context Σ[] and for any structures X, Y, Z, W:

if `DBiInt Π : Σ[(X . Y), (Z . W)] then `DBiInt Π′ : Σ[(X, Z . Y, W)] such that |Π′| = |Π|.

Proof. By induction on the height of Π; we obtain Π′
1 from Π1 using the induction

hypothesis. As in the previous lemmas, the non-trivial cases are those where Π ends

with a propagation rule applied to the structures X, Z, Y, W.

• Case when Π ends with a propagation rule that moves a formula from X to Y:

Π1

Σ[(X1, A . Y1, (A, Y2 . Y2)), (Z . W)]
.L2

Σ[(X1, A . Y1, (Y2 . Y2)), (Z . W)]

;

Π′
1

Σ[(X1, A, Z . Y1, (A, Y2 . Y2), W)]
.L2

Σ[(X1, A, Z . Y1, (Y2 . Y2), W)]

• Case when Π ends with a propagation rule that moves a formula from Y to X:

Π1

Σ[((X1 . X2, A), X3 . Y1, A), (Z . W)]
.R2

Σ[((X1 . X2), X3 . Y1, A), (Z . W)]

;

Π′
1

Σ[((X1 . X2, A), X3, Z . Y1, A, W)]
.R2

Σ[((X1 . X2), X3, Z . Y1, A, W)]

• Case when Π ends with a propagation rule that moves a formula out of Y and

Σ[] is a positive context:

Π1

Σ+[(X . Y1, A), A, (Z . W)]
.R1

Σ+[(X . Y1, A), (Z . W)]

;

Π′
1

Σ+[(X, Z . Y1, A, W), A]
.R1

Σ+[(X, Z . Y1, A, W)]

• Case when Π ends with a propagation rule that moves a formula out of X and

Σ[] is a negative context:

Π1

Σ−[A, (A, X1 . Y), (Z . W)]
.L1

Σ−[(A, X1 . Y), (Z . W)]

;

Π′
1

Σ−[A, (A, X1, Z . Y, W)]
.L1

Σ−[(A, X1, Z . Y, W)]

• Case when Π ends with a propagation rule that moves a formula into X from

outside the context Σ[]:

§5.2 Soundness and completeness of DBiInt 103

Π1

Σ1[U1, A . (A, X . Y), (Z . W), U2] .L2
Σ1[U1, A . (X . Y), (Z . W), U2]

;

Π′
1

Σ1[U1, A . (A, X, Z . Y, W), U2] .L2
Σ1[U1, A . (X, Z . Y, W), U2]

• Case when Π ends with a propagation rule that moves a formula into Y from

outside the context Σ[]:

Π1

Σ1[U1, (X . Y, A), (Z . W) . A, U2] .R2
Σ1[U1, (X . Y), (Z . W) . A, U2]

;

Π′
1

Σ1[U1, (X, Z . Y, W, A) . A, U2] .R2
Σ1[U1, (X, Z . Y, W) . A, U2]

Q.E.D.

Lemma 5.2.10 (Admissibility of general contraction). For any context Σ[] and for any

structures X and Y: if `DBiInt Π : Σ[X, Y, Y] then `DBiInt Π′ : Σ[X, Y] such that |Π′| = |Π|.

Proof. By induction on the size of Y; the base case is proved by Lemma 5.2.3. The non-

trivial case is when Y = (Y1 . Y2). We use the distribution lemma to show how this

can be reduced to contractions on Y1 and Y2, which are admissible by the induction

hypothesis. A dashed inference line means that the conclusion is obtained from the

premise using the respective Lemma or the induction hypothesis. Suppose we have

Y in a negative context, the other case is symmetric:

Σ[(Y1 . Y2), (Y1 . Y2) . Z]
Lemma 5.2.9

Σ[(Y1, Y1 . Y2, Y2) . Z]
IH

Σ[(Y1 . Y2) . Z]

Q.E.D.

Having showed the admissibility of all structural rules of LBiInt in DBiInt, com-

pleteness is easy:

Theorem 5.2.11 (Completeness). For any structures X and Y, if `LBiInt1
Π : X ⇒ Y then

`DBiInt Π′ : X . Y.

Proof. By induction on |Π|, where we obtain Π′
1 (Π′

2) from Π1 (Π2) using the induc-

tion hypothesis. A dashed inference line means that the conclusion is obtained from

the premise using the respective Lemma. Because LBiInt1 has cut-elimination (Theo-

rem 4.2.7), we only need to consider rules other than cut:

104 A deep inference nested sequent calculus for bi-intuitionistic logic

• Case when Π ends with wL:

Π1

X ⇒ Y wL
X, A ⇒ Y

;

Π′
1

X . Y
Lemma 5.2.2

X, A . Y

• Case when Π ends with wR: analogous to the case for wL.

• Case when Π ends with cL:

Π1

X, A, A ⇒ Y
wL

X, A ⇒ Y

;

Π′
1

X, A, A . Y
Lemma 5.2.3

X, A . Y

• Case when Π ends with cR: analogous to the case for cL.

• Case when Π ends with sL:

Π1

(X1 . Y1), X2 ⇒ Y2 sL
X1, X2 ⇒ Y1, Y2

;

Π′
1

(X1 . Y1), X2 . Y2
Lemma 5.2.5

X1, X2 . Y1, Y2

• Case when Π ends with sR: analogous to the case for sL, using Lemma 5.2.6

instead.

• Case when Π ends with .L:

Π1

X2 ⇒ Y2, Y1 .L
(X2 . Y2) ⇒ Y1

;

Π′
1

X2 . Y2, Y1
Lemma 5.2.7

(X2 . Y2) . Y1

• Case when Π ends with .R: analogous to the case for .L, using Lemma 5.2.8

instead.

• Case when Π ends with →L:

Π1

X ⇒ A, Y

Π2

X, B ⇒ Y →L
X, A → B ⇒ Y

;

Π′
1

X . A, Y
Lemma 5.2.2

X, A → B . A, Y

Π′
2

X, B ⇒ Y
Lemma 5.2.2

X, A → B, B . Y →L
X, A → B . Y

• Cases when Π ends with −<R and all rules for ∨, ∧: analogous to the case for

→L.

§5.3 Proof search 105

• Case when Π ends with −<L:

Π1

A ⇒ B, Y
−<L

X, A−<B ⇒ Y

;

Π′
1

A . B, Y
Lemma 5.2.7

(A . B) . Y
Lemma 5.2.2

X, A−<B, (A . B) . Y
−<L

X, A−<B . Y

• Case when Π ends with →R: analogous to the case for −<R, using Lemma 5.2.8

instead.

Q.E.D.

Theorem 5.2.12. For any structures X and Y, `LBiInt1
Π : X ⇒ Y if and only if `DBiInt

Π′ : X . Y.

Proof. By Theorems 5.2.1 and 5.2.11. Q.E.D.

5.3 Proof search

Naive proof search in DBiInt does not terminate, as illustrated by Example 5.3.1.

Example 5.3.1. Consider the following proof attempt fragment, where X = (A → B) →
C, (D → E) → F and we only show the left premise of each →L rule instance:

...
X . G, A → B, (X, A . B, D → E, (X, A, D . E, A → B, (A . B)))

→R

X . G, A → B, (X, A . B, D → E, (X, A, D . E, A → B))
→L

X . G, A → B, (X, A . B, D → E, (X, A, D . E))
2 × .L2

X . G, A → B, (X, A . B, D → E, (D . E))
→R

X . G, A → B, (X, A . B, D → E)
→L

X . G, A → B, (X, A . B)
2 × .L2

X . G, A → B, (A . B)
→R

X . G, A → B →L
(A → B) → C, (D → E) → F . G

In the example above, there is an interaction between the →R, .L2 and →L rules

that causes non-termination, even for the intuitionistic fragment of the logic. This

well-known problem occurs in traditional sequent calculi as well, and it is caused

by the implicit contraction in the →L rule. For intuitionistic logic, this problem has

been addressed by contraction-free calculi [36] and history-based loop-checks [63].

However, these methods are less suitable for BiInt where the interaction between →
and −< formulae needs to be considered: recall our discussion in Section 3.5.

106 A deep inference nested sequent calculus for bi-intuitionistic logic

Here we address termination using a saturation process and two derived rules that

speed up proof search. The approach is similar to our work on LBiInt1 in Chapter 4,

but here we apply it to deep inference and contexts instead of top-level sequents only.

Let −<L1 and →R1 denote two rules derived as below, where a dashed inference

line means the conclusion is derived from the premise using Lemma 5.2.2. We show

each rule on the left and its derivation on the right:

Σ−[A, A−<B]
−<L1

Σ−[A−<B]

Σ−[A, A−<B]
Lemma 5.2.2

Σ−[A−<B, A, (A . B)]
.L1

Σ−[A−<B, (A . B)]
−<L

Σ−[A−<B]

Σ+[A → B, B]
→R1

Σ+[A → B]

Σ+[A → B, B]
Lemma 5.2.2

Σ+[A → B, (A . B), B]
.R1

Σ+[A → B, (A . B)]
→R

Σ+[A → B]

Definition 5.3.2. Let Σ[Z] be any sequent. Then let X . Y =
︷︸︸︷

Σ[Z]. We say that Σ[Z] is

saturated (w.r.t. Σ[] and Z) iff all the following conditions are met:

1. {|X|} ∩ {|Y|} = ∅

2. If A ∧ B ∈ {|X|} then A ∈ {|X|} and B ∈ {|X|}

3. If A ∧ B ∈ {|Y|} then A ∈ {|Y|} or B ∈ {|Y|}

4. If A ∨ B ∈ {|X|} then A ∈ {|X|} or B ∈ {|X|}

5. If A ∨ B ∈ {|Y|} then A ∈ {|Y|} and B ∈ {|Y|}

6. If A → B ∈ {|X|} then A ∈ {|Y|} or B ∈ {|X|}

7. If A−<B ∈ {|Y|} then A ∈ {|Y|} or B ∈ {|X|}

8. If A → B ∈ {|Y|} then B ∈ {|Y|}

9. If A−<B ∈ {|X|} then A ∈ {|X|}

Let X and Y be two structures. We say that a formula A → B is realised by X . Y iff

either:

1. there exists a structure Z . W ∈ Y such that A ∈ {|Z|} and B ∈ {|W|}, or

2. A ∈ {|X|} and B ∈ {|Y|}

We say that a formula C−<D is realised by X . Y iff either:

1. there exists a structure Z . W ∈ X such that C ∈ {|Z|} and D ∈ {|W|}, or

§5.3 Proof search 107

2. C ∈ {|X|} and D ∈ {|Y|}

We define the super-set relation on sequents as follows:

X1 . Y1 ⊃ X0 . Y0 iff {|X1|} ⊃ {|X0|} or {|Y1|} ⊃ {|Y0|}.

Then the following simple modifications of DBiInt ensure termination using only

local checks:

Definition 5.3.3. Let DBiInt1 be the system obtained from DBiInt with the following

changes:

1. Add the derived rules −<L1 and →R1.

2. Replace rules −<L, →R by the following:

Σ−[A−<B, (A . B)]
−<L

Σ−[A−<B]

where Σ−[A−<B] is saturated and A−<B is not realised by
︷ ︸︸ ︷

Σ−[A−<B]

Σ+[A → B, (A . B)]
→R

Σ+[A → B]

where Σ+[A → B] is saturated and A → B is not realised by
︷ ︸︸ ︷

Σ+[A → B]

3. Replace rules .L2 and .R2 by the following:

Σ[A, X . (W, (A, Y . Z))]
.L2 where A /∈ {|Y|}

Σ[A, X . (W, (Y . Z))]

Σ[((X . Y, A), W) . Z, A]
.R2 where A /∈ {|Y|}

Σ[((X . Y), W) . Z, A]

4. Replace rules →L, −<R, −<L1, →R1, .L1, .R1, ∧L, ∧R, ∨L, ∨R with the following

restricted versions:

(a) Let γ0 be the conclusion of the rule let γ1 (and γ2) be the premises. The rule is

applicable only if:
︷︸︸︷
γ1 ⊃

︷︸︸︷
γ0 and

︷︸︸︷
γ2 ⊃

︷︸︸︷
γ0 .

We will now give a simple proof search strategy for DBiInt1. While traditional

tableaux methods operate on a single node at a time, our proof search strategy will

consider the whole tree. First we define a mapping from sequents to trees.

A node is a pair of sets of formulae. A tree is a node with 0 or more children, where

each child is a tree, and each child is labelled as either a ≤-child, or a ≥-child. Given

a sequent Ξ = (X1 . Y1), · · · , (Xn . Yn), Γ . ∆, (Z1 . W1), · · · , (Zm . Wm), where Γ and

∆ are sets of formulae and n ≥ 0 and m ≥ 0, the tree tree(Ξ) represented by Ξ is:

108 A deep inference nested sequent calculus for bi-intuitionistic logic

Function Prove (Sequent Ξ) : Bool

1. Let T = tree(Ξ)

2. If the id, ⊥L, or >R rule is applicable to any node in T, return True

3. Else if there is some node 〈Γ , ∆〉 ∈ T that is not saturated

(a) Let ρ be the rule corresponding to the requirement of Definition 5.3.2 that
is not met, and let Ξ1 (and Ξ2) be the premise(s) of ρ. Return

∧
Prove(Ξi).

4. Else if there is some node Θ that is not propagated

(a) Let ρ be the rule corresponding to the requirement of Definition 5.3.4 that
is not met, and let Ξ1 be the premise of ρ. Return Prove(Ξ1).

5. Else if there is some node 〈Γ , ∆〉 ∈ T that is not realised, i.e. some C = A → B ∈
∆ (C = A−<B ∈ Γ) is not realised

(a) Let Ξ1 be the premise of the →R (−<L) rule applied to C ∈ ∆ (C ∈ Γ).
Return Prove(Ξ1).

6. Else return False

Figure 5.2: A proof search strategy for DBiInt1

〈Γ , ∆〉

tree(X1 . Y1)

≥

· · ·

≥

tree(Xn . Yn)

≥

tree(Z1 . W1)

≤

· · ·

≤

tree(Zm . Wm)

≤

Figure 5.2 gives a proof search strategy for DBiInt1. The application of a rule

deep inside a sequent can be viewed as focusing on a particular node of the tree. The

rules of DBiInt1 can then be viewed as operations on the tree encoded in the sequent.

In particular, Step 3 saturates a node locally, Step 4 propagates formulae between

neighbouring nodes, and Step 5 appends new nodes to the tree.

Definition 5.3.4. Given a tree T and a node Θ = 〈Γ , ∆〉 ∈ T, we say 〈Γ , ∆〉 is propagated iff:

.L1: for every ≥-child Γ1 . ∆1 of Θ and for every A ∈ Γ1, we have A ∈ Γ

.R1: for every ≤-child Γ1 . ∆1 of Θ and for every A ∈ ∆1, we have A ∈ ∆

.L2: for every A ∈ Γ and for every ≤-child Γ1 . ∆1 of Θ, we have A ∈ Γ1

.R2: for every A ∈ ∆ and for every ≥-child Γ1 . ∆1 of Θ, we have A ∈ ∆1

We will now show that Prove is complete for bi-intuitionistic logic. As is usual

in completeness proofs, we will show the contrapositive: if Prove returns false for

§5.3 Proof search 109

some sequent Ξ, then Ξ is not valid. Instead of a semantic completeness proof, we

will use a purely syntactic method via the sound and complete calculus DBiInt. The

following auxiliary lemma shows that if Prove returns false for some sequent Ξ, there

is no DBiInt derivation of that sequent.

Lemma 5.3.5. Let Ξ be a sequent such that every node in tree(Ξ) is saturated, realised and

propagated. Then Ξ is not derivable in DBiInt.

Proof. We prove the statement of the lemma by contradiction. That is, we assume

every node in tree(Ξ) is saturated, realised and propagated, and that Ξ is derivable

in DBiInt. Then there exists a shortest derivation Π of Ξ. We now consider all the

rule instances that Π could end with, and in each case show that there is an even

shorter DBiInt derivation of Ξ, therefore contradicting our assumption that Π was

the shortest derivation.

• Π cannot end with the id rule, since every node in tree(Ξ) is saturated.

• Suppose Π ends with the ∨R rule, where Ξ = Σ+[A ∨ B, A, B] for some Σ+[], and

the last rule of Π applies to that particular occurrence of A ∨ B in the context

Σ+[]. Note that since every node of tree(Ξ) is saturated, we know that A and B

are also present at the node where A ∨ B is located. Then Π must be of the form:

Π1

Σ+[A ∨ B, A, B, A, B]
∨R

Σ+[A ∨ B, A, B]

Now, applying Lemma 5.2.3 twice to Π1, we obtain a derivation Π2 of

Σ+[A ∨ B, A, B]

such that |Π2| = |Π1| < |Π|. But this contradicts the assumption that Π is a

shortest derivation of Ξ. Therefore Π cannot end with the rule ∨R.

• All other cases involving rules →L, −<R, ∧L, ∧R, ∨L can be treated analogously

to ∨R, using height preserving admissibility of formula contraction.

• Suppose Π ends with the →R rule. There are two subcases, since every node in

tree(Ξ) is realised: either Ξ = Σ[X . A → B, B, (W1, A . B, Z1)] for some Σ[], or

Ξ = Σ[X1, A . B, A → B, Y2] for some Σ[].

– Suppose Ξ = Σ[X . A → B, B, (W1, A . B, Z1)] for some Σ[] and the last rule

of Π applies to that particular occurrence of A → B in the context Σ[]. Then

Π must be of the form:

Π1

Σ[X . A → B, B, (W1, A . B, Z1), (A . B)]
→R

Σ[X . A → B, B, (W1, A . B, Z1)]

110 A deep inference nested sequent calculus for bi-intuitionistic logic

By the distribution Lemma 5.2.9, there is a DBiInt derivation Π2 of

Σ[X . A → B, B, (W1, A, A . B, B, Z1)]

such that |Π2| = |Π1|. Then applying Lemma 5.2.3 to Π2 twice gives us a

DBiInt derivation Π3 of

Σ[X . A → B, B, (W1, A . B, Z1)]

such that |Π3| = |Π2| = |Π1| < |Π|. But this contradicts the assumption

that Π is a shortest derivation of Ξ. Therefore Π cannot end with the rule

→R.

– Suppose Ξ = Σ[X1, A . B, A → B, Y2] for some Σ[] and the last rule of Π

applies to that particular occurrence of A → B in the context Σ[]. Then Π

must be of the form:

Π1

Σ[X1, A . B, A → B, (A . B), Y2] →R
Σ[X1, A . B, A → B, Y2]

By Lemma 5.2.6, we can obtain a derivation Π2 of

Σ[X1, A, A . B, B, A → B, Y2]

such that |Π2| ≤ |Π1|. Then applying Lemma 5.2.3 to Π2 twice gives us a

DBiInt derivation Π3 of

Σ[X1, A . B, A → B, Y2]

such that |Π3| = |Π2| ≤ |Π1| < |Π|. But this contradicts the assumption

that Π is a shortest derivation of Ξ. Therefore Π cannot end with the rule

→R.

• Suppose Π ends with the −<L rule. The proof is symmetric to the previous case,

using Lemma 5.2.5 instead.

• Suppose Π ends with the .L2 rule, where Ξ = Σ[A, X . (W, (A, Y1 . Z))] for some

Σ[], and the last rule of Π applies to that particular occurrence of A in the context

Σ[]. Note that since every node of tree(Ξ) is propagated, we know that A is also

present at the inner node A, Y1 . Z. Then Π must be of the form:

Π1

Σ[A, X . (W, (A, A, Y1 . Z))]
.L2

Σ[A, X . (W, (A, Y1 . Z))]

Now, applying Lemma 5.2.3 to Π1, we obtain a derivation Π2 of

Σ[A, X . (W, (A, Y1 . Z))]

§5.3 Proof search 111

such that |Π2| = |Π1| < |Π|. But this contradicts the assumption that Π is a

shortest derivation of Ξ. Therefore Π cannot end with the rule .L2.

• All other cases involving propagation rules .L1, .R1, .R2 can be treated analo-

gously to .L2, using height preserving admissibility of formula contraction.

Since Π cannot end with any of the rules of DBiInt, this obviously contradicts the

assumption that it is a derivation in DBiInt. Therefore Ξ is not derivable in DBiInt.

Q.E.D.

Theorem 5.3.6. For any X and Y, Prove(X . Y) = true if and only if `DBiInt Π : X . Y.

Proof.

• Left-to-right: obvious, since every step of Prove is a backwards application of a

DBiInt1 rule, which is either a (possibly restricted) rule of DBiInt or a derived

rule.

• Right-to-left: we show that if Prove(X . Y) returns False then X . Y is not deriv-

able in DBiInt. Since each rule of DBiInt is invertible (Lemma 5.2.4), Steps 2

to 5 of Prove preserve provability of the original sequent. If Prove(X . Y) re-

turns False, this can only be the case if Step 6 is reached, i.e., the systematic

bottom-up applications of the rules of DBiInt1 produce a sequent such that ev-

ery node in the tree of the sequent is saturated, realised, and propagated. By

Lemma 5.3.5, such a sequent would not be derivable in DBiInt, and since all

other steps of Prove preserve derivability, it follows that X . Y is not derivable

either in DBiInt.

Q.E.D.

Before proving termination formally, we illustrate how the non-terminating back-

ward derivation attempt of Example 5.3.1 is now blocked by DBiInt1.

Example 5.3.7. For readability, we abbreviate X = (A → B) → C, (D → E) → F,

Y = A → B, D → E, B, E and Σ[] = X . G, Y, [].

112 A deep inference nested sequent calculus for bi-intuitionistic logic

no rule applicable

Σ[(X, A . Y, (X, A, D . E, A → B, D → E, B)), (X, D . Y, (X, D, A . B, A → B, D → E, E))]
2× →R1

Σ[(X, A . Y, (X, A, D . E, A → B, D → E)), (X, D . Y, (X, D, A . B, A → B, D → E))]
2× →L

Σ[(X, A . Y, (X, A, D . E)) , (X, D . Y, (X, D, A . B))]
6 × .L2

Σ[(X, A . Y, (D . E)) , (X, D . Y, (A . B))]
2× →R

Σ[(X, A . B, A → B, D → E, E) , (X, D . E, A → B, D → E, B)]
2× →R1

Σ[(X, A . B, A → B, D → E) , (X, D . E, A → B, D → E)]
4× →L

X . G, Y, (X, A . B) , (X, D . E)
4 × .L2

(A → B) → C, (D → E) → F . G, A → B, D → E, B, E, (A . B), (D . E)
2× →R

(A → B) → C, (D → E) → F . G, A → B, D → E, B, E
2× →R1

(A → B) → C, (D → E) → F . G, A → B, D → E
2× →L

(A → B) → C, (D → E) → F . G

Note that no rules are applicable backwards to the sequent

Σ[(X, A . Y, (X, A, D . E, A → B, D → E, B)), (X, D . Y, (X, D, A . B, A → B, D → E, E))]

at the top of the derivation attempt. In particular, the previously used →R is not applicable to

A → B in either of the contexts illustrated by the boxes, since A is on the left hand side and B

is on the right hand side and so the formula A → B is realised by the context. Similarly, →R

is not applicable to D → E in either of the contexts illustrated by the boxes.

We write s f (A) for the subformulae of A, and define the set of subformulae of a

set Θ as s f (Θ) =
⋃

A∈Θ s f (A). For a sequent Ξ we define s f (Ξ) as below:

Ξ = (X1 . Y1), · · · , (Xn . Yn), Γ . ∆, (Z1 . W1), · · · , (Zm . Wm)

s f (Ξ) = s f (Γ) ∪ s f (∆)
∪ s f (X1 . Y1) ∪ · · · ∪ s f (Xn . Yn)
∪ s f (Z1 . W1) ∪ · · · ∪ s f (Zm . Wm).

The idea behind the termination proof is essentially the same as the one we used

for LBiInt2 in Chapter 4. Here we show how to apply our method to the deep in-

ference nested sequent calculus DBiInt1 instead. The key idea again is to show that

Prove cannot create trees of infinite depth, in particular, that it cannot create infinitely

many zig-zags of ≤ and ≥ edges. To see why this is the case intuitively, consider

the propagation rules .L2 and .R2, which are the only rules that move formulae away

from the root of the tree towards the leaves. Note that .L2 can only move formulae

along ≤ edges and place them on the left hand side of child nodes. Similarly, .R2 can

only move formulae along ≥ edges and place them on the right hand side of child

nodes. Therefore after a zig-zag of ≤ and ≥ edges some formulae are “stuck” and

cannot move any further: see Figure 5.3.

§5.3 Proof search 113

〈{A, Γ0}, ∆0〉

〈Γ1, {∆1, B}〉

≤

〈Γ2, ∆2〉

≥

A

B

Figure 5.3: Propagation of formulae. A is propagated along the ≤ edge between the left hand

sides of nodes, and B is propagated along the ≥ edge between the right hand sides of nodes.

Note that A cannot be propagated to the bottom-most node.

We now define the degree of a node in a nested sequent, that is, the degree of a

particular structure placed in a certain context. The following definition is essentially

the same as Definition 4.4.8, but here we apply it to some specific node within a nested

sequent, rather than the top level formulae only.

Definition 5.3.8. The degree of a formula is:

deg f (p) = 0

deg f (A ∧ B) = deg f (A ∨ B) = max(deg f (A), deg f (B))
deg f (A → B) = deg f (A−<B) = 1 + max(deg f (A), deg f (B)).

Given a sequent Σ[Z], we define the degree of Σ[Z] w.r.t. Σ[]. Let X . Y =
︷︸︸︷

Σ[Z]. Then:

degL(X . Y) = max{deg f (A) | A ∈ {|X|}}
degR(X . Y) = max{deg f (B) | B ∈ {|Y|}}

deg(X . Y) = max(degL(X . Y), degR(X . Y))

degc(Σ[Z]Σ[]) = deg(
︷︸︸︷

Σ[Z]) = deg(X . Y).

Note also that our definition of a degree of a node nested within a tree bears sim-

ilarities to Brünnler’s work on deep inference calculi for modal logics [20]. There, he

obtains termination by using a global loop check, which examines nodes nested in the

tree of nested sequents. His proof search procedure blocks the application of rules to

“cyclic” nodes in the tree, where a leaf of a sequent is defined as cyclic if there is an

inner node in the sequent that carries the same set of formulas [20].

Theorem 5.3.9. For any two sets of BiInt-formulae Γ and ∆, Prove(Γ . ∆) terminates.

Proof. Let m = |s f (Γ . ∆)|. To show that Prove terminates, we will argue about the

114 A deep inference nested sequent calculus for bi-intuitionistic logic

Σ+[A → B, B, (X′, A . B, A → B, Y′)]

...
Σ+[A → B, B, (A . B)]

→R
Σ+[A → B, B]

Figure 5.4: Blocked repeated application of →R. Note that an →R application to A → B is

blocked for the topmost sequent because A → B already realised by (X′, A . B, A → B, Y′).

The dotted part of the derivation may include any propagation rules, static rules or other →R

rule instances.

tree T = tree(X . Y), where X . Y is the parameter to the most recent recursive call to

Prove. That is, initially T = tree(Γ . ∆).

The saturation process for each node in T is bounded by m. Therefore after at

most m moves at each node, Step 3 is no longer applicable to this node because of

restrictions 3 and 4 of Definition 5.3.3. Since formulae are only propagated to nodes

that do not already contain these formulae, after at most m propagation moves into

each node, Step 4 is no longer applicable to this node.

T is finitely branching, since new nodes are only created for unrealised→- and −<-

formulae. Therefore after at most m moves at each node, Step 5 is no longer applicable

to this node. We will now show that the depth of T is bounded by m2, using a very

similar argument to that of Lemma 4.4.9, but taking into account nested sequents and

our new definition of degree.

First, we show that Prove can create at most m consecutive nodes in the same di-

rection, i.e., where the links are all labeled by ≤ or all labeled by ≥. In the ≤ case, we

need to show that we cannot create a node twice for the same →-formula. Consider an

application of →R with principal formula A → B. After this application, the structure

(A . B) will be added to the nested sequent and saturated as well as propagated. Dur-

ing this process, A → B may reappear on the right hand side of the new structure: see

Figure 5.4. However, then B will also be added to the right hand side of the structure

by the →R1 rule during saturation, so a repeated application of →R to A → B will be

blocked by the side condition of →R, since A → B is now realised by the structure.

Thus since the number of →-formulae is bounded by m and we can only create a new

node for each →-formula once, there can be at most m consecutive nodes where the

links are all labeled by ≤. The case for ≥ is symmetric.

We now show that we can switch direction at most m times. Consider a direction

switch, e.g., a new node created using →R followed by a new node created using −<L2

(the other case is symmetric), and any saturation and propagation rule applications in

between. The following derivation fragment illustrates such a direction switch sce-

nario, where Σ is any context and the vertical dots indicate any number of saturation

and propagation steps:

§5.3 Proof search 115

...
γ3 = Σ[X′

0 . Y′
0, A → B, (X′

1, C−<D, (X2, C . D, Y2), A . B, Y′
1)]

...
Σ[X′

0 . Y′
0, A → B, (X1, C−<D, (C . D), A . B, Y1)]

−<L
γ2 = Σ[X′

0 . Y′
0, A → B, (X1, C−<D, A . B, Y1)]

...
γ1 = Σ[X0 . Y0, A → B, (A . B)]

→R
γ0 = Σ[X0 . Y0, A → B]

We will now compare the degrees of sequent γ3 with respect to various contexts,

each going deeper inside the nested structure, which corresponds to being further

away from the root of the tree. We want to show that the degree of the frontier nodes

(i.e. furthest from the root) is smaller than the degree of nodes closer to the root of

tree.

We first define the degree of the node closest to the root of the tree:

d0 = degc(Σ[X′
0 . Y′

0, A → B, (X′
1, C−<D, (X2, C . D, Y2), A . B, Y′

1)]Σ[])

= deg(X′
0 . Y′

0, A → B)

Now we define two additional contexts, corresponding to the nodes being created

by the →R and −<L rule applications. That is Σ1 = Σ[X0 . Y0, A → B, []] and Σ2 =
Σ[X′

0 . Y′
0, A → B, (X1, C−<D, [], A . B, Y1)]. This lets us define the degrees of the

child nodes:

d1 = degc(Σ1[X
′
1, C−<D, A . B, Y′

1]Σ1
)

= deg(X′
1 , C−<D, A . B, Y′

1)

and

d2 = degc(Σ2[X2, C . D, Y2]Σ2
)

deg(X2, C . D, Y2)

We will now show that d2 ≤ d0 − 1.

First, we have that degL(X′
1, C−<D, A . B, Y′

1) ≤ degL(X′
0 . Y′

0, A → B) because .L2

rule applications can propagate all formulae from X′
0 into X′

1. However, since there

are no propagation rules that could move formulae from outer contexts into the right

116 A deep inference nested sequent calculus for bi-intuitionistic logic

hand side of X′
1, C−<D, A . B, Y′

1, we have that

degR(X′
1, C−<D, A . B, Y′

1)

≤ max{degL(X′
1, C−<D, A . B, Y′

1) − 1, degR(X′
0 . Y′

0, A → B)− 1}

≤ deg(X′
0 . Y′

0, A → B)− 1

Secondly, we have that degR(X2, C . D, Y2) ≤ degR(X′
1, C−<D, A . B, Y′

1) because

.R2 rule applications can propagate all formulae from Y′
1 into Y2. That is, degR(X2, C .

D, Y2) ≤ deg(X′
0 . Y′

0, A → B)− 1. However, since there are no propagation rules that

could move formulae from outer contexts into the left hand side of X2, C . D, Y2, we

have that

degL(X2, C . D, Y2)

≤ max{degL(X′
1, C−<D, A . B, Y′

1) − 1, degR(X2, C . D, Y2) − 1}

≤ deg(X′
0 . Y′

0, A → B)− 1

Summing up, we have

deg(X2, C . D, Y2) = max{degL(X2, C . D, Y2), degR(X2, C . D, Y2}

≤ max{deg(X′
0 . Y′

0, A → B)− 1, deg(X′
0 . Y′

0, A → B) − 1}

≤ deg(X′
0 . Y′

0, A → B)− 1

That is, d2 ≤ d0 − 1.

After a direction switch, we can again make at most m node creation steps in one

direction. Therefore the total number of node creation rule applications is bounded

by O(m2). Q.E.D.

Chapter 6

Shallow and deep inference nested

calculi for tense logic

In this chapter we apply the methodology of the previous two chapters to give nested

sequent calculi for tense logic and some its extensions. We use Kashima’s calculi for

tense logics [73] as a starting point for our proof theoretic (as opposed to the model-

theoretic approach of Kashima) investigation of tense logic. Specifically, we show

how deep inference in a nested sequent calculus can mimic residuation in Kashima’s

shallow inference calculus.

We begin in Section 6.1 with Kashima’s first calculus SKt which contains struc-

tural connectives (proxies) for ♦ and � and contains explicit “turn” rules to cap-

ture the residuation conditions that hold between them. Kashima shows that SKt

is sound with respect to the Kripke semantics for tense logic, but he does not prove

cut-admissibility for this calculus. He instead gives another calculus S2Kt which al-

lows rules to be applied at arbitrary depth, and shows that a sequent has a cut-free

derivation in SKt if it has a cut-free derivation in S2Kt. In a second step, he shows that

S2Kt minus cut is complete w.r.t. the Kripke semantics of tense logic, which together

imply the completeness of SKt minus cut.

We first replace formula contraction with general contraction in Kashima’s SKt,

show that the resulting calculus enjoys a display property, and show that it also has

cut-admissibility using an argument which is very similar to Belnap’s cut-admissibility

proof for display calculi. We then show in Section 6.2 that Kashima’s S2Kt minus cut

(in the form of our DKt) can be made contraction-free and that the residuation rules

of SKt are admissible in DKt, meaning that DKt can faithfully mimic cut-free SKt.

We also show that SKt can mimic DKt by showing that all of the rules of DKt are

actually derivable in SKt using the display property of SKt. In Section 6.3, we then

show how to extend all these basic calculi to handle tense S4 and S5. Finally, we give

a simple proof search strategy for DKt in Section 6.4.

Note. Some of the results of this chapter have been published in [58].

117

118 Shallow and deep inference nested calculi for tense logic

X, a, ā
id

X, A Y, A

X, Y
cut

X, A X, B

X, A ∧ B
∧

X, A, B

X, A ∨ B
∨

X, Y, Y

X, Y
ctr

X
X, Y

wk
X, ◦{Y}

•{X}, Y
r f

X, •{Y}

◦{X}, Y
rp

X, •{A}

X, �A
�

X, ◦{A}

X, �A
�

X, •{Y, A}

X, •{Y}, �A
�

X, ◦{Y, A}

X, ◦{Y}, ♦A
♦

Figure 6.1: SKt: a shallow inference nested sequent calculus for Kt

6.1 SKt: a shallow inference nested sequent calculus

To simplify presentation, we shall consider formulae of tense logic Kt which are in

negation normal form (nnf), given by the following grammar:

A := a | ¬a | A ∨ A | A ∧ A | �A | �A | ♦A | �A.

where a ranges over atomic formulae and ¬a is the negation of a. We shall denote

with A the nnf of the negation of A. Implication can then be defined via negation:

A → B = A ∨ B.

Because we are dealing with classical tense logic, in this chapter we consider a

right-sided sequent calculus for tense logic where the syntactic judgment is a tree of

multisets of formulae, as has been done previously in proof systems for modal and

tense logics [73; 17; 20].

Definition 6.1.1. A nested sequent is a multiset

{A1, . . . , Ak, ◦{X1}, . . . , ◦{Xm}, •{Y1}, ..., •{Yn}}

where k, m, n ≥ 0, and each Xi and each Yj are themselves nested sequents.

We shall use the following notational conventions when writing nested sequents.

We shall remove outermost braces, e.g., we write A, B, C instead of {A, B, C}. Braces

for sequents nested inside ◦{} or •{} are also removed, for example, instead of writing

◦{{A, B, C}}, we write ◦{A, B, C}. When we juxtapose two sequents, e.g., as in X, Y,

we mean it is a sequent resulting from the multiset-union of X and Y. When Y is a

singleton multiset, e.g., {A} or {◦{Y′}}, we simply write: X, A or X, ◦{Y′}. Since we

shall only be concerned with nested sequents, we shall refer to nested sequents simply

as sequents in the rest of the chapter.

The above definition of sequents can also be seen as a special case of structures in

display calculi, e.g., with ‘,’ (comma), • and ◦ as structural connectives.

Similarly to previous chapters, a context is a sequent with holes in place of formu-

lae. A context with a single hole is written as Σ[]. Multiple-hole contexts are written

as Σ[] · · · [], or abbreviated as Σk[] where k is the number of holes. We write Σk[Y] to

denote the sequent that results from filling the holes in Σk[] uniformly with Y.

§6.1 SKt: a shallow inference nested sequent calculus 119

The shallow sequent calculus for Kt, called SKt, is given in Figure 6.1. This is ba-

sically Kashima’s calculus (also called SKt) [73], but with a more general contraction

rule (ctr), which allows contraction of arbitrary sequents. The modal fragment of SKt

was also developed independently by Brünnler [17; 20]. The general contraction rule

is used to simplify our cut elimination proof, and as we shall see in Section 6.2, it can

be replaced by formula contraction. The calculus SKt can also be seen as a single-

sided version of display calculus. The rules rp and r f are called the residuation rules.

They are an example of display postulates commonly found in display calculus, and are

used to bring a node in a nested sequent to the top level. The following lemma and

proposition show the analog of the display property of display calculus.

Lemma 6.1.2. Let Σ1[X], Σ2[Y] be a sequent with a unique occurrence of a structure X and

a unique occurrence of a structure Y (X and Y are distinct structures). Then there exists a

context Σ[] such that X, Σ[Y] is derivable from Σ1[X], Σ2[Y] using only the rules rp and r f .

Proof. By induction on the size of the context Σ1[]. The non-trivial cases are when Σ1[]
is of the form ◦{Σ3[]} or •{Σ3[]}. We consider the former case here; the latter can be

handled analogously. By induction hypothesis, there exists Σ′[] such that X, Σ′[Y] is

derivable from Σ3[X], •{Σ2[Y]}. Let Σ[] = Σ′[]. Then we have a derivation

◦{Σ3[X]}, Σ2[Y]
r f

Σ3[X], •{Σ2[Y]}
...

X, Σ′[Y]

that uses only rp and r f . Q.E.D.

Proposition 6.1.3. Let Σ[W] be a sequent. Then there exists a sequent Z such that W, Z is

derivable from Σ[W] and vice versa, using only the rules rp and r f .

Proof. We first show the forward direction, i.e., deriving W, Z from Σ[W]. Applying

Lemma 6.1.2 with Σ1[] = Σ[] and Σ2[] = [] and X = W and Y = {}, we have a context

Σ′[] such that there exists a derivation Π from Σ[W], {} to W, Σ′[{}], using only rp and

r f . That is:

Σ[W], {}
...

W, Σ′[{}]

Let Z = Σ′[{}]. Now we get a derivation of W, Z from Σ[W] using only rp and r f .

That is:

Σ[W]
...

W, Z

For the converse, we first observe that the rules rp and r f are dual to each other.

That is, if we turn the rule rp upside down, we get r f . Therefore, to get a derivation

120 Shallow and deep inference nested calculi for tense logic

of Σ[W] from W, Z, we just turn the derivation obtained in the previous case upside

down, and rename the rule rp to r f and vice versa. Q.E.D.

6.1.1 Soundness and completeness

To prove soundness, we first show that each sequent has a corresponding Kt-formula,

and then show that the rules of SKt, reading them top down, preserve validity of the

formula corresponding to the premise sequent. Completeness is shown by simulating

Hilbert’s system for tense logic in SKt. The translation from sequents to formulae is

given below. In the translation, we assume two logical constants ⊥ (‘false’) and >
(‘true’). This is just a notational convenience, as the constants can be defined in a

standard way, e.g., as a ∧ ā and a ∨ ā for some fixed atomic proposition a.

Definition 6.1.4. The function τ translates an SKt-sequent

{A1, . . . , Ak, ◦{X1}, . . . , ◦{Xm}, •{Y1}, ..., •{Yn}}

into the Kt-formula (modulo associativity and commutativity of ∨ and ∧):

A1 ∨ · · · ∨ Ak ∨�τ(X1) ∨ · · · ∨�τ(Xm) ∨�τ(Y1) ∨ · · · ∨�τ(Yn).

As usual, the empty disjunction denotes ⊥.

Theorem 6.1.7 is a simple corollary of the following lemmas.

Lemma 6.1.5 (Soundness). Every SKt-derivable Kt formula is valid.

Proof. We show that for every rule ρ of SKt

X1 · · · Xn

X
ρ

the following holds: if for every i ∈ {1, . . . , n}, the formula τ(Xi) is valid then the

formula τ(X) is valid. The following are the formula translations for the residuation

rules and tense/modal rules:

r f : if τ(X) ∨�(τ(Y)) valid then �(τ(X)) ∨ τ(Y) valid

rp: if τ(X) ∨�(τ(Y)) valid then �(τ(X)) ∨ τ(Y) valid

�: if τ(X) ∨�A valid then τ(X) ∨�A valid

�: if τ(X) ∨�A valid then τ(X) ∨�A valid

�: if τ(X) ∨�(τ(Y) ∨ A) valid then τ(X) ∨�(τ(Y)) ∨�A valid

♦: if τ(X) ∨�(τ(Y) ∨ A) valid then τ(X) ∨�(τ(Y)) ∨♦A valid

We now prove the cases for r f and � in detail, the others are analogous or easier.

§6.1 SKt: a shallow inference nested sequent calculus 121

• Case r f : we assume that τ(X) ∨�(τ(Y)) is valid, that is:

∀〈W, R, V〉∀w ∈ W . w
 τ(X) or w
 �(τ(Y)) (6.1.1)

More specifically, it means

∀〈W, R, V〉∀w ∈ W . w
 τ(X) or ∀u ∈ W if wRu then u
 τ(Y) (6.1.2)

Now we need to show that �(τ(X)) ∨ τ(Y) is valid. We do so by contradiction;

that is, we assume that �(τ(X)) ∨ τ(Y) is falsifiable:

∃〈W ′, R′, V′〉∃u′ ∈ W ′ . u′ 6
 �(τ(X)) and u′ 6
 τ(Y) (6.1.3)

More specifically, 6.1.3 also means that

∃w′ ∈ W ′ .w′Ru′ and w′ 6
 τ(X) (6.1.4)

However, now we have contradiction, since we have w′ 6
 τ(X) ∨ �(τ(Y)),

which we assumed to be valid. Therefore it cannot be the case that �(τ(X)) ∨
τ(Y) is falsifiable, indeed �(τ(X)) ∨ τ(Y) is valid.

• Case �: we assume that τ(X) ∨�(τ(Y) ∨ A) is valid, that is:

∀〈W, R, V〉∀w ∈ W . w
 τ(X) or w
 �(τ(Y) ∨ A) (6.1.5)

More specifically, it means

∀〈W, R, V〉∀w ∈ W . w
 τ(X) or ∀u ∈ W if uRw then u
 τ(Y) ∨ A (6.1.6)

Now we need to show that τ(X) ∨ �(τ(Y)) ∨ �A is valid. We do so by contra-

diction; that is, we assume that τ(X) ∨�(τ(Y)) ∨�A is falsifiable:

∃〈W ′, R′, V′〉∃w′ ∈ W ′ . w′ 6
 τ(X) and w′ 6
 �(τ(Y)) and w′ 6
 �A (6.1.7)

More specifically, it means ∃u′ ∈ W ′ such that u′Rw′ and:

u′ 6
 τ(Y) (6.1.8)

u′ 6
 A (6.1.9)

However, the latter two contradict 6.1.6. Therefore it cannot be the case that

τ(X) ∨�(τ(Y)) ∨�A is falsifiable, indeed τ(X) ∨�(τ(Y)) ∨�A is valid.

Since the formula-translation τ(X) ∨ a ∨ a of the id rule is obviously valid, it then

follows that every formula derivable in SKt is also valid. Q.E.D.

Lemma 6.1.6 (Completeness). Every Kt-theorem is SKt-derivable.

Proof. The following are derivations of the negation normal forms of Axioms 2.2.30

and 2.2.32, the other axioms are analogous. Dashed lines abbreviate derivations:

122 Shallow and deep inference nested calculi for tense logic

id
A ∧ B, A, A, B, •{ }

id
A ∧ B, B, A, B, •{ }

∧
A ∧ B, A, B, •{ }

rp
◦{A ∧ B, A, B}

♦
♦(A ∧ B), ♦A, ◦{B}

�
♦(A ∧ B), ♦A, �B

∨
♦(A ∧ B) ∨♦A ∨�B

id
◦{ }, A, A

r f
•{A, A}

�
•{A}, �A

rp
A, ◦{�A}

�
A, ��A

∨
A ∨��A

The following are derivations of the negation normal forms of rules MP, Nec�

and Nec�:

A ∨ B

A
wk

A, B
id

B, B
∧

A ∧ B, B
cut

B

A
wk

A, •{ }
rp

◦{A}
�

�A

A
wk

A, ◦{ }
r f

•{A}
�

�A

Q.E.D.

Theorem 6.1.7. A Kt-formula A is valid iff A is SKt-derivable.

Proof. By Lemmas 6.1.5 and 6.1.6. Q.E.D.

6.1.2 Cut elimination

The main difficulty in proving cut elimination1 for SKt is in finding the right cut

reduction for some cases involving the rules rp and r f . For instance, consider the

derivation (1) in Figure 6.2. It is not obvious that there is a cut reduction strategy

that works locally without generalizing the cut rule to, e.g., one which allows cut on

any sub-sequent in a sequent. Instead, we shall follow a global cut reduction strategy

similar to that used in cut elimination for display logics. The idea is that, instead of

permuting the cut rule locally, we trace the cut formula A (in Π1) and A (in Π2), until

they both become principal in their respective derivations, and then apply the cut

rule(s) at that point on smaller formulae. Schematically, our simple strategy can be

illustrated as follows: Suppose that Π1 and Π2 are, respectively, derivation (2) and (3)

in Figure 6.2, that A = A1 ∧ A2 and there is a single instance in each derivation where

the cut formula is used. To reduce the cut on A, we first transform Π1 by uniformly

substituting •{Y} for A in Π1 (see derivation (4) in Figure 6.2). We then prove the

open leaf {◦{◦{X′}}, Y} by uniformly substituting ◦{X′} for A in Π2 (see derivation

1The cut-elimination proof in this chapter is due to Alwen Tiu, and is included in this thesis for
completeness.

§6.1 SKt: a shallow inference nested sequent calculus 123

Π1

X, •{A}

◦{X}, A
r f

Π2

◦{A}, Y

A, •{Y}
rp

◦{X}, •{Y}
cut

...
◦{X′}, A1

...
◦{X′}, A2

◦{X′}, A1 ∧ A2
∧

X′, •{A1 ∧ A2}
r f

...
X, •{A1 ∧ A2}

...
A1, A2, •{Y′}

A1 ∨ A2, •{Y′}
∨

◦{A1 ∨ A2}, Y′
rp

...
◦{A1 ∨ A2}, Y

(1) (2) (3)

◦{◦{X′}}, Y

◦{X′}, •{Y}
r f

X′, •{•{Y}}
r f

...
X, •{•{Y}}

◦{X}, •{Y}
rp

...
◦{X′}, A1

...
◦{X′}, A2

...
A1, A2, •{Y′}

A1, ◦{X′}, •{Y′}
cut

◦{X′}, ◦{X′}, •{Y′}
cut

◦{X′}, •{Y′}
ctr

◦{◦{X′}}, Y′
rp

...
◦{◦{X′}}, Y

(4) (5)

Figure 6.2: Some derivations in SKt.

(5) in Figure 6.2). Notice that the cuts on A1 and A2 introduced in the derivation above

are on smaller formulae than A.

The above simplified explanation implicitly assumes that a uniform substitution

of a formula (or formulae) in a derivation results in a well-formed derivation, and

that the cut formulae are not contracted. The precise statement of the derivation sub-

stitution idea becomes more involved once these aspects are taken into account. The

formal statement is given in the lemma below. We use the notation `S X to denote

that the sequent X is provable in the sequent calculus S. We write `S Π : X when we

want to be explicit about the particular derivation Π of X. The cut rank of an instance

of cut is defined as usual, as the size of the cut formula. The cut rank of a derivation

Π, denoted with cr(Π), is the largest cut rank of the cut instances in Π (or zero, if there

are no cuts in Π). Given a formula A, we denote with |A| its size. Given a derivation

Π, we denote with |Π| its height, i.e., the length of a longest branch in the derivation

tree of Π.

Lemma 6.1.8. If `SKt Π1 : Y, a and `SKt Π2 : Σk[ā], where k ≥ 1 and both Π1 and Π2 are

cut free, then there exists a cut free Π such that `SKt Π : Σk[Y].

Proof. By induction on |Π2|. For the base cases, the non-trivial case is when Π2 ends

124 Shallow and deep inference nested calculi for tense logic

with id and ā is active in the rule, i.e., Σk[ā] = Σk−1
1 [ā], ā, a and Π2 is

Σk[ā] = Σk−1
1 [ā], ā, a

id

Then we construct Π as follows:

Π1
Y, a

Σk−1
1 [Y], Y, a

wk

The inductive cases follow straightforwardly from the induction hypothesis.

Q.E.D.

Lemma 6.1.9. Suppose `SKt Π1 : Y, A and `SKt Π2 : Y, B and `SKt Π : Σk[A ∨ B] for

some k ≥ 1, and the cut ranks of Π1, Π2 and Π are smaller than |A ∧ B|. Then there exists a

derivation Π′ such that `SKt Π′ : Σk[Y] and cr(Π) < |A ∧ B|.

Proof. By induction on |Π|. Most cases are straightforward. The only non-trivial case

is when A ∨ B is principal in the last rule of Π, i.e., Π is of the form

Ψ
Σk−1

1 [A ∨ B], A, B

Σk−1
1 [A ∨ B], A ∨ B

∨

By induction hypothesis, we have a cut-free derivation Ψ′ such that

`SKt Ψ′ : Σk−1
1 [Y], A, B.

The derivation Π′ is constructed as follows:

Π1
Y, A

Π2
Y, B

Ψ′

Σk−1
1 [Y], A, B

Σk−1
1 [Y], A, Y

cut

Σk−1
1 [Y], Y, Y

cut

Σk−1
1 [Y], Y

ctr

Q.E.D.

Lemma 6.1.10. Suppose `SKt Π1 : Y, A, B and `SKt Π2 : Σk[A ∧ B], for some k ≥ 1, and

the cut ranks of Π1 and Π2 are smaller than |A ∨ B|. Then there exists a derivation Π such

that `SKt Π : Σk[Y] and cr(Π) < |A ∨ B|.

Proof. This is proved analogously to Lemma 6.1.9.

Q.E.D.

§6.1 SKt: a shallow inference nested sequent calculus 125

To prove the next two lemmas, we use the following derived rules:

X, ◦{Y1}, ◦{Y2}

X, ◦{Y1 , Y2}
d1

X, •{Y1}, •{Y2}

X, •{Y1 , Y2}
d2

These two rules are derivable using rp, r f , ctr and wk. The rule d1 is derived as follows

(d2 is derived analogously):

X, ◦{Y1}, ◦{Y2}

Y2, •{X, ◦{Y1}}
r f

Y1, Y2, •{X, ◦{Y1}}
wk

X, ◦{Y1 , Y2}, ◦{Y1}
rp

•{X, ◦{Y1 , Y2}}, Y1
r f

•{X, ◦{Y1 , Y2}}, Y1, Y2
wk

X, ◦{Y1 , Y2}, ◦{Y1 , Y2}
rp

X, ◦{Y1 , Y2}
ctr

Lemma 6.1.11. Suppose `SKt Π1 : Y, ◦{A} and `SKt Π2 : Σk[♦A], for some k ≥ 1, and

the cut ranks of Π1 and Π2 are smaller than |�A|. Then there exists a derivation Π such that

`SKt Π : Σk[Y] and cr(Π) < |�A|.

Proof. By induction on |Π2|. The non-trivial case is when Π2 ends with ♦ on ♦A.

Π′
2

Σk−1
1 [♦A], ◦{X, A}

Σk−1
1 [♦A], ◦{X}, ♦A

♦

By induction hypothesis we have `SKt Π′ : Σk−1
1 [Y], ◦{X, A} such that cr(Π′) < |�A|.

The derivation Π is constructed as follows:

Π′

Σk−1
1 [Y], ◦{X, A}

•{Σk−1
1 [Y]}, X, A

r f

Π1

Y, ◦{A}

•{Y}, A
r f

•{Σk−1
1 [Y]}, •{Y}, X

cut

•{Σk−1
1 [Y], Y}, X

d2

Σk−1
1 [Y], ◦{X}, Y

rp

Q.E.D.

Lemma 6.1.12. Suppose `SKt Π1 : Y, ◦{Y′ , A} and `SKt Π2 : Σk[�A], for some k ≥ 1,

and the cut ranks of Π1 and Π2 are smaller than |♦A|. Then there exists Π such that `SKt Π :

Σk[Y, ◦{Y′}] and cr(Π) < |♦A|.

126 Shallow and deep inference nested calculi for tense logic

Proof. By induction on |Π2|. The non-trivial case: Π2 is

Π′
2

Σk−1
1 [�A], ◦{A}

Σk−1
1 [�A], �A

�

By induction hypothesis, we have `SKt Π′ : Σk−1
1 [Y, ◦{Y′}], ◦{A} for some Π′ such

that cr(Π′) < |♦A|. Then Π is constructed as follows:

Π′

Σk−1
1 [Y, ◦{Y′}], ◦{A}

•{Σk−1
1 [Y, ◦{Y′}]}, A

r f

Π1

Y, ◦{Y′ , A}

•{Y}, Y′ , A
r f

•{Σk−1
1 [Y, ◦{Y′}]}, •{Y}, Y′

cut

•{Σk−1
1 [Y, ◦{Y′}], Y}, Y′

d2

Σk−1
1 [Y, ◦{Y′}], Y, ◦{Y′}

rp

Q.E.D.

Lemma 6.1.13. Suppose `SKt Π1 : Y, •{A} and `SKt Π2 : Σk[�A], for some k ≥ 1, and

the cut ranks of Π1 and Π2 are smaller than |�A|. Then there exists a derivation Π such that

`SKt Π : Σk[Y] and cr(Π) < |�A|.

Proof. This is proved analogously to Lemma 6.1.11. Q.E.D.

Lemma 6.1.14. Suppose `SKt Π1 : Y, •{Y′ , A} and `SKt Π2 : Σk[�A], for some k ≥ 1,

and the cut ranks of Π1 and Π2 are smaller than |�A|. Then there exists Π such that `SKt Π :

Σk[Y, •{Y′}] and cr(Π) < |�A|.

Proof. This is proved analogously to Lemma 6.1.12. Q.E.D.

Lemma 6.1.15. Let A be a non-atomic formula. Suppose `SKt Π1 : Y, A and `SKt Π2 :

Σk[A], for some k ≥ 1, and the cut ranks of Π1 and Π2 are smaller than |A|. Then there exists

a derivation Π such that `SKt Π : Σk[Y] and cr(Π) < |A|.

Proof. By induction on the height of Π2 and case analysis on A. The non-trivial case is

when Π2 ends with an introduction rule on A. That is, we have Σk[A] = Σk−1
1 [A], A

for some context Σk−1
1 []. We show the cases where A is either �B, ♦B or B1 ∧ B2.

• Suppose A = �B and Π2 is the following derivation:

Π′
2

Σk−1
1 [�B], ◦{B}

�
Σk−1

1 [�B], �B

By induction hypothesis, we have `SKt Π′ : Σk−1
1 [Y], ◦{B} and cr(Π′) < |A|.

Applying Lemma 6.1.11 to Π′ and Π1, we obtain `SKt Π : Y, Σk−1
1 [Y] = Σk[Y]

such that cr(Π) < |�B|.

§6.2 DKt: a contraction-free deep inference nested sequent calculus 127

• Suppose A = ♦B and Π2 is the following derivation:

Π′
2

Σk−1
1 [♦B], ◦{Y′ , B}

♦
Σk−1

1 [♦B], ◦{Y′}, ♦B

By induction hypothesis, we have `SKt Π′ : Σk−1
1 [Y], ◦{Y′ , B}. Applying Lemma

6.1.12 to Π′ and Π1, we obtain `SKt Π : Y, Σk−1
1 [Y], ◦{Y′} = Σk

1[Y], ◦{Y′} = Σk[Y]
such that cr(Π) < |♦B|.

• Suppose A = B1 ∧ B2 and Π2 is the following derivation:

Θ1

Σk−1
1 [B1 ∧ B2], B1

Θ2

Σk−1
1 [B1 ∧ B2], B2

∧
Σk−1

1 [B1 ∧ B2], B1 ∧ B2

By induction hypothesis, we have `SKt Θ′
1 : Σk−1

1 [Y], B1 and `SKt Θ′
2 : Σk−1

1 [Y], B2.

Applying Lemma 6.1.9 to Θ′
1 and Θ′

2 and Π1, we obtain `SKt Π : Y, Σk−1
1 [Y] =

Σk[Y] such that cr(Π) < |B1 ∧ B2|.

Q.E.D.

Theorem 6.1.16. Cut elimination holds for SKt.

Proof. We remove topmost cuts in succession. Let Π be a SKt-derivation with a top-

most cut instance
Π1

X, A
Π2

A, Y

X, Y
cut

Note that Π1 and Π2 are both cut-free since this is a topmost instance in Π. We use

induction on the size of A to eliminate this topmost instance of cut. If A is an atomic

formula a then we obtain a cut-free derivation Π′ of X, Y from applying Lemma 6.1.8

to Π1 and Π2.

If A is non-atomic then we apply Lemma 6.1.15 to Π2 and Π1 and obtain a deriva-

tion Π′ of X, Y such that cr(Π′) < |A|. By the induction hypothesis, we can remove all

the cuts in Π′ to get a cut-free derivation of X, Y. Q.E.D.

6.2 DKt: a contraction-free deep inference nested sequent cal-

culus

We now consider another sequent calculus which uses deep inference, where rules can

be applied directly to any node within a nested sequent. We call this calculus DKt,

and give its inference rules in Figure 6.3. Note that there are no structural rules in DKt,

and the contraction rule is absorbed into the logical rules. Notice also that, reading

the logical rules bottom up, we keep the principal formulae in the premise. This is

128 Shallow and deep inference nested calculi for tense logic

Σ[a, ā]
id

Σ[A ∧ B, A] Σ[A ∧ B, B]

Σ[A ∧ B]
∧

Σ[A ∨ B, A, B]

Σ[A ∨ B]
∨

Σ[�A, •{A}]

Σ[�A]
�

Σ[•{Y, A}, �A]

Σ[•{Y}, �A]
�1

Σ[◦{Y, A}, ♦A]

Σ[◦{Y}, ♦A]
♦1

Σ[�A, ◦{A}]

Σ[�A]
�

Σ[◦{Y, �A}, A]

Σ[◦{Y, �A}]
�2

Σ[•{Y, ♦A}, A]

Σ[•{Y, ♦A}]
♦2

Figure 6.3: DKt: a contraction-free deep inference nested sequent calculus for Kt

actually not necessary for some rules (e.g., �, ∧, etc.), but this form of rule allows for

a better accounting of formulae in our saturation-based proof search procedure (see

Section 6.4).

The following intuitive observation about DKt rules will be useful later: Rules in

DKt are characterized by propagations of formulae across different nodes in a nested

sequent tree. The shape of the tree is not affected by these propagations, and the only

change that can occur to the tree is the creation of new nodes (via the introduction

rules � and �).

The calculus DKt corresponds to Kashima’s S2Kt [73], but with the contraction

rule absorbed into the logical rules. Kashima shows that DKt derivations can be

encoded into SKt, essentially due to the display property of SKt (Proposition 6.1.3)

which allows displaying and undisplaying of any node within a nested sequent. Kashima

also shows that DKt is complete for tense logic, via semantic arguments. We prove a

stronger result: every cut-free SKt-derivation can be transformed into a DKt-derivation,

hence DKt is complete and cut is admissible in DKt.

To translate cut-free SKt-derivations into DKt-derivations, we show that all struc-

tural rules of SKt are height-preserving admissible in DKt, as stated next.

Lemma 6.2.1 (Admissibility of weakening). For any structures X and Y, if `DKt Π : Σ[X]
then there exists Π′ such that `DKt Π′ : Σ[X, Y] and |Π′| = |Π|.

Proof. Straightforward by induction on |Π|. We give one case where Π ends with a

propagation rule, and one case where Π ends with a logical rule; all other cases are

analogous. In each of the following cases, we obtain Π′
1 from Π1 using the induction

hypothesis.

Π1

Σ[◦{X′ , �A}, A]
�2

Σ[◦{X′ , �A}]

;

Π′
1

Σ[◦{X′ , �A}, A, Y]
�2

Σ[◦{X′ , �A}, Y]

Π1

Σ[�A, ◦{A}]
�

Σ[�A]

;

Π′
1

Σ[�A, ◦{A}, Y]
�

Σ[�A, Y]

Q.E.D.

§6.2 DKt: a contraction-free deep inference nested sequent calculus 129

Invertibility of our rules follows immediately, since or each of our rules, the premise

is a superset of the conclusion, and weakening is height-preserving.

Lemma 6.2.2 (Invertibility). All DKt rules are invertible: if the conclusion is derivable, then

each premise is derivable.

The proofs for the following lemmas concern structural rules that change the shape

of the tree of a nested sequent. Just as we saw in the corresponding lemmas in Chap-

ter 5 on bi-intuitionistic logic (Lemmas 5.2.5 to 5.2.9), the only non-trivial cases are

those that concern propagation of formulae across different nodes in a nested sequent.

Again, we prove each lemma the lemma by induction on |Π|, and Π′
1 is obtained from

induction hypothesis.

Lemma 6.2.3 (Admissibility of display postulate rp). For any X and Y, if `DKt Π :

X, •{Y} then there exists Π′ such that `DKt Π′ : ◦{X}, Y and |Π′| = |Π|.

Proof.

• Case when a formula is propagated from X to Y:

Π1

X′, �A, •{A, Y}
�1

X′, �A, •{Y}

;

Π′
1

◦{X′ , �A}, A, Y
�2

◦{X′ , �A}, Y

• Case when a formula is propagated from Y to X:

Π1

X, •{Y′ , ♦A}, A
♦2

X, •{Y′ , ♦A}

;

Π′
1

Y′ , ♦A, ◦{X, A}
♦1

Y′ , ♦A, ◦{X}

The cases involving other rules follow immediately from the induction hypothesis,

since they do not move formulae between structures. Q.E.D.

Lemma 6.2.4 (Admissibility of display postulate r f). For any X and Y, if `DKt Π :

X, ◦{Y} then there exists Π′ such that `DKt Π′ : •{X}, Y such that |Π′| = |Π|.

Proof.

• Case when a formula is propagated from X to Y:

Π1

X′, ♦A, ◦{A, Y}
♦1

X′, ♦A, ◦{Y}

;

Π′
1

•{X′ , ♦A}, A, Y
♦2

•{X′ , ♦A}, Y

130 Shallow and deep inference nested calculi for tense logic

• Case when a formula is propagated from Y to X:

Π1

X, ◦{Y′ , �A}, A
�2

X, ◦{Y′ , �A}

;

Π′
1

Y′ , �A, •{X, A}
�1

Y′ , �A, •{X}

The cases involving other rules follow immediately from the induction hypothesis,

since they do not move formulae between structures. Q.E.D.

To show admissibility of contraction, we first need to show certain distributivity

properties, stated in the following two lemmas, and admissibility of formula contrac-

tion.

Lemma 6.2.5. For any Y1 and Y2, if `DKt Π : Σ[◦{Y1}, ◦{Y2}] then there exists Π′ such

that `DKt Π′ : Σ[◦{Y1 , Y2}] and |Π′| = |Π|.

Proof. By induction on |Π|. Again, the non-trivial cases are when a formula is propa-

gated in or out of one of the structures. In each case, we obtain Π′
1 using the induction

hypothesis.

• Case when Π ends with ♦1 that moves a formula into ◦{Y1}.

Π1

Σ′[♦A, ◦{A, Y1}, ◦{Y2}]
♦1

Σ′[♦A, ◦{Y1}, ◦{Y2}]

;

Π′
1

Σ′[♦A, ◦{A, Y1, Y2}]
♦1

Σ′[♦A, ◦{Y1 , Y2}]

• Case when Π ends with �2 that moves a formula out from ◦{Y1}.

Π1

Σ[A, ◦{�A, Y′
1}, ◦{Y2}]

�2
Σ[◦{�A, Y′

1}, ◦{Y2}]

;

Π′
1

Σ[A, ◦{�A, Y′
1, Y2}]

�2
Σ[◦{�A, Y′

1, Y2}]

Q.E.D.

Lemma 6.2.6. For any Y1 and Y2, if `DKt Π : Σ[•{Y1}, •{Y2}] then there exists Π′ such

that `DKt Π′ : Σ[•{Y1 , Y2}] and |Π′| = |Π|.

Proof. Analogous to the proof of Lemma 6.2.5. Q.E.D.

Lemma 6.2.7. If `DKt Π : Σ[A, A] then there exists Π′ such that `DKt Π′ : Σ[A] and

|Π′| = |Π|.

Proof. Straightforward by induction on |Π|. We give one case where Π ends with a

propagation rule, and one case where Π ends with a logical rule; all other cases are

analogous. In each of the following cases, we obtain Π′
1 from Π1 using the induction

hypothesis.

§6.2 DKt: a contraction-free deep inference nested sequent calculus 131

Π1

Σ[◦{X′ , �A, �A}, A]
�2

Σ[◦{X′ , �A, �A}]

;

Π′
1

Σ[◦{X′ , �A}, A]
�2

Σ[◦{X′ , �A}]

Π1

Σ[�A, �A, ◦{A}]
�

Σ[�A, �A]

;

Π′
1

Σ[�A, ◦{A}]
�

Σ[�A]

Q.E.D.

Lemma 6.2.8 (Admissibility of general contraction). For any Y, if `DKt Π : Σ[Y, Y] then

there exists Π′ such that `DKt Π′ : Σ[Y] and |Π′| = |Π|.

Proof. By induction on the size of Y.

• If Y is a singleton set containing one formula, then the lemma follows immedi-

ately from Lemma 6.2.7.

• The other cases follow from the induction hypothesis and Lemma 6.2.5 and

Lemma 6.2.6. Consider, for instance, the case where Y = ◦{Y′}. Then by

Lemma 6.2.5 we have a derivation Ψ such that

`DKt Ψ : Σ[◦{Y′ , Y′}]

and |Ψ| = |Π|. Since Y′ is of a smaller size than ◦{Y′}, we can apply the induc-

tion hypothesis to Ψ and obtain a derivation Π′ such that

`DKt Π′ : Σ[◦{Y′}]

and |Π′| = |Π|.

Q.E.D.

Lemma 6.2.9. For every sequent X, if `DKt X then `SKt X.

Proof. We use the display property of SKt (Proposition 6.1.3) to simulate the deep-

inference rules of DKt. We show here the derivations for the rules ♦1 and ♦2 (the

other cases are analogous), where the dashed line indicates an application of Proposi-

tion 6.1.3:

Σ[◦{Y, A}, ♦A]
Prop. 6.1.3

Y′, ◦{Y, A}, ♦A
♦

Y′, ◦{Y}, ♦A, ♦A
ctr

Y′, ◦{Y}, ♦A
Prop. 6.1.3

Σ[◦{Y}, ♦A]

Σ[◦{Y, �A}, A]
Prop. 6.1.3

Y′, ◦{Y, �A}, A
r f

•{Y′ , A}, Y, �A
�

•{Y′}, �A, Y, �A
ctr

•{Y′}, Y, �A
rp

Y′, ◦{Y, �A}
Prop. 6.1.3

Σ[◦{Y, �A}]

Q.E.D.

132 Shallow and deep inference nested calculi for tense logic

Lemma 6.2.10. For every sequent X, if `SKt Π : X then `DKt Π′ : X.

Proof. By induction on Π. We illustrate one case where Π ends with a logical rule

application, and one case where Π ends with a structural rule application. The other

cases are analogous and use admissibility of the structural rules of SKt in DKt (Lem-

mas 6.2.1 to 6.2.8). In each case, we obtain Π′
1 from the induction hypothesis, and a

dashed line indicates the application of a lemma.

Π1

X, •{A}
�

X, �A

;

Π′
1

X, •{A}
Lemma 6.2.1

X, �A, •{A}
�

X, �A

Π1

X, ◦{Y}
r f

•{X}, Y

;

Π′
1

X, ◦{Y}
Lemma 6.2.4

•{X}, Y

Q.E.D.

Theorem 6.2.11 (Equivalence). For every sequent X, `SKt X if and only if `DKt X.

Proof. By Lemmas 6.2.9 and 6.2.10. Q.E.D.

A consequence of Theorem 6.2.11 is that the general contraction rule in SKt can

be replaced by formula contraction. This can be proved as follows: take a cut-free

derivation in SKt, translate it to DKt and then translate it back to SKt. Since general

contraction is admissible in DKt, and since the translation from DKt to SKt does

not use general contraction (only formula contraction), we can effectively replace the

general contraction in SKt with formula contraction.

6.3 Sequent calculi for some extensions of tense logic

We now consider extensions of tense logic with some modal axioms. We show that,

for each extension, there is a shallow inference calculus that modularly extends SKt

for which cut elimination holds. By modular extension we mean that the rules of the

extended calculi are the rules of SKt plus some structural rules that are derived di-

rectly from the modal axioms. We then show that for each extension, there is also a

corresponding deep inference calculus which is equivalent to the shallow one. Again,

as with DKt, the rules for the deep calculi are characterized by propagations of for-

mulae across different nodes in the nested sequents.

However, the design of the rules for the deep calculus is not as modular as its

shallow counterpart, since it needs to take into account the closure of the axioms. This

is not surprising: Brünnler’s nested sequent calculi for modal logics [20] have similar

properties. That is, the versions of his calculi which use modal propagation rules have

terminating proof search procedures but lack modularity. These calculi are very sim-

ilar to our deep calculi (but we consider tense rather than modal logic). On the other

§6.3 Sequent calculi for some extensions of tense logic 133

Σ[�A, A]

Σ[�A]
Ta

Σ[�A, •{�A, Y}]

Σ[�A, •{Y}]
4a

Σ[♦A, ◦{♦A, Y}]

Σ[♦A, ◦{Y}]
4c

Σ[♦A, A]

Σ[♦A]
Tb

Σ[◦{Y, �A}, �A]

Σ[◦{Y, �A}]
4b

Σ[•{Y, ♦A}, ♦A]

Σ[•{Y, ♦A}]
4d

Figure 6.4: Additional propagation rules for DS4

hand, the versions of Brünnler’s calculi that use structural rules for capturing exten-

sions of modal logic do not yield proof search procedures, but are modular. These

calculi are similar to our shallow calculi.

Cut elimination holds for all the extensions discussed in the following. Their

proofs are omitted as they are a straightforward adaptation of the cut elimination

proof for SKt. This is because the proof substitution technique used for cut elimi-

nation in SKt relies on rule applications being invariant under formula substitution.

More precisely, all the additional structural rules that we shall consider have the fol-

lowing property: If there is an instance of a structural rule ρ (below left) then instanti-

ating the occurrences of A in the multi-context Σ1 and Σ2 with any structure Y yields

a valid instance of ρ (below right):

Σk
2[A]

Σk
1[A]

ρ
Σk

2[Y]

Σk
1[Y]

ρ.

Hence the proof substitution technique for cut elimination goes through essentially

unchanged for the extended logic. This property of the structural rules is similar to

Belnap’s condition (C6) for cut elimination for display logics [12].

A primitive axiom is an axiom of the form A → B where both A and B are built

using propositional variables, ∧, ∨, ♦, and �. Kracht [75] shows that any extension of

tense logic with primitive axioms has a display calculus which enjoys cut elimination.

He shows that any such axiom can be turned into a left structural rule. The axioms

we consider next are contrapositives of primitive axioms, so Kracht’s translation from

axioms to structural rules in our formalism gives right structural rules. We illustrate

here a few cases of primitive axioms for which one can also get corresponding deep

inference nested sequent calculi.

6.3.1 Modal tense logic Kt.S4

Consider an extension of SKt with the following axioms:

T : �A → A �A → A 4 : �A → ��A �A → ��A.

134 Shallow and deep inference nested calculi for tense logic

These axioms translate into the following structural rules, whose soundness is imme-

diately derivable from the axioms:

X, •{Y}

X, Y
Tp

X, ◦{Y}

X, Y
Tf

X, •{Y}

X, •{•{Y}}
4p

X, ◦{Y}

X, ◦{◦{Y}}
4 f

Definition 6.3.1 (Calculus SS4). The calculus SS4 is SKt plus Tp, Tf , 4p and 4 f .

Theorem 6.3.2. Cut elimination holds for SS4.

Definition 6.3.3 (Calculus DS4). The calculus DS4 is DKt plus the propagation rules

given in Figure 6.4.

Some of the modal rules of DS4 coincide with Brünnler’s rules for T and 4 [17; 20].

As the following lemma shows, the rules of DS4 are derivable in SS4.

Lemma 6.3.4. Every rule of DS4 is derivable in SS4.

Proof. We show here derivations of Ta, 4a and 4b; the others are analogous. In each

case, dashed lines indicate multiple applications of the residuation rules rp and/or

r f , according to Proposition 6.1.3.

• Rule Ta:
Σ[�A, A]

Prop. 6.1.3
X, �A, A

wk
•{ }, X, �A, A

rp
◦{X, �A, A}

�
◦{X, �A}, �A

Tf
X, �A, �A

ctr
X, �A

Prop. 6.1.3
Σ[�A]

• Rule 4a:
id

◦{}, A, A
r f

•{A, A}
�

�A, •{A}
4p

�A, •{•{A}}
rp

◦{�A}, •{A}
�

◦{�A}, �A
r f

�A, •{�A}
�

�A, ��A

Σ[�A, •{�A, Y}]
Prop. 6.1.3

X, �A, •{�A, Y}
�

X, �A, ��A, •{Y}
cut

X, �A, �A, •{Y}
ctr

X, �A, •{Y}
Prop. 6.1.3

Σ[�A, •{Y}]

§6.3 Sequent calculi for some extensions of tense logic 135

• Rule 4b: note that the following derivation uses the derived rule 4a:

Σ[�A, ◦{Y, �A}]
Prop. 6.1.3

X, �A, ◦{Y, �A}
r f

•{X, �A}, Y, �A
4a

•{X}, Y, �A
rp

X, ◦{Y, �A}
Prop. 6.1.3

Σ[◦{Y, �A}]

Q.E.D.

To prove the equivalence of SS4 and DS4, we first need to prove the analogs of

Lemmas 6.2.1 to 6.2.8, stated below.

Lemma 6.3.5. The following hold:

1. (Admissibility of weakening) For any structures X and Y, if `DS4 Π : Σ[X] then there

exists Π′ such that `DS4 Π′ : Σ[X, Y] and |Π′| = |Π|.

2. (Admissibility of rp) For any X and Y, if `DS4 Π : X, •{Y} then there exists Π′ such

that `DS4 Π′ : ◦{X}, Y and |Π′| = |Π|.

3. (Admissibility of r f) For any X and Y, if `DS4 Π : X, ◦{Y} then there exists Π′ such

that `DS4 Π′ : •{X}, Y such that |Π′| = |Π|.

4. (Admissibility of general contraction) For any Y, if `DS4 Π : Σ[Y, Y] then there exists

Π′ such that `DS4 Π′ : Σ[Y] and |Π′| = |Π|.

Proof. The proof of these statements are a straightforward extension of the proofs of

Lemmas 6.2.1 to 6.2.8. This is because:

• the extra propagation rules Ta and Tb are not context-dependent, so they are not

affected by changes in the structure of the context, and

• the extra propagation rules 4a to 4d have the same structures as the rules ♦1 to

�2 and hence are treated analogously.

Q.E.D.

Additionally, we need to show that the structural rules for the axioms T and 4 are

also admissible in DS4, which we do in the following four lemmas. The principle

behind the proofs of admissibility for these structural rules is the same as for the rules

rp and r f in Section 6.2. That is, the non-trivial cases we need to consider are those

that concern propagation of formulae across structures affected by the structural rules.

Unless stated otherwise, all lemmas in this section are proved by induction on |Π|, and

Π′
1 is obtained from Π1 using the induction hypothesis. We label a dashed line with

the lemma used to obtain the conclusion from the premise.

136 Shallow and deep inference nested calculi for tense logic

Lemma 6.3.6 (Admissibility of Tf). For all Y, if `DS4 Π : Σ[◦{Y}], then there exists Π′

such that `DS4 Π′ : Σ[Y].

Proof. The non-trivial case is when Π ends with a diamond-rule that moves a formula

in or out of ◦{Y}.

• Case when Π ends with ♦1:

Π1

Σ′[◦{Y, A}, ♦A]

Σ′[◦{Y}, ♦A]
♦1

;

Π′
1

Σ′[Y, A, ♦A]

Σ′[Y, ♦A]
Tb

• Case when Π ends with �2:

Π1

Σ[◦{Y′ , �A}, A]

Σ[◦{Y′ , �A}]
�2

;

Π′
1

Σ[Y′ , �A, A]

Σ[Y′ , �A]
Ta

• Case when Π ends with 4c:

Π1

Σ′[♦A, ◦{♦A, Y}]
4c

Σ′[♦A, ◦{Y}]

;

Π′
1

Σ′[♦A, ♦A, Y]
Lemma 6.3.5 (4)

Σ′[♦A, Y]

The other cases involving axiom 4 can be done analogously.

Q.E.D.

Lemma 6.3.7 (Admissibility of Tp). Suppose `DS4 Π : Σ[•{Y}]. Then there exists Π′ such

that `DS4 Π′ : Σ[Y].

Proof. Analogous to the proof of Lemma 6.3.6. Q.E.D.

Lemma 6.3.8 (Admissibility of 4 f). Suppose `DS4 Π : Σ[◦{Y}]. Then there exists Π′ such

that `DS4 Π′ : Σ[◦{◦{Y}}].

Proof. The non-trivial cases are when a diamond formula moves in or out of ◦{Y}.

• Case when Π ends with �2:

Π1

Σ[◦{Y′ , �A}, A]
�2

Σ[◦{Y′ , �A}]

;

Π′
1

Σ[◦{◦{Y′ , �A}}, A]
Lemma 6.3.5 (1)

Σ[◦{◦{Y′ , �A}, �A}, A]
�2

Σ[◦{◦{Y′ , �A}, �A}]
4b

Σ[◦{◦{Y′ , �A}}]

§6.3 Sequent calculi for some extensions of tense logic 137

Σ[�A, ◦{�A, Y}]
5a

Σ[�A, ◦{Y}]

Σ[◦{Y, ♦A}, ♦A]
5b

Σ[◦{Y, ♦A}]

Σ[♦A, •{♦A, Y}]
5c

Σ[♦A, •{Y}]

Σ[•{Y, �A}, �A]
5d

Σ[•{Y, �A}]

Figure 6.5: Additional propagation rules for DS5

• Case when Π ends with ♦1:

Π1

Σ′[◦{Y, A}, ♦A]
♦1

Σ′[◦{Y}, ♦A]

;

Π′
1

Σ′[◦{◦{Y, A}}, ♦A]
Lemma 6.3.5 (1)

Σ′[◦{◦{Y, A}, ♦A}, ♦A]
♦1

Σ′[◦{◦{Y}, ♦A}, ♦A]
4c

Σ′[◦{◦{Y}}, ♦A]

The other cases can be proved analogously. Q.E.D.

Lemma 6.3.9 (Admissibility of 4p). Suppose `DS4 Π : Σ[•{Y}]. Then there exists Π′ such

that `DS4 Π′ : Σ[•{•{Y}}].

Proof. Analogous to the proof of Lemma 6.3.8. Q.E.D.

Theorem 6.3.10. For every X, we have `SS4 X if and only if `DS4 X.

Proof. Left-to-right direction: a corollary of Lemmas 6.3.5 to 6.3.9, using the method

of Lemma 6.2.10. Right-to-left direction: Lemma 6.3.4. Q.E.D.

6.3.2 Modal tense logic S5

We can obtain S5 from SS4 by collapsing � and �. That is, the symmetry axiom

B : A → �♦A splits into two axioms given below, which translate straightforwardly

into two structural rules.

B1 : �A → �A

X, •{Y}

X, ◦{Y}
B1

B2 : �A → �A

X, ◦{Y}

X, •{Y}
B2

Definition 6.3.11 (Calculus SS5). The calculus SS5 is SS4 plus the rules B1 and B2.

Theorem 6.3.12. Cut elimination holds for SS5.

Definition 6.3.13 (Calculus DS5). The calculus DS5 is DS4 plus the propagation rules

given in Figure 6.5.

Lemma 6.3.14. Every rule of DS5 is derivable in SS5.

138 Shallow and deep inference nested calculi for tense logic

Proof. The following are derivations of the rules 5a and 5b; note that propagation rules

4a and 4d are derivable in SS5 by Lemma 6.3.4, since SS5 is a superset of SS4.

Σ[�A, ◦{�A, Y}]
Prop. 6.1.3

�A, ◦{�A, Y}, X
B2

�A, •{�A, Y}, X
4a

�A, •{Y}, X
B1

�A, ◦{Y}, X
Prop. 6.1.3

Σ[�A, ◦{Y}]

Σ[◦{Y, ♦A}, ♦A]
Prop. 6.1.3

◦{Y, ♦A}, ♦A, X
B2

•{Y, ♦A}, ♦A, X
4d

•{Y, ♦A}, X
B1

◦{Y, ♦A}, X
Prop. 6.1.3

Σ[♦A, ◦{Y}]

The derivations of rules 5c and 5d are analogous and use the derived propagation rules

4c and 4b respectively. Q.E.D.

To prove the equivalence of SS5 and DS5, we again first need to prove the analogs

of Lemmas 6.2.1 to 6.2.8, stated below.

Lemma 6.3.15. The following hold:

1. (Admissibility of weakening) For any structures X and Y, if `DS5 Π : Σ[X] then there

exists Π′ such that `DS5 Π′ : Σ[X, Y] and |Π′| = |Π|.

2. (Admissibility of rp) For any X and Y, if `DS5 Π : X, •{Y} then there exists Π′ such

that `DS5 Π′ : ◦{X}, Y and |Π′| = |Π|.

3. (Admissibility of r f) For any X and Y, if `DS5 Π : X, ◦{Y} then there exists Π′ such

that `DS5 Π′ : •{X}, Y such that |Π′| = |Π|.

4. (Admissibility of general contraction) For any Y, if `DS5 Π : Σ[Y, Y] then there exists

Π′ such that `DS5 Π′ : Σ[Y] and |Π′| = |Π|.

Proof. Similarly to Lemma 6.3.5, the proof of these statements are a straightforward

extension of the proofs of Lemmas 6.2.1 to 6.2.8. This is because the extra propagation

rules 5a to 5d have the same structures as the rules ♦1 to �2 and hence are treated

analogously. Q.E.D.

We now prove the admissibility of the rules corresponding to the axioms of SS4

and structural rules B1 and B2. Note that DS5 captures S5 = KT4B rather than S5 =
KT45.

Lemma 6.3.16 (Admissibility of B1). Suppose `DS5 Π : Σ[◦{Y}]. Then there exists Π′

such that `DS5 Π′ : Σ[•{Y}].

Proof. The non-trivial cases are when Π ends with a diamond-rule that moves a for-

mula in or out of ◦{Y}.

§6.3 Sequent calculi for some extensions of tense logic 139

• Case when Π ends with ♦1:

Π1

Σ′[◦{Y′ , A}, ♦A]
♦1

Σ′[◦{Y′}, ♦A]

;

Π′
1

Σ′[•{Y′ , A}, ♦A]
Lemma 6.3.15 (1)

Σ′[•{Y′ , A, ♦A}, ♦A]
Tb

Σ′[•{Y′ , ♦A}, ♦A]
5c

Σ′[•{Y′}, ♦A]

• Case when Π ends with �2:

Π1

Σ′[◦{Y′ , �A}, A]
�2

Σ′[◦{Y′ , �A}]

;

Π′
1

Σ′[•{Y′ , �A}, A]
Lemma 6.3.15 (1)

Σ′[•{Y′ , �A}, A, �A]
Ta

Σ′[•{Y′ , �A}, �A]
5d

Σ′[•{Y′ , �A}]

• Case when Π ends with 4b:

Π1

Σ[◦{Y′ , �A}, �A]

Σ[◦{Y′ , �A}]
4b

;

Π′
1

Σ[•{Y′ , �A}, �A]

Σ[•{Y′ , �A}]
5d

• Case when Π ends with 4c:

Π1

Σ′[♦A, ◦{♦A, Y}]

Σ′[♦A, ◦{Y}]
4c

;

Π′
1

Σ[♦A, •{♦A, Y}]

Σ′[♦A, •{Y}]
5c

• Case when Π ends with 5a:

Π1

Σ′[�A, ◦{�A, Y′}]
5a

Σ′[�A, ◦{Y′}]

;

Π′
1

Σ′[�A, •{�A, Y′}]
4a

Σ′[�A, •{Y′}]

• Case when Π ends with 5b:

Π1

Σ′[◦{Y′ , ♦A}, ♦A]
5b

Σ′[◦{Y′ , ♦A}]

;

Π′
1

Σ′[•{Y′ , ♦A}, ♦A]
4d

Σ′[•{Y′ , ♦A}

The other cases are analogous. Q.E.D.

Lemma 6.3.17 (Admissibility of B2). Suppose `DS5 Π : Σ[•{Y}]. Then there exists Π′

such that `DS5 Π′ : Σ[◦{Y}].

140 Shallow and deep inference nested calculi for tense logic

Function Prove (Sequent Ξ) : Bool

1. Let T = tree(Ξ)

2. If the id rule is applicable to any node in T, return True

3. Else if there is some node Θ ∈ T that is not saturated

(a) If A ∨ B ∈ Θ and A /∈ Θ or B /∈ Θ then let Ξ1 be the premise of the ∨ rule
applied to A ∨ B ∈ Θ. Return Prove(Ξ1).

(b) If A ∧ B ∈ Θ and A /∈ Θ and B /∈ Θ then let Ξ1 and Ξ2 be the premises
of the ∧ rule applied to A ∧ B ∈ Θ. Return True iff Prove(Ξ1) = True and
Prove(Ξ2) = True.

4. Else if there is some node Θ that is not propagated

(a) Let ρ be the rule corresponding to the requirement of Definition 6.4.3 that
is not met, and let Ξ1 be the premise of ρ. Return Prove(Ξ1).

5. Else if there is some node Θ ∈ T that is not realised, i.e. some B = �A (B = �A)
is not realised

(a) Let Ξ1 be the premise of the � (�) rule applied to B ∈ Θ. Return Prove(Ξ1).

6. Else return False

Figure 6.6: A proof search strategy for DKt

Proof. Analogous to the proof of Lemma 6.3.16. Q.E.D.

Theorem 6.3.18. For every X, we have `SS5 X if and only if `DS5 X.

Proof. Left-to-right direction: a corollary of Lemmas 6.3.15 to 6.3.17, using the method

of Lemma 6.2.10. Right-to-left direction: Lemma 6.3.14. Q.E.D.

6.4 Proof search

We can devise a terminating proof search strategy for our deep inference nested se-

quent calculus DKt. While traditional tableaux methods operate on a single node at

a time, our proof search strategies will consider the whole tree. Following Kashima,

first we define a mapping from sequents to trees.

A node is a set of formulae. A tree is a node with 0 or more children, where each

child is a tree, and each child is labelled as either a ◦-child, or a •-child. Given a

sequent Ξ = Θ, ◦{X1}, · · · , ◦{Xn}, •{Y1}, · · · , •{Ym}, where Θ is a set of formulae

and n ≥ 0 and m ≥ 0, the tree tree(Ξ) represented by Ξ is:

§6.4 Proof search 141

Θ

tree(X1)

◦

· · ·

◦

tree(Xn)

◦

tree(Y1)

•

· · ·

•

tree(Ym)

•

Definition 6.4.1. A set of formulae Θ is saturated iff it satisfies:

1. If A ∨ B ∈ Θ then A ∈ Θ and B ∈ Θ.

2. If A ∧ B ∈ Θ then A ∈ Θ or B ∈ Θ.

Definition 6.4.2. Given a tree T and a node Θ ∈ T, a formula �A ∈ Θ (�A ∈ Θ) is realised

iff there exists a ◦-child (•-child) X of Θ in T with A ∈ X.

6.4.1 Proof Search in DKt

Figure 6.6 gives a proof search strategy for DKt. The application of a rule deep inside

a sequent can be viewed as focusing on a particular node of the tree. The rules of DKt

can then be viewed as operations on the tree encoded in the sequent. In particular,

Step 3 saturates a node locally, Step 4 propagates ♦ (�) prefixed formulae between

neighbouring nodes, and Step 5 appends new nodes to the tree.

Definition 6.4.3. Given a tree T and a node Θ ∈ T, we say Θ is propagated iff:

♦1: for every ♦A ∈ Θ and for every ◦-child X of Θ, we have A ∈ X

�1: for every �A ∈ Θ and for every •-child X of Θ, we have A ∈ X

♦2: for every •-child X of Θ and for every ♦A ∈ X, we have A ∈ Θ

�2: for every ◦-child X of Θ and for every �A ∈ X, we have A ∈ Θ

We will now show that Prove is complete for tense logic. As was the case for

DBiInt1 in Chapter 5, we show the contrapositive: if Prove returns false for some se-

quent Ξ, then Ξ is not valid. Again, we use a purely syntactic method via the sound

and complete calculus DKt. The following auxiliary lemma shows that if Prove re-

turns false for some sequent Ξ, there is no DKt derivation of that sequent, and uses

essentially the same ideas as Lemma 6.4.4.

Lemma 6.4.4. Let Ξ be a sequent such that every node in tree(Ξ) is saturated, realised and

propagated. Then Ξ is not derivable in DBiInt.

Proof. Similar to the proof of Lemma 5.3.5, using Lemmas 6.2.5, 6.2.6 and 6.2.7. We

give the most difficult case as an example.

We prove the statement of the lemma by contradiction. That is, we assume ev-

ery node in tree(Ξ) is saturated, realised and propagated, and that Ξ is derivable in

DBiInt. Then there exists a shortest derivation Π of Ξ. We now consider all the rule

instances that Π could end with, and in each case show that there is an even shorter

DBiInt derivation of Ξ, therefore contradicting our assumption that Π was the short-

est derivation.

142 Shallow and deep inference nested calculi for tense logic

• Π cannot end with the id rule, since every node in tree(Ξ) is saturated.

• Suppose Π ends with the � rule. Since every node in tree(Ξ) is realised, we

have Ξ = Σ[X1, �A, ◦{A, Y1}] for some Σ[] and the last rule of Π applies to that

particular occurrence of �A in the context Σ[]. Then Π must be of the form:

Π1

Σ[X1, �A, ◦{A, Y1}, ◦{A}]
�

Σ[X1, �A, ◦{A, Y1}]

By the distribution Lemma 6.2.5, there is a DKt derivation Π2 of

Σ[X1, �A, ◦{A, A, Y1}]

such that |Π2| = |Π1|. Then applying Lemma 6.2.7 to Π2 gives us a DKt deriva-

tion Π3 of

Σ[X1, �A, ◦{A, Y1}]

such that |Π3| = |Π1| < |Π|. But this contradicts the assumption that Π is a

shortest derivation of Ξ. Therefore Π cannot end with the rule �.

• The cases for other rules are very similar to the proof of Lemma 5.3.5.

Since Π cannot end with any of the rules of DKt, this obviously contradicts the as-

sumption that it is a derivation in DKt. Therefore Ξ is not derivable in DKt. Q.E.D.

Theorem 6.4.5. For any X, Prove(X) = true if and only if `DKt Π : X.

Proof.

• Left-to-right: obvious, since every step of Prove is a backwards application of a

DKt rule.

• Right-to-left: we show that if Prove(X) returns False then X is not derivable in

DKt. Since each rule of DKt is invertible (Lemma 6.2.2), Steps 3 to 5 of Prove pre-

serve provability of the original sequent. If Prove(X) returns False, this can only

be the case if Step 6 is reached, i.e., the systematic bottom-up applications of the

rules of DKt produce a sequent such that every node in the tree of the sequent

is saturated, realised, and propagated. By Lemma 6.4.4, such a sequent would

not be derivable in DKt, and since all other steps of Prove preserve derivability,

it follows that X is not derivable either in DKt.

Q.E.D.

The degree of a formula is the maximum number of nested modalities:

deg(p) = 0

deg(A#B) = max(deg(A), deg(B)) for # ∈ {∧,∨}
deg(#A) = 1 + deg(A) for # ∈ {�, ♦, �, �}.

§6.4 Proof search 143

The degree of a set of formulae is the maximum degree over all its members. We

write s f (A) for the subformulae of A, and define the set of subformulae of a set Θ as

s f (Θ) =
⋃

A∈Θ s f (A). For a sequent Ξ we define s f (Ξ) as below:

Ξ = Θ, ◦{X1}, · · · , ◦{Xn}, •{Y1}, · · · , •{Ym}

s f (Ξ) = s f (Θ) ∪ s f (X1) ∪ · · · ∪ s f (Xn) ∪ s f (Y1) ∪ · · · ∪ s f (Ym).

Theorem 6.4.6. For any set of DKt-formulae Γ , Prove(Γ) terminates.

Proof. Let m = |s f (Γ)| and d = deg(s f (Γ)) ≤ m. To show that Prove terminates, we

will argue about the tree T = tree(Ξ), where Ξ is the parameter to the most recent

recursive call to Prove. That is, initially T = tree(Γ).

The saturation process for each node in T is bounded by m. Therefore after at most

m moves at each node, Step 3 is no longer applicable to this node.

T is finitely branching, since new nodes are only created for unrealised box formu-

lae. Therefore after at most m moves at each node, Step 5 is no longer applicable to

this node. The depth of T is bounded by d, since each node Θ ∈ T at distance k from

the root of T has degree(Θ) ≤ d − k.

Since ♦- and �-prefixed formulae are only propagated to nodes that do not already

contain these formulae, after at most m propagation moves into each node, Step 4 is

no longer applicable to this node. Q.E.D.

144 Shallow and deep inference nested calculi for tense logic

Chapter 7

Putting it all together:

bi-intuitionistic tense logic

Having studied bi-intuitionistic logic and tense logic separately, a natural question

to ask is whether our results are applicable to the combination of these two logics.

We address this question in this chapter: specifically, we develop shallow and deep

inference nested sequent calculi for bi-intuitionistic tense logic.

First, we introduce and motivate our study of bi-intuitionistic tense logic, starting

with intuitionistic modal logic. Recall that traditional modal and tense logics have a

classical basis; that is, they are conservative extensions of classical logic and the box

and diamond connectives are interdefinable: �A = ¬♦¬A and �A = ¬�¬A. On

the other hand, intuitionistic modal/tense logics (IM/TLs) use intuitionistic logic as a

basis. There is a long history behind IM/TLs: Simpson [104] gives a comprehensive

survey of IML and Ewald [39] presents Hilbert calculi for ITL and various extensions.

In addition to Hilbert calculi with algebraic, topological or relational semantics, se-

quent and natural deduction calculi for IM/TLs have also been developed [84; 1; 92;

31; 42]. Extending these sequent calculi with “converse” modalities like � and �

causes cut-elimination to fail as it does for the bi-logics we have encountered so far.

Simpson’s labelled sequent calculus [104] can help but it is not purely syntactic since

it encodes the Kripke semantics, as discussed further in Section 8.4.

In addition to being conservative extensions of intuitionistic logic, IM/TLs also

have a number of other interesting features. Indeed, Simpson [104] states the fol-

lowing properties as requirements of a “good” IML; we extend his requirements to

IM/TL:

1. IM/TL is conservative over IPL.

2. IM/TL contains all substitution instances of theorems of IPL and is closed under

modus ponens.

3. The addition of the schema A∨¬A to IM/TL yields a standard classical modal/tense

logic.

4. If A ∨ B is a theorem of IM/TL then either A is a theorem or B is a theorem.

145

146 Putting it all together: bi-intuitionistic tense logic

5. � and ♦ are independent in IM/TL; � and � are independent in IM/TL.

6. There is an intuitionistically comprehensible explanation of the meaning of the

modalities, relative to which IM/TL is sound and complete.

While requirements 1 to 5 are non-controversial, there is a large variety of seman-

tics available for IM/TLs, and as a result not all IM/TLs meet requirement 6. As

discussed by Simpson [104], there are a number of possibilities of obtaining a Kripke

semantics for IM/TL:

• We could start by simply combining the semantics of intuitionistic logic with

that of modal/tense logic, leading us to consider structures of the form 〈W,≤
, R, V〉, where W is a set of worlds, ≤ is the intuitionistic partial order on worlds

in W, R is the modal/tense reachability relation and V is the valuation.

• While the interpretation of the intuitionistic connectives is straightforward, how

should we interpret the modalities? If we use the usual satisfaction clauses for

modalities, then the intuitionistic persistence property no longer holds. In order

to maintain the persistence property, we need to either build it into the satis-

faction clauses for modalities, or impose conditions on models to ensure persis-

tence.

• Should there be a relationship between ≤ and R? It might be considered natural

for the most basic IM/TL to permit arbitrary frames; on the other hand, it turns

out that certain relationships between ≤ and R are necessary for obtaining the

full persistence property.

Ewald gives a philosophical justification of his semantics for ITL. He argues that

“we should view our models as partially-ordered set of ’states-of-knowledge,’ which we think of

as belonging to a tense-logician who is studying a set of times. Within each state-of-knowledge

there is a set of times and a temporal ordering. As the tense logician moves to a greater state-

of-knowledge, he retains all the information he had in lesser states-of-knowledge.” [39] In

other words, Ewald is advocating that not only formulae should be persisted, but the

temporal ordering itself should be persisted as well: if we have uRv at a certain time

point w, then for all time points w′ such that w′ ≥ w, we should have u′Rv′, where

u′ ≥ u and v′ ≥ v.

We will now present bi-intuitionistic tense logic, which extends bi-intuitionistic

logic with tense formulae just as IML extends intuitionistic logic with modal formulae,

and show that our logic satisfies many of the requirements given above. Let BiKt be

the bi-intuitionistic tense logic obtained by extending BiInt with two pairs of adjoint

modalities (♦, �) and (�, �), with no explicit relationship between the modalities of

the same colour, namely, (♦, �) and (�, �). The logic BiKt enjoys various desirable

properties:

• Conservativity: it is a conservative extension of both intuitionistic logic Int and

dual intuitionistic logic DualInt;

§7.1 Nested sequent calculi 147

τ−(∅) = > τ+(∅) = ⊥
τ−(A) = A τ+(A) = A
τ−(X, Y) = τ−(X) ∧ τ−(Y) τ+(X, Y) = τ+(X) ∨ τ+(Y)
τ−(X . Y) = τ−(X)−<τ+(Y) τ+(X . Y) = τ−(X) → τ+(Y)
τ−(◦X) = ♦τ−(X) τ+(◦X) = �τ+(X)
τ−(•X) = �τ−(X) τ+(•X) = �τ+(X)

τ(X . Y) = τ−(X) → τ+(Y) = τ(X ⇒ Y)

Figure 7.1: Formula translation of nested sequents

• Classical Collapse: it collapses to classical tense logic by the addition of four

structural rules;

• Disjunction Property: If A ∨ B is a theorem not containing −< then A is a theo-

rem or B is a theorem;

• Dual Disjunction Property: If A∧ B is a counter-theorem not containing → then

so is A or B;

• Independent ♦ and �: there is no a priori relationship between these connectives

Following the methodology of the previous three chapters, we begin in Section 7.1

with a shallow inference calculus LBiKt, which is a merger of two sub-calculi for

BiInt and Kt derived from Belnap’s inherently modular display logic. LBiKt has

syntactic cut-elimination as we show in Section 7.2, but it is ill-suited for backward

proof search. We then give a deep inference calculus DBiKt which is complete with

respect to the cut-free fragment of LBiKt as we show in Section 7.3. Importantly, all

the structural rules of LBiKt are admissible in DBiKt, allowing us to give a terminat-

ing decision procedure in Section 7.4. To complete the picture, we also give a Kripke

semantics for BiKt based upon three relations ≤, R♦ and R� in Section 7.5, and show

that our calculi are sound and complete w.r.t. this semantics. Finally, in Section 7.6

we show how we can capture existing calculi for IM/TLs, as well as obtain classical

versions of the logics considered here.

Note. A previous version of some of the results of this chapter has been published

in [56].

7.1 Nested sequent calculi

The formulae of BiKt are built from a set Atoms of atomic formulae via the grammar

below, with p ∈ Atoms:

A ::= p | > | ⊥ | A → A | A−<A | A ∧ A | A ∨ A |

�A | ♦A | �A | �A.

148 Putting it all together: bi-intuitionistic tense logic

A structure is defined by the following grammar, where A is a BiKt formula:

X := ∅ | A | (X, X) | X . X | ◦(X . X) | •(X . X).

The structural connective “,” is associative and commutative and ∅ is its unit. We

always consider structures modulo these equivalences. To reduce parentheses, we

assume that “,” binds tighter than “.”. Thus, we write X, Y . Z to mean (X, Y) . Z.

If X and Y are structures, then X . Y is a nested deep sequent, and X ⇒ Y is a nested

shallow sequent. Thus we generalise Kashima’s sequents for classical tense logics [73]

to two-sided sequents as required for the bi-intuitionistic aspects of BiKt. Figure 7.1

shows the formula-translation of nested sequents. On both sides of the sequent, ◦ is

interpreted as a white (modal) operator and • as a black (tense) operator.

Similarly to the previous chapters, a context is a structure with a hole or a place-

holder []. Contexts are ranged over by Σ[]. We write Σ[X] for the structure obtained

by filling the hole [] in the context Σ[] with a structure X. A simple context is defined

via:

Σ[] ::= [] | Σ[], (Y) | (Y), Σ[]

Intuitively, the hole in a simple context is never under the scope of .. The hole in a

simple context is of neutral polarity.

Positive and negative contexts are defined inductively as follows:

• If Σ[] is a simple context then the following are negative contexts:

– Σ[] . Y

– ◦(Σ[] . Y)

– •(Σ[] . Y)

• If Σ[] is a simple context then the following are positive contexts:

– Y . Σ[]

– ◦(Y . Σ[])

– •(Y . Σ[])

• If Σ[] is a positive/negative context then so are the following:

– (Σ[], Y) and (Y, Σ[])

– Σ[] . Y and Y . Σ[]

– ◦(Σ[] . Y) and ◦(Y . Σ[])

– •(Σ[] . Y) and •(Y . Σ[])

The hole in a negative context has negative polarity, and the hole in a positive context

has positive polarity. We write Σ−[] to indicate that Σ[] is a negative context and Σ+[]
to indicate that it is a positive context. Note again that our definition of polarities

is non-traditional since further nesting within . does not change polarity. Thus, due

to the constructive nature of BiKt, our calculi for BiKt bear more similarities to the

§7.1 Nested sequent calculi 149

calculi for BiInt we presented in Chapters 4 and 5 than they do to the calculi for Kt

from Chapter 6.

Example 7.1.1. The context [], (X . Y) is a simple context but •(([], X) . Y) is not. Both

•(([], X) . Y) and X . (([], Y) . Z) are negative contexts. Both •(W . ([], Z)) and X . ([], Y)
are positive contexts.

We now present the two nested sequent calculi that we will use in the rest of the

paper: a shallow inference calculus LBiKt and a deep inference calculus DBiKt.

Figure 7.2 gives the rules of the shallow inference calculus LBiKt. Central to this

calculus is the idea that inference rules can only be applied to formulae at the top level

of nested sequents, and the structural residuation rules sL, sR, .L, .R, rp◦ and rp• are

used to bring the required sub-structures to the top level. As in previous chapters,

we use double lines to indicate that the rules rp◦ and rp• may be applied both top-to-

bottom and bottom-to-top.

LBiKt can be seen as a merger of two calculi: the LBiInt calculus presented in

Chapter 4 for the intuitionistic connectives, and the display calculus [51] for the tense

connectives. However, note that our rp◦ and rp• are more intricate than in the case

of pure display logic. Namely, we have incorporated some aspects of the residuation

rules for . connectives in rp◦ and rp•. This allows us to prove the admissibility of rp◦
and rp• more easily in the deep inference calculus presented shortly.

Note that we use ◦ and • as structural proxies for the non-residuated pairs (♦, �)
and (�, �) respectively, whereas Wansing [116] uses only one • as a structural proxy

for the residuated pair (�, �) and recovers (♦, �) via classical negation, while Goré [51]

uses ◦ and • as structural proxies for the residuated pairs (♦, �) and (�, �) respec-

tively. As we shall see later, our choice allows us to retain the modal fragment (♦, �)
by simply eliding all rules that contain “black” operators from our deep sequent cal-

culus.

Figure 7.3 gives the rules of the deep inference calculus DBiKt. Here the inference

rules can be applied at any level of the nested sequent, indicated by the use of contexts.

Notably, there are no residuation rules; indeed one of the goals of our paper is to

show that the residuation rules of LBiKt can be simulated by deep inference and

propagation rules in DBiKt. Another feature of DBiKt is the use of polarities in

defining contexts to which rules are applicable. For example, the premise of the �L1

rule denotes a negative context Σ which itself contains a formula A and a •-structure,

such that the •-structure contains �A.

DBiKt achieves the goal of merging the DBiInt calculus presented in Chapter 5

and a two-sided version of the DKt calculus presented in Chapter 6. Similarly to

the shallow inference case, combining the calculi is not entirely straightforward. Al-

though the propagation rules for .-structures remain the same as in the BiInt case,

the propagation rules for ◦- and •-structures are not as simple as in the DKt calculus.

Since BiKt is constructive, there is no direct relationship between � and ♦, or � and

�. As a result, propagation rules like �L2 need to involve the . structural connective

so they can refer to both sides of the nested sequent.

150 Putting it all together: bi-intuitionistic tense logic

Identity and logical constants:

id
X, A ⇒ A, Y

⊥LX, ⊥ ⇒ Y
>RX ⇒ >, Y

Structural rules:

X ⇒ Z wL
X, Y ⇒ Z

X ⇒ Z wR
X ⇒ Y, Z

X, Y, Y ⇒ Z
cL

X, Y ⇒ Z

X ⇒ Y, Y, Z
cR

X ⇒ Y, Z

(X1 . Y1), X2 ⇒ Y2 sL
X1, X2 ⇒ Y1 , Y2

X1 ⇒ Y1 , (X2 . Y2) sR
X1 , X2 ⇒ Y1 , Y2

X2 ⇒ Y2 , Y1 .L
(X2 . Y2) ⇒ Y1

X1, X2 ⇒ Y2 .R
X1 ⇒ (X2 . Y2)

X ⇒ Y, ◦(W . Z)
rp◦

•(X . Y), W ⇒ Z

X ⇒ Y, •(W . Z)
rp•

◦(X . Y), W ⇒ Z

X1 ⇒ Y1 , A A, X2 ⇒ Y2
cut

X1, X2 ⇒ Y1 , Y2

Logical rules:

X, Bi ⇒ Y
∧L i ∈ {1, 2}

X, B1 ∧ B2 ⇒ Y

X ⇒ A, Y X ⇒ B, Y
∧R

X ⇒ A ∧ B, Y

X, A ⇒ Y X, B ⇒ Y
∨L

X, A ∨ B ⇒ Y

X ⇒ Bi, Y
∨R i ∈ {1, 2}

X ⇒ B1 ∨ B2, Y

X ⇒ A, Y X, B ⇒ Y →L
X, A → B ⇒ Y

X, A ⇒ B →R
X ⇒ A → B, Y

A ⇒ B, Y
−<L

X, A−<B ⇒ Y

X ⇒ A, Y X, B ⇒ Y
−<R

X ⇒ A−<B, Y

A ⇒ (X . Y)
�L

�A ⇒ ◦(X . Y)

X ⇒ ◦(∅ . A)
�RX ⇒ �A

A ⇒ (X . Y)
�L

�A ⇒ •(X . Y)

X ⇒ •(∅ . A)
�RX ⇒ �A

◦(A . ∅) ⇒ X
♦L

♦A ⇒ X

(X . Y) ⇒ A
♦R

◦(X . Y) ⇒ ♦A

•(A . ∅) ⇒ X
�L

�A ⇒ X

(X . Y) ⇒ A
�R

•(X . Y) ⇒ �A

Figure 7.2: LBiKt: a shallow inference nested sequent calculus for BiKt

§7.1 Nested sequent calculi 151

Identity and logical constants:

id
Σ[X, A . A, Y]

⊥L
Σ[⊥, X . Y]

>R
Σ[X .>, Y]

Propagation rules:

Σ[A, (A, X . Y), W . Z]
.L1

Σ[(A, X . Y), W . Z]

Σ[W . Z, (X . Y, A), A]
.R1

Σ[W . Z, (X . Y, A)]

Σ[X, A . W, (A, Y . Z)]
.L2

Σ[X, A . W, (Y . Z)]

Σ[(X . Y, A), W . A, Z]
.R2

Σ[(X . Y), W . A, Z]

Σ−[A, •(�A, X . Y)]
�L1

Σ−[•(�A, X . Y)]

Σ+[A, •(Y . ♦A, X)]
♦R1

Σ+[•(Y . ♦A, X)]

Σ−[A, ◦(�A, X . Y)]
�L1

Σ−[◦(�A, X . Y)]

Σ+[A, ◦(Y . �A, X)]
�R1

Σ+[◦(Y . �A, X)]

Σ[�A, X . ◦(A, Y . Z), W]
�L2

Σ[�A, X . ◦(Y . Z), W]

Σ[X, ◦(Y . Z, A) . W, ♦A]
♦R2

Σ[X, ◦(Y . Z) . W, ♦A]

Σ[�A, X . •(A, Y . Z), W]
�L2

Σ[�A, X . •(Y . Z), W]

Σ[X, •(Y . Z, A) . W, �A]
�R2

Σ[X, •(Y . Z) . W, �A]

Logical rules:

Σ−[A ∨ B, A] Σ−[A ∨ B, B]
∨L

Σ−[A ∨ B]

Σ+[A ∨ B, A, B]
∨R

Σ+[A ∨ B]

Σ−[A ∧ B, A, B]
∧L

Σ−[A ∧ B]

Σ+[A ∧ B, A] Σ+[A ∧ B, B]
∧R

Σ+[A ∧ B]

Σ−[A−<B, (A . B)]
−<L

Σ−[A−<B]

Σ+[A → B, (A . B)]
→R

Σ+[A → B]

Σ[X, A → B . A, Y] Σ[X, A → B, B . Y]
→L

Σ[X, A → B . Y]

Σ[X . Y, A−<B, A] Σ[X, B . Y, A−<B]
−<R

Σ[X . Y, A−<B]

Σ−[♦A, ◦(A . ∅)]
♦L

Σ−[♦A]

Σ+[�A, ◦(∅ . A)]
�R

Σ+[�A]

Σ−[�A, •(A . ∅)]
�L

Σ−[�A]

Σ+[�A, •(∅ . A)]
�R

Σ+[�A]

Figure 7.3: DBiKt: a deep inference nested sequent calculus for BiKt

152 Putting it all together: bi-intuitionistic tense logic

Notice that LBiKt is a modular extension of the calculus LBiInt for bi-intuitionistic

logic that we presented in Chapter 4. That is, if we dropped all the rules involving

tense formulae and tense structures from LBiKt, we would get exactly LBiInt. Simi-

larly, DBiKt is a modular extension of DBiInt from Chapter 5.

As in previous chapters, we write `LBiKt Π : X ⇒ Y when Π is derivation of the

shallow sequent X ⇒ Y in LBiKt, and `DBiKt Π : X . Y when Π is a derivation of

the sequent X . Y in DBiKt. In either calculus, the height |Π| of a derivation Π is the

number of sequents on the longest branch.

Example 7.1.2. Below we derive Ewald’s axiom 9 for IKt [39] in LBiKt and DBiKt. The

LBiKt-derivation on the left read bottom-up brings the required sub-structure �A to the top-

level using the residuation rule rp◦ and applies �R backward. The DBiKt-derivation on the

right instead applies �R deeply, and propagates the required formula to the appropriate sub-

structure using �R1. Note that �R1 and all other propagation rules contain contraction.

id
A ⇒ A

�R
•(A . ∅) ⇒ �A

rp◦
A ⇒ ◦(∅ . �A)

�RA ⇒ ��A →R
⇒ A → ��A

id
.A → ��A, (A . A, ��A, ◦(∅ . �A))

�R1
.A → ��A, (A . ��A, ◦(∅ . �A))

�R
.A → ��A, (A . ��A)

→R
.A → ��A

We start by defining four derived “display” rules in LBiKt. The following two

rules are easily derivable using sL, sR, .L and .R:

(X1 . X2) ⇒ Y
rp.

LX1 ⇒ X2, Y

X1 ⇒ (X2 . Y)
rp.

RX1, X2 ⇒ Y

The following two residuation rules are easily derivable using rp.
L, rp.

R, rp◦ and

rp•:
◦(X . Y) ⇒ (Z . Y)

rp′•
(X . Y) ⇒ •(Z . Y)

•(X . Y) ⇒ (Z . Y)
rp′◦

(X . Y) ⇒ ◦(Z . Y)

Display property. A (deep or shallow) nested sequent can be seen as a tree of tradi-

tional sequents. The structural rules of LBiKt allow shuffling of structures to display/un-

display a particular node in the tree, so inference rules can be applied to it. This is

similar to the display property in traditional display calculi, where any substructure

can be displayed and un-displayed. We state the display property of LBiKt more

precisely in subsequent lemmas. Let DP = {rp.
L , rp.

R, rp◦ , rp• , rp′◦, rp′•} and let DP-

derivable mean “derivable using rules only from DP”.

The proofs for the following lemmas are all extensions of the proofs for lem-

mas 4.1.3, 4.1.4 and 4.1.5. The differences concern the cases for contexts under the

scope of a ◦ or • structural connective, so we give these cases only.

Lemma 7.1.3 (Display property for simple contexts). Let Σ[] be a simple context. Let

X be a structure and p a propositional variable not occurring in X nor Σ[]. Then there exist

structures Y and Z such that:

§7.1 Nested sequent calculi 153

1. Y ⇒ p is DP-derivable from X ⇒ Σ[p] and

2. p ⇒ Z is DP-derivable from Σ[p] ⇒ X.

Proof. Similar from the proof Lemma 4.1.3. Q.E.D.

Lemma 7.1.4 (Display property for positive contexts). Let Σ[] be a positive context. Let

X be a structure and p a propositional variable not occurring in X nor Σ[]. Then there exist

structures Y and Z such that:

1. Y ⇒ p is DP-derivable from X ⇒ Σ[p], and

2. Z ⇒ p is DP-derivable from Σ[p] ⇒ X

Proof. We prove both statements by simultaneous induction on the size of the context

Σ[]. We give the cases when Σ[] = •(Σ1[] . W) or Σ[] = •(W . Σ1[]), for some positive

or simple context Σ1[] and some structure W. The cases when Σ[] = ◦(Σ1[] . W) or

Σ[] = ◦(W . Σ1[]) are analogous, and the other cases are unchanged from the proof

Lemma 4.1.4.

1. • Case when Σ[] = •(Σ1[] . W). We first obtain the following derivation:

X ⇒ •(Σ1[p] . W)
rp•

◦(X . ∅), Σ1[p] ⇒ W
rp.

R
Σ1[p] ⇒ (◦(X . ∅) . W)

If Σ1[] is a positive context, we apply statement (2) of the induction hypoth-

esis to it; otherwise it must be a simple context and we apply Lemma 7.1.3.

In both cases, we obtain the required derivation:

X ⇒ •(Σ1[p] . W)
rp•

◦(X . ∅), Σ1[p] ⇒ W
rp.

R
Σ1[p] ⇒ (◦(X . ∅) . W)

...
Y ⇒ p

• Case when Σ[] = •(W . Σ1[]). We first obtain the following derivation:

X ⇒ •(W . Σ1[p])
rp•

◦(X . ∅), W ⇒ Σ1[p]

If Σ1[] is a positive context, we apply statement (1) of the induction hypoth-

esis to it; otherwise it must be a simple context and we apply Lemma 7.1.3.

In both cases, we obtain the required derivation:

X ⇒ •(W . Σ1[p])
rp•

◦(X . ∅), W ⇒ Σ1[p]

...
Y ⇒ p

154 Putting it all together: bi-intuitionistic tense logic

2. • Case when Σ[] = •(Σ1[] . W). We first obtain the following derivation:

•(Σ1[p] . W) ⇒ X
rp◦

Σ1[p] ⇒ W, ◦(∅ . X)

If Σ1[] is a positive context, we apply statement (2) of the induction hypoth-

esis to it; otherwise it must be a simple context and we apply Lemma 7.1.3.

In both cases, we obtain the required derivation:

•(Σ1[p] . W) ⇒ X
rp◦

Σ1[p] ⇒ W, ◦(∅ . X)

...
Z ⇒ p

• Case when Σ[] = •(W . Σ1[]). We first obtain the following derivation:

•(W . Σ1[p]) ⇒ X
rp◦

W ⇒ Σ1[p], ◦(∅ . X)
rp.

L(W . ◦(∅ . X)) ⇒ Σ1[p]

If Σ1[] is a positive context, we apply statement (1) of the induction hypoth-

esis to it; otherwise it must be a simple context and we apply Lemma 7.1.3.

In both cases, we obtain the required derivation:

•(W . Σ1[p]) ⇒ X
rp◦

W ⇒ Σ1[p], ◦(∅ . X)
rp.

L(W . ◦(∅ . X)) ⇒ Σ1[p]

...
Z ⇒ p

Q.E.D.

Lemma 7.1.5 (Display property for negative contexts). Let Σ[] be a negative context. Let

X be a structure and p a propositional variable not occurring in X nor Σ[]. Then there exist

structures Y and Z such that:

1. p ⇒ Y is DP-derivable from X ⇒ Σ[p] and

2. p ⇒ Z is DP-derivable from Σ[p] ⇒ X.

Proof. Analogous to the proof of Lemma 7.1.4. Q.E.D.

Note that since the rules in DP are all invertible, the derivations constructed in

the above lemmas are invertible derivations. That is, we can derive Y ⇒ p from

X ⇒ Σ[p] and vice versa. Note also that since rules in the shallow system are closed

under substitution, this also means Y ⇒ W is derivable from X ⇒ Σ[W], and vice

versa, for any structure W.

§7.2 Cut elimination in LBiKt 155

7.2 Cut elimination in LBiKt

Our cut-elimination proof is based on the method of proof-substitution presented in

Chapter 4; here we extend it to the cases involving the modal connectives �, ♦, �, �

and ◦- and •-structures. We illustrate one case with an example.

Consider the derivation below ending with a cut on ♦A:

Π1

X1 ⇒ Y1, ♦A

Π2

♦A, X2 ⇒ Y2
cut

X1, X2 ⇒ Y1, Y2

Instead of permuting the cut rule locally, we trace the cut formula ♦A until it be-

comes principal in the derivations Π1 and Π2, and then apply cut on a smaller formula.

Suppose that Π1 and Π2 are respectively the two derivations below:

Ψ1

(X′
1 . Y′

1) ⇒ A
♦R

◦(X′
1 . Y′

1) ⇒ ♦A

...
X1 ⇒ Y1, ♦A

Ψ2

◦(A . ∅) ⇒ Y′
2

♦L
♦A ⇒ Y′

2

...
♦A, X2 ⇒ Y2

We first transform Π1 by substituting (X2 . Y2) for ♦A in Π1 and obtain the sub-

derivation below with an open leaf:

◦(X′
1 . Y′

1) ⇒ (X2 . Y2)

...
X1 ⇒ Y1, (X2 . Y2) sR

X1, X2 ⇒ Y1, Y2

We then prove the open leaf by uniformly substituting ◦(X′
1 . Y′

1) for ♦A in Π2,

and applying cut on a sub-formula A:

Ψ1

(X′
1 . Y′

1) ⇒ A

Ψ2

◦(A . ∅) ⇒ Y′
2 rp•

A ⇒ •(∅ . Y′
2)

cut
(X′

1 . Y′
1) ⇒ •(∅ . Y′

2) sL
X′

1 ⇒ Y′
1, •(∅ . Y′

2) rp•
◦(X′

1 . Y′
1) ⇒ Y′

2

...
◦(X′

1 . Y′
1), X2 ⇒ Y2 .R

◦(X′
1 . Y′

1) ⇒ (X2 . Y2)

The cut rank of an instance of cut is the size of the cut formula, as usual. The cut

rank cr(Π) of a derivation Π is the largest cut rank of the cut instances in Π (or zero, if

Π is cut-free). Given a formula A, we denote with |A| its size.

To formalise the cut elimination proof, we first introduce a notion of multiple-hole

156 Putting it all together: bi-intuitionistic tense logic

contexts. A k-hole context is a context with k holes. Given a k-hole context Z[· · ·]
we write Z[Xk] to stand for the structure obtained from Z[· · ·] by replacing each hole

with an occurrence of the structure X.

Example 7.2.1. If Σ[] = ([], •([], W . Y)) . V then Σ[(◦(A . B))2] = (◦(A . B), •(◦(A .
B), W . Y)) . V.

A k-hole context is positive if every hole in it has positive polarity, and it is quasi-

positive if every hole in it is either neutral or positive. A k-hole context is negative if

every hole in it has negative polarity, and it is quasi-negative if every hole in it is either

neutral or negative.

Example 7.2.2. The 2-hole context ([], •([], W .Y)) . V is quasi-negative. The 2-hole context

(Y . •[]) . (V . []) is positive.

Lemma 7.2.3 states the proof substitutions needed to eliminate atomic cuts. Lem-

mas 7.2.4-7.2.11 state the proof substitutions needed for non-atomic cuts. We only

give the proofs of the cases involving the modal connectives as the other proofs are

unchanged from Chapter 4.

Lemma 7.2.3. Suppose p, X ⇒ Y is cut-free derivable for some fixed p, X and Y. Then for

any k-hole positive context Z1[· · ·] and any l-hole quasi-positive context Z2[· · ·], if Z1[p
k] ⇒

Z2[p
l] is cut-free derivable, then Z1[(X . Y)k] ⇒ Z2[(X . Y)l] is cut-free derivable.

Proof. Analogous to the proof of Lemma 4.2.1. Q.E.D.

Lemma 7.2.4. Suppose `LBiKt Πi : X ⇒ Y, Ai, for some i ∈ {1, 2}, such that cr(Πi) <
|A1 ∨ A2|. Suppose `LBiKt Π3 : Z1[(A1 ∨ A2)

k] ⇒ Z2[(A1 ∨ A2)
l] for some k-hole quasi-

negative context Z1[· · ·] and l-hole negative context Z2[· · ·], such that cr(Π3) < |A1 ∨ A2|.
Then there exists Π such that `LBiKt Π : Z1[(X .Y)k] ⇒ Z2[(X .Y)l] and cr(Π) < |A∨ B|.

Proof. Analogous to the proof of Lemma 4.2.2. Q.E.D.

Lemma 7.2.5. Suppose `LBiKt Π1 : X ⇒ Y, A1 and `LBiKt Π2 : X ⇒ Y, A2 with cr(Π1) <
|A1 ∧ A2| and cr(Π2) < |A1 ∧ A2|. Suppose `LBiKt Π3 : Z1[(A1 ∧ A2)

k] ⇒ Z2[(A1 ∧
A2)

l] for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context Z2[· · ·] with

cr(Π3) < |A1 ∧ A2|. Then there exists Π such that `LBiKt Π : Z1[(X . Y)k] ⇒ Z2[(X . Y)l]
and cr(Π) < |A ∧ B|.

Proof. Analogous to the proof of Lemma 4.2.3. Q.E.D.

Lemma 7.2.6. Suppose `LBiKt Π1 : X, A ⇒ B and `LBiKt Π2 : Z1[(A → B)k] ⇒
Z2[(A → B)l] for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context

Z2[· · ·], and the cut ranks of Π1 and Π2 are smaller than |A → B|. Then there exists Π such

that `LBiKt Π : Z1[X
k] ⇒ Z2[X

l] and cr(Π) < |A → B|.

Proof. Analogous to the proof of Lemma 4.2.4. Q.E.D.

§7.2 Cut elimination in LBiKt 157

Lemma 7.2.7. Suppose `LBiKt Π1 : X ⇒ Y, A and `LBiKt Π2 : X, B ⇒ Y, and the

cut ranks of Π1 and Π2 are smaller than |A−<B|. Suppose `LBiKt Π3 : Z1[(A−<B)k] ⇒
Z2[(A−<B)l] for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context

Z2[· · ·] with cr(Π3) < |A−<B|. Then there exists Π such that `LBiKt Π : Z1[(X . Y)k] ⇒
Z2[(X . Y)l] and cr(Π) < |A−<B|.

Proof. Analogous to the proof of Lemma 4.2.5. Q.E.D.

Lemma 7.2.8. Suppose `LBiKt Π1 : X ⇒ ◦(∅ . A) and `LBiKt Π2 : Z1[(�A)k] ⇒
Z2[(�A)l] for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context Z2[· · ·],
and the cut ranks of Π1 and Π2 are smaller than |�A|. Then there exists Π such that `LBiKt

Π : Z1[X
k] ⇒ Z2[X

l] and cr(Π) < |�A|.

Proof. By induction on |Π2|. The non-trivial case is when Π2 ends with �L on �A:

Ψ

A ⇒ Z′
2[(�A)l]

�L
�A ⇒ ◦(Z′

2[(�A)l])

By induction hypothesis we have `LBiKt Ψ′ : A ⇒ Z′
2[X

l] where cr(Ψ′) < |�A|. The

derivation Π is constructed as follows:

Π1

X ⇒ ◦(∅ . A)
rp◦

•(X . ∅) ⇒ A

Ψ′

A ⇒ Z′
2[X

l]
cut

•(X . ∅) ⇒ Z′
2[X

l]
rp◦

X ⇒ ◦(Z′
2[X

l])

Q.E.D.

Lemma 7.2.9. Suppose `LBiKt Π1 : X ⇒ •(∅ . A) and `LBiKt Π2 : Z1[(�A)k] ⇒
Z2[(�A)l] for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context Z2[· · ·],
and the cut ranks of Π1 and Π2 are smaller than |�A|. Then there exists Π such that `LBiKt

Π : Z1[X
k] ⇒ Z2[X

l] and cr(Π) < |�A|.

Proof. Analogous to the proof of Lemma 7.2.8. Q.E.D.

Lemma 7.2.10. Suppose `LBiKt Π1 : (X1 . X2) ⇒ A and `LBiKt Π2 : Z1[(♦A)k] ⇒
Z2[(♦A)l] for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context Z2[· · ·],
and the cut ranks of Π1 and Π2 are smaller than |♦A|. Then there exists Π such that `LBiKt

Π : Z1[(◦(X1 . X2))
k] ⇒ Z2[(◦(X1 . X2))

l] and cr(Π) < |♦A|.

Proof. By induction on |Π2|. The non-trivial case is when Π2 ends with ♦L on ♦A:

Ψ

◦(A . ∅) ⇒ Z2[(♦A)l]
♦L

♦A ⇒ Z2[(♦A)l]

158 Putting it all together: bi-intuitionistic tense logic

By induction hypothesis we have `LBiKt Ψ′ : ◦(A . ∅) ⇒ Z2[(◦(X1 . X2))
l] where

cr(Ψ′) < |♦A|. The derivation Π is constructed as follows:

Π1

(X1 . X2) ⇒ A

Ψ′

◦(A . ∅) ⇒ Z2[(◦(X1 . X2))
l]

rp•
A ⇒ •(∅ . Z2[(◦(X1 . X2))

l)]
cut

(X1 . X2) ⇒ •(∅ . Z2[(◦(X1 . X2))
l])

sL
X1 ⇒ X2, •(∅ . Z2[(◦(X1 . X2))

l])
rp•

◦(X1 . X2) ⇒ Z2[(◦(X1 . X2))
l]

Q.E.D.

Lemma 7.2.11. Suppose `LBiKt Π1 : (X1 . X2) ⇒ A and `LBiKt Π2 : Z1[(�A)k] ⇒
Z2[(�A)l] for some k-hole quasi-negative context Z1[· · ·] and l-hole negative context Z2[· · ·],
and the cut ranks of Π1 and Π2 are smaller than |�A|. Then there exists Π such that `LBiKt

Π : Z1[(•(X1 . X2))
k] ⇒ Z2[(•(X1 . X2))

l] and cr(Π) < |�A|.

Proof. Analogous to the proof of Lemma 7.2.10. Q.E.D.

Lemma 7.2.12. Let A be a non-atomic formula. Suppose `LBiKt Π1 : A, X ⇒ Y and

`LBiKt Π2 : Z1[A
k] ⇒ Z2[A

l] where Z1[· · ·] is a k-hole positive context, Z2[· · ·] is an l-hole

quasi-positive context, and the cut ranks of Π1 and Π2 are smaller than |A|. Then there exists

Π such that `LBiKt Π : Z1[(X . Y)k] ⇒ Z2[(X . Y)l] and cr(Π) < |A|.

Proof. By induction on |Π2| and case analysis on A. The non-trivial case is when Π2

ends with a right-introduction rule on A. That is, in this case, we have Z2[A
l] =

(Z′
2[A

l−1], A) for some positive context Z′
2[· · ·]. We distinguish several cases depend-

ing on A. We show here the cases where A is either �C or ♦C.

• Suppose A = �C and Π2 is

Ψ

Z1[(�C)k] ⇒ ◦(∅ . C)
�R

Z1[(�C)k] ⇒ �C

By induction hypothesis, we have a derivation Ψ′ of

Z1[(X . Y)k] ⇒ ◦(∅ . C)

Then the derivation Π is constructed as follows:

θ

Z1[(X . Y)k], X ⇒ Y
.R

Z1[(X . Y)k] ⇒ X . Y

with θ obtained by applying Lemma 7.2.8 to Ψ′ and Π1.

§7.2 Cut elimination in LBiKt 159

• Suppose A = ♦C and Π2 is

Ψ

Z′
1[(♦C)k] ⇒ C

♦R
◦(Z′

1[(♦C)k]) ⇒ ♦C

By induction hypothesis, we have a derivation Ψ′ of

Z′
1[(X . Y)k] ⇒ C

Then the derivation Π is constructed as follows:

θ

◦(Z′
1[(X . Y)k]), X ⇒ Y

.R
◦(Z′

1[(X . Y)k]) ⇒ X . Y

with θ obtained by applying Lemma 7.2.10 to Ψ′ and Π1.

The other cases are treated analogously, using Lemmas 7.2.4, 7.2.5, 7.2.6, 7.2.7, 7.2.9

and 7.2.11. Q.E.D.

Theorem 7.2.13. If X ⇒ Y is LBiKt-derivable then it is also LBiKt-derivable without using

cut.

Proof. As typical in cut elimination proofs, we remove topmost cuts in succession. Let

Π be a derivation of LBiKt with a topmost cut instance

Π1

X1 ⇒ Y1, A

Π2

A, X2 ⇒ Y2 cut
X1, X2 ⇒ Y1, Y2

Note that Π1 and Π2 are both cut-free since this is a topmost instance in Π. We use

induction on the size of A to eliminate this topmost instance of cut.

If A is an atomic formula p then the cut free derivation is constructed as follows

where Ψ is obtained from applying Lemma 7.2.3 to Π2 and Π1:

Ψ

X1 ⇒ Y1, (X2 . Y2) sR
X1, X2 ⇒ Y1, Y2

If A is non-atomic, using Lemma 7.2.12 we get the following derivation Π′:

Ψ

X1 ⇒ Y1, (X2 . Y2) sR
X1, X2 ⇒ Y1, Y2

We have cr(Π′) < |A| by Lemma 7.2.12, therefore by induction hypothesis, we can

remove all the cuts in Π′ to get a cut-free derivation of X1, X2 ⇒ Y1, Y2. Q.E.D.

160 Putting it all together: bi-intuitionistic tense logic

7.3 Equivalence of DBiKt and LBiKt

In this section we show the equivalence of DBiKt and LBiKt.

7.3.1 Soundness of DBiKt

We show that every derivation in DBiKt can be mimicked by a cut-free derivation in

LBiKt. The non-trivial cases involve showing that the propagation rules of DBiKt are

derivable in LBiKt using residuation. This is not surprising since the residuation rules

in display calculi are used exactly for the purpose of displaying and un-displaying

sub-structures so that inference rules can be applied to them.

Theorem 7.3.1 (Soundness). For any structures X and Y, if `DBiKt Π : X . Y then `LBiKt

Π′ : X ⇒ Y.

Proof. We show that each deep inference rule ρ is derivable in the shallow system.

This is done by case analysis of the context Σ[] in which the deep rule ρ applies. Note

that if a deep inference rule ρ is applicable to X . Y, then the context Σ[] in this case is

either [], a positive context or a negative context.

• For the case where Σ[] is either positive or negative, we use the display property.

We show here the case where ρ is a rule with a single premise; the other cases

are analogous. Suppose ρ is
Σ+[U]

ρ
Σ+[V]

By the display properties, we need only to show that the following rules are

derivable in the shallow system for some structure W ′:

W ′ ⇒ U
W ′ ⇒ V

U ⇒ W ′

V ⇒ W ′

For example, to show soundness of �L2 it is enough to show that the following

are derivable:

W ′ ⇒ (�A, X . ◦(A, Y . Z), W)

W ′ ⇒ (�A, X . ◦(Y . Z), W)

((�A, X . ◦(A, Y . Z), W) ⇒ W ′

(�A, X . ◦(Y . Z), W) ⇒ W ′

Both reduce to showing that the following is derivable:

�A, X . ◦(A, Y . Z), W

�A, X . ◦(Y . Z), W

• For the case where Σ[] = [], we only need to show that each valid instance of ρ

where Σ[] = [] is derivable in the shallow system LBiKt.

We now give derivations for all the non-trivial cases, including �L2.

§7.3 Equivalence of DBiKt and LBiKt 161

• The cases for propagation rules .L1, .R1, .L2, .R2 remain unchanged from the

proof of Theorem 5.2.1.

• Rule �L1:

Z, A, •(�A, X . Y) . W
�L1

Z, •(�A, X . Y) . W
;

Z, A, •(�A, X . Y) ⇒ W
.R

A, •(�A, X . Y) ⇒ (Z . W)
.R

A ⇒ (•(�A, X . Y) . (Z . W))
�L

�A ⇒ ◦(•(�A, X . Y) . (Z . W))
wR

�A ⇒ ◦(•(�A, X . Y) . (Z . W)), Y
wL

�A, X ⇒ ◦(•(�A, X . Y) . (Z . W)), Y
.L

(�A, X . Y) ⇒ ◦(•(�A, X . Y) . (Z . W))
rp′◦•(�A, X . Y) ⇒ (•(�A, X . Y) . (Z . W))
sR

•(�A, X . Y), •(�A, X . Y) ⇒ (Z . W)
cL

•(�A, X . Y) ⇒ (Z . W)
sR

Z, •(�A, X . Y) ⇒ W

• Rule �L1: analogous to the case for �L1

• Rule ♦R1:

Z . •(Y . ♦A, X), A, W
♦R1

Z . •(Y . ♦A, X), W
;

Z ⇒ •(Y ⇒ ♦A, X), A, W
.L

(Z . W) ⇒ •(Y . ♦A, X), A
.L

((Z . W) . •(Y . ♦A, X)) ⇒ A
♦R

◦((Z . W) . •(Y . ♦A, X)) ⇒ ♦A
wR

◦((Z . W) . •(Y . ♦A, X)) ⇒ ♦A, X
wL

Y, ◦((Z . W) . •(Y . ♦A, X)) ⇒ ♦A, X
.R

◦((Z . W) . •(Y . ♦A, X)) ⇒ (Y . ♦A, X)
rp′•((Z . W) . •(Y . ♦A, X)) ⇒ •(Y . ♦A, X)
sL

(Z . W) ⇒ •(Y . ♦A, X), •(Y . ♦A, X)
cR

(Z . W) ⇒ •(Y . ♦A, X)
sL

Z ⇒ •(Y . ♦A, X), W

• Rule �R1: analogous to the case for ♦R1

162 Putting it all together: bi-intuitionistic tense logic

• Rule �L2:

�A, X . ◦(A, Y . Z), W
�L2

�A, X . ◦(Y . Z), W
;

�A, X ⇒ ◦(A, Y . Z), W
rp◦

A, Y, •(�A, X . W) ⇒ Z
.R

A, •(�A, X . W) ⇒ (Y . Z)
.R

A ⇒ •(�A, X . W) . (Y . Z)
�L

�A ⇒ ◦(•(�A, X . W) . (Y . Z))
wL

�A, X ⇒ ◦(•(�A, X . W) . (Y . Z))
wR

�A, X ⇒ ◦(•(�A, X . W) . (Y . Z)), W
.L

(�A, X . W) ⇒ ◦(•(�A, X . W) . (Y . Z))
rp′◦•(�A, X . W) ⇒ •(�A, X . W) . (Y . Z)

sR
•(�A, X . W), •(�A, X . W) ⇒ (Y . Z)

cL
•(�A, X . W) ⇒ (Y . Z)

rp′◦(�A, X . W) ⇒ ◦(Y . Z)
sL

�A, X ⇒ ◦(Y . Z), W

• Rule �L2: analogous to the case for �L2

• Rule ♦R2:

X, ◦(Y . Z, A) . W, ♦A
♦R2

X, ◦(Y . Z) . W, ♦A
;

X, ◦(Y . Z, A) ⇒ W, ♦A
rp•

Y ⇒ •(X . W, ♦A), Z, A
.L

(Y . Z) ⇒ •(X . W, ♦A), A
.L

(Y . Z) . •(X . W, ♦A) ⇒ A
♦R

◦((Y . Z) . •(X . W, ♦A)) ⇒ ♦A
wR

◦((Y . Z) . •(X . W, ♦A)) ⇒ W, ♦A
wL

X, ◦((Y . Z) . •(X . W, ♦A)) ⇒ W, ♦A
.R

◦((Y . Z) . •(X . W, ♦A)) ⇒ (X . W, ♦A)
rp′•((Y . Z) . •(X . W, ♦A)) ⇒ •(X . W, ♦A)
sL

(Y . Z) ⇒ •(X . W, ♦A), •(X . W, ♦A)
cR

(Y . Z) ⇒ •(X . W, ♦A)
rp′•◦(Y . Z) ⇒ (X . W, ♦A)
sR

X, ◦(Y . Z) ⇒ W, ♦A

• Rule �R2: analogous to the case for ♦R2

§7.3 Equivalence of DBiKt and LBiKt 163

• Rule −<L:

Z, A−<B, (A . B) . Y
−<L

Z, A−<B . Y
;

Z, A−<B, (A . B) ⇒ Y
.R

(A . B) ⇒ (Z, A−<B . Y)
sL

A ⇒ B, (Z, A−<B . Y)
−<L

A−<B ⇒ (Z, A−<B . Y)
sR

Z, A−<B, A−<B ⇒ Y
cL

Z, A−<B ⇒ Y

• Rule →R: analogous to the case for −<L

• Rule −<R: analogous to the case for →L

• Rule ♦L:

Z, ♦A, ◦(A . ∅) . Y
♦LZ, ♦A . Y

;

Z, ♦A, ◦(A . ∅) ⇒ Y
.R

◦(A . ∅) ⇒ (Z, ♦A . Y)
♦L

♦A ⇒ (Z, ♦A . Y)
sR

Z, ♦A, ♦A ⇒ Y
cL

Z, ♦A ⇒ Y

• Rules �R, �L, �R: analogous the case for ♦L

Q.E.D.

7.3.2 Completeness of DBiKt

We now show that any cut-free LBiKt-derivation can be transformed into a cut-free

DBiKt-derivation. This requires proving cut-free admissibility of various structural

rules in DBiKt. The admissibility of general weakening and formula contraction (but

not general contraction, which we will show later) is straightforward by induction on

the height of derivations, just as for the calculus DBiInt in Chapter 5.

Lemma 7.3.2 (Admissibility of general weakening). For any structures X and Y: if

`DBiKt Π : Σ[X] and Σ[X, Y] is a structure, then `DBiKt Π′ : Σ[X, Y] such that |Π′| = |Π|.

Proof. Analogous to the proof of Lemma 5.2.2. Q.E.D.

Lemma 7.3.3 (Admissibility of formula contraction). For any structure X and formula

A: if `DBiKt Π : Σ[X, A, A] then `DBiKt Π′ : Σ[X, A] such that |Π′| = |Π|.

Proof. Analogous to the proof of Lemma 5.2.3. Q.E.D.

Just as for the calculus DBiInt in Chapter 5, invertibility of the DBiKt rules fol-

lows immediately, since for each of our rules, the premise is a superset of the conclu-

sion, and weakening is height-preserving.

Lemma 7.3.4 (Invertibility). All DBiKt rules are invertible: if the conclusion is derivable,

then each premise is derivable.

164 Putting it all together: bi-intuitionistic tense logic

We now show that the residuation rules of LBiKt for .-structures are admissible in

DBiKt: i.e. they can be simulated by the propagation rules of DBiKt. Actually, what

we show next is admissibility of the “deep” versions of the residuation rules for .,

which is important for showing the completeness of our proof search procedure that

we introduce later.

Lemmas 7.3.5 to 7.3.8 are proved by structural induction on Σ[], and a sub-induction

on |Π|. We label a dashed line with the lemma used to obtain the conclusion from the

premise, and obtain Π′
1 from Π1 using the sub-induction hypothesis.

Lemma 7.3.5 (Deep admissibility of sL). If `DBiKt Π : Σ[(X . Y), Z . W] then `DBiKt

Π′ : Σ[X, Z . Y, W] such that |Π′| ≤ |Π|.

Proof.

Only the base case when Σ[] = [] is non-trivial:

• Case when Π ends with a propagation rule �L2 that moves a formula between
X and Y:

Π1

(�A, X1 . •(A, Y1 . Y2)), Z . W
�L2

(�A, X1 . •(Y1 . Y2)), Z . W

;

Π′
1

�A, X1, Z . •(A, Y1 . Y2), W
�L2

�A, X1, Z . •(Y1 . Y2), W

• Case when Π ends with a propagation rule �L2 that moves a formula between

X and Y is analogous to the case for �L2.

• Case when Π ends with a propagation rule ♦R2 that moves a formula between

X and Y:

Π1

(◦(X1 . X2, A) . Y1, ♦A), Z . W
♦R2

(◦(X1 . X2) . Y1 , ♦A), Z . W

;

Π′
1

◦(X1 . X2 , A), Z . W, Y1 , ♦A
♦R2

◦(X1 . X2), Z . W, Y1 , ♦A

• Case when Π ends with a propagation rule �R2 that moves a formula between

X and Y is analogous to the case for ♦L2.

• Cases involving the propagation rules .L1, .R1, .L2, .R2 are unchanged from the

proof of Lemma 5.2.5.

• Cases involving other propagation and logical rules follow immediately from

the sub-induction hypothesis, since they do not move formulae across .-structures.

Q.E.D.

Lemma 7.3.6 (Deep admissibility of sR). If `DBiKt Π : Σ[X . Y, (Z . W)] then `DBiKt

Π′ : Σ[X, Z . Y, W] such that |Π′| ≤ |Π|.

§7.3 Equivalence of DBiKt and LBiKt 165

Proof. Analogous to the proof of Lemma 7.3.5. Q.E.D.

Lemma 7.3.7 (Deep admissibility of .L). If `DBiKt Π : Σ[X . Y, Z] and Σ is either the

empty context [] or a negative context Σ−
1 [], then `DBiKt Π′ : Σ[(X . Y) . Z].

Proof.

• Case when Σ[] = [].

– Case when Π ends with a propagation rule �L2 that moves a formula be-

tween X and Z:

Π1

�A, X1 . Y, •(A, Z1 . Z2), Z3
�L2

�A, X1 . Y, •(Z1 . Z2), Z3

;

Π′
1

(�A, X1 . Y) . •(A, Z1 . Z2), Z3
Lemma 7.3.2

�A, (�A, X1 . Y) . •(A, Z1 . Z2), Z3
�L2

�A, (�A, X1 . Y) . •(Z1 . Z2), Z3 .L1
(�A, X1 . Y) . •(Z1 . Z2), Z3

– Case when Π ends with a propagation rule �L2 that moves a formula be-

tween X and Z is analogous to the case for �L2.

– Case when Π ends with a propagation rule ♦R2 that moves a formula be-

tween X and Z:

Π1

◦(X1 . X2, A), X3 . Y, Z1, ♦A
♦R2

◦(X1 . X2), X3 . Y, Z1, ♦A

;

Π′
1

(◦(X1 . X2, A), X3 . Y) . Z1, ♦A
Lemma 7.3.2

(◦(X1 . X2, A), X3 . Y, ♦A) . Z1, ♦A
♦R2

(◦(X1 . X2), X3 . Y, ♦A) . Z1, ♦A
.R2

(◦(X1 . X2), X3 . Y) . Z1, ♦A

– Case when Π ends with a propagation rule �R2 that moves a formula be-

tween X and Z is analogous to the case for ♦R2.

– Cases involving the propagation rules .L1, .R1, .L2, .R2 are unchanged

from the proof of Lemma 5.2.7.

• Case when Σ[] = Σ1[U, [] . V] for some Σ1.

– Cases involving the propagation rules .L1, .R1, .L2, .R2 are unchanged

from the proof of Lemma 5.2.7.

166 Putting it all together: bi-intuitionistic tense logic

• Case when Σ[] = Σ1[U, ◦[] . V] for some Σ1.

– Case when Π ends with a propagation rule ♦R2 that moves a formula from

outside the context into the context:

Π1

U, ◦(X . Y, Z, A) . V1, ♦A
♦R2

U, ◦(X . Y, Z) . V1, ♦A

;

Π′
1

U, ◦((X . Y) . Z, A) . V1, ♦A
♦R2

U, ◦((X . Y) . Z) . V1, ♦A

– Case when Π ends with a propagation rule �L1 that moves a formula out

of the context:

Π1

U, A, ◦(�A, X1 . Y, Z) . V
�L1

U, ◦(�A, X1 . Y, Z) . V

;

Π′
1

U, A, ◦((�A, X1 . Y) . Z) . V
Lemma 7.3.2

U, A, ◦(�A, (�A, X1 . Y) . Z) . V
�L1

U, ◦(�A, (�A, X1 . Y) . Z) . V
.L1

U, ◦((�A, X1 . Y) . Z) . V

• Case when Σ[] = Σ1[U, •[] . V] for some Σ1.

– Case when Π ends with a propagation rule �R2 that moves a formula from

outside the context into the context:

Π1

U, •(X . Y, Z, A) . V1, �A
�R2

U, •(X . Y, Z) . V1, �A

;

Π′
1

U, •((X . Y) . Z, A) . V1, �A
�R2

U, •((X . Y) . Z) . V1, �A

– Case when Π ends with a propagation rule �L1 that moves a formula out

of the context:

§7.3 Equivalence of DBiKt and LBiKt 167

Π1

U, A, •(�A, X1 . Y, Z) . V
�L1

U, •(�A, X1 . Y, Z) . V

;

Π′
1

U, A, •((�A, X1 . Y) . Z) . V
Lemma 7.3.2

U, A, •(�A, (�A, X1 . Y) . Z) . V
�L1

U, •(�A, (�A, X1 . Y) . Z) . V
.L1

U, •((�A, X1 . Y) . Z) . V

Q.E.D.

Lemma 7.3.8 (Deep admissibility of .R). If `DBiKt Π : Σ[X, Y . Z] and Σ is either the

empty context [] or a positive context Σ+
1 [], then `DBiKt Π′ : Σ[X . (Y . Z)].

Proof. Analogous to the proof of Lemma 7.3.7. Q.E.D.

We now show that the residuation rules of LBiKt for ◦- and •-structures are ad-

missible in DBiKt; that is, they can be simulated by the propagation rules of DBiKt.

Lemmas 7.3.9 to 7.3.12 are proved by induction on |Π|, and Π′
1 (Π′

2 resp.) is obtained

from Π1 (Π2 resp.) using the induction hypothesis.

Lemma 7.3.9 (Admissibility of rp•). If `DBiKt Π : X . Y, •(W . Z) then `DBiKt Π′ :

◦(X . Y), W . Z such that |Π′| = |Π|.

Proof.

• Case when Π ends with a propagation rule �L2 that moves a formula between

X and •(W . Z):

Π1

X1, �A . Y, •(A, W . Z)
�L2

X1, �A . Y, •(W . Z)

;

Π′
1

◦(X1, �A . Y), A, W . Z
�L1

◦(X1, �A . Y), W . Z

• Case when Π ends with a propagation rule ♦R1 that moves a formula out of

•(W . Z):

Π1

X . Y, A, •(W . Z1, ♦A)
♦R1

X . Y, •(W . Z1, ♦A)

;

Π′
1

◦(X . Y, A), W . Z1, ♦A
♦R2

◦(X . Y), W . Z1, ♦A

• Case when Π ends with →L rule whose principal formula is in X:

168 Putting it all together: bi-intuitionistic tense logic

Π1

(X1, A → B) . A, Y, •(W . Z)

Π2

X1, A → B, B . Y, •(W . Z)
→L

X1, A → B . Y, •(W . Z)

;

Π′
1

◦(X1, A → B . A, Y), W . Z

Π′
2

◦(X1, A → B, B . Y), W . Z
→L

◦(X1, A → B . Y), W . Z

• Case when Π ends with −<R rule whose principal formula is in Z:

Π1

X . Y, •(W . A, Z1, A−<B)

Π2

X . Y, •(B, W . Z1, A−<B)
−<R

X . Y, •(W . Z1, A−<B)

;

Π′
1

◦(X . Y), W . A, Z1, A−<B

Π′
2

◦(X . Y), B, W . Z1, A−<B
−<R

◦(X . Y), W . Z1, A−<B

The cases involving other propagation and logical rules follow immediately from the

induction hypothesis, since they do not move formulae into or out of •Z. Q.E.D.

Lemma 7.3.10 (Admissibility of rp•). If `DBiKt Π : ◦(X . Y), W . Z then `DBiKt Π′ :

X . Y, •(W . Z) such that |Π′| = |Π|.

Proof. Similar to the proof of Lemma 7.3.9. Q.E.D.

Lemma 7.3.11 (Admissibility of rp◦). If `DBiKt Π : X . Y, ◦(W . Z) then `DBiKt Π′ :

•(X . Y), W . Z such that |Π′| = |Π|.

Proof. Analogous to the proof of Lemma 7.3.9. Q.E.D.

Lemma 7.3.12 (Admissibility of rp◦). If `DBiKt Π : •(X . Y), W . Z then `DBiKt Π′ :

X . Y, ◦(W . Z) such that |Π′| = |Π|.

Proof. Analogous to the proof of Lemma 7.3.10. Q.E.D.

7.3.3 Admissibility of general contraction

The admissibility of general contraction on structures states that for any structure Y,

if `DBiKt Π : Σ[Y, Y] then `DBiKt Π′ : Σ[Y]. The proof of admissibility of general

contraction again requires proving several distribution properties among structural

connectives, similar to DBiInt in Chapter 5 and DKt in Chapter 6, but involving both

the . structural connective and either • or ◦. First, we need a basic distribution lemma

for .-structures:

Lemma 7.3.13. For any context Σ and any structures X, Y, Z, W: if `DBiKt Π : Σ[(X .
Y), (Z . W)] then `DBiKt Π′ : Σ[(X, Z . Y, W)] such that |Π′| = |Π|.

§7.3 Equivalence of DBiKt and LBiKt 169

Proof. Analogous to the proof of Lemma 5.2.9. Q.E.D.

Now we prove two distribution lemmas that involve both tense and bi-intuitionistic

structural connectives:

Lemma 7.3.14. For any context Σ and any structures X, Y, Z, W: if `DBiKt Π : Σ[◦(X .
Y), ◦(Z . W)] then `DBiKt Π′ : Σ[◦(X, Z . Y, W)] such that |Π′| = |Π|.

Proof. By induction on the height of Π. Similarly to the proof of Lemma 5.2.9, the

non-trivial cases are when Π ends with a propagation rule applied to the structures X,

Y, Z, W. We consider the cases where Σ is a positive context; the cases where Σ is a

negative context are analogous.

• Case when Π ends with �R1 rule that propagates a formula out of Y, note that

we apply the induction hypothesis to the context Σ+[A, []]:

Π1

Σ+[A, ◦(X . Y1, �A), ◦(Z . W)]
�R1

Σ+[◦(X . Y1, �A), ◦(Z . W)]

;

Π′
1

Σ+[A, ◦(X, Z . Y1, �A, W)]
�R1

Σ+[◦(X, Z . Y1, �A, W)]

• Case when Π ends with �L2 rule that propagates a formula into X . Y:

Π1

Σ[U, �A . ◦(A, X . Y), ◦(Z . W), V]
�L2

Σ[U, �A . ◦(X . Y), ◦(Z . W), V]

;

Π′
1

Σ[U, �A . ◦(A, X, Z . Y, W), V]
�L2

Σ[U, �A . ◦(X, Z . Y, W), V]

Q.E.D.

Lemma 7.3.15. For any context Σ and any structures X, Y, Z, W: if `DBiKt Π : Σ[•(X .
Y), •(Z . W)] then `DBiKt Π′ : Σ[•(X, Z . Y, W)] such that |Π′| = |Π|.

Proof. Analogous to the proof of Lemma 7.3.14. Q.E.D.

Finally, we can prove the main lemma of contraction admissibility. Some of the

non-trivial cases use the distribution lemmas we just showed.

Lemma 7.3.16 (Admissibility of general contraction). For any structure Y: if `DBiKt Π :

Σ[Y, Y] then `DBiKt Π′ : Σ[Y] such that |Π′| = |Π|.

Proof. By induction on the size of Y, with a sub-induction on |Π|.

• For the base case, use Lemma 7.3.3.

170 Putting it all together: bi-intuitionistic tense logic

• For the case where Y is a .-structure, we show the sub-case where Y in a negative

context, the other case is analogous:

Σ−[(Y1 . Y2), (Y1 . Y2)]
Lemma 7.3.13

Σ−[(Y1, Y1 . Y2, Y2)]
IH

Σ−[(Y1, Y1 . Y2)]
IH

Σ−[(Y1 . Y2)]

• Case where Y is a ◦-structure:

Σ[◦(Y1 . Y2), ◦(Y1 . Y2)]
Lemma 7.3.14

Σ[◦(Y1, Y1 . Y2, Y2)]
IH

Σ[◦(Y1 , Y1 . Y2)]
IH

Σ[◦(Y1 . Y2)]

• Case where Y is a •-structure:

Σ[•(Y1 . Y2), •(Y1 . Y2)]
Lemma 7.3.15

Σ[•(Y1, Y1 . Y2, Y2)]
IH

Σ[•(Y1 , Y1 . Y2)]
IH

Σ[•(Y1 . Y2)]

Q.E.D.

Once all structural rules of LBiKt are shown admissible in DBiKt, completeness

is straightforward.

Theorem 7.3.17 (Completeness). For any structures X and Y, if `LBiKt Π : X ⇒ Y then

`DBiKt Π′ : X . Y.

Proof. By induction on |Π|, where Π′
1 (Π′

2) is obtained from Π1 (Π2) using the induction

hypothesis. As usual, we use dashed lines to indicate that the conclusion is obtained

from the premise using the respective lemma.

• Case when Π ends with wL rule:

Π1

X ⇒ Z wL
X, Y ⇒ Z

;

Π′
1

X . Z
Lemma 7.3.2

X, Y . Z

• Case when Π ends with wR rule: analogous to the case for wL

• Case when Π ends with cL rule:

Π1

X, Y, Y ⇒ Z
cL

X, Y ⇒ Z

;

Π′
1

X, Y, Y . Z
Lemma 7.3.16

X, Y . Z

§7.3 Equivalence of DBiKt and LBiKt 171

• Case when Π ends with cR rule: analogous to the case for cL

• Case when Π ends with .R rule:

Π1

X, Y ⇒ Z .R
X ⇒ (Y . Z)

;

Π′
1

X, Y . Z
Lemma 7.3.8

X . (Y . Z)

• Case when Π ends with .L rule: analogous to the case for .R, using Lemma 7.3.7

instead.

• Case when Π ends with sL rule:

Π1

(X1 . X2), X2 ⇒ Y2 sL
X1, X2 ⇒ Y1, Y2

;

Π′
1

(X1 . X2), X2 . Y2
Lemma 7.3.5

X1, X2 . Y1, Y2

• Case when Π ends with sR rule: analogous to the case for sL, using Lemma 7.3.6

instead.

• Cases when Π ends with rp◦:

Π1

X ⇒ Y, ◦(W . Z)
rp◦

•(X . Y), W ⇒ Z

;

Π′
1

X . Y, ◦(W . Z)
Lemma 7.3.11

•(X . Y), W . Z

Π1

•(X . Y), W ⇒ Z
rp◦

X ⇒ Y, ◦(W . Z)

;

Π′
1

•(X . Y), W . Z
Lemma 7.3.12

X . Y, ◦(W . Z)

• Cases when Π ends with rp•: analogous to the cases for rp◦, using Lemmas 7.3.9

and 7.3.10 instead.

• Case when Π ends with a →L rule:

Π1

X ⇒ A, Y

Π2

X, B ⇒ Y →L
X, A → B ⇒ Y

;

Π′
1

X . A, Y
Lemma 7.3.2

X, A → B . A, Y

Π′
2

X, B . Y
Lemma 7.3.2

X, A → B, B . Y →L
X, A → B . Y

• Cases when Π ends with −<R and all rules for ∨, ∧: analogous to the case for

→L.

172 Putting it all together: bi-intuitionistic tense logic

• Case when Π ends with a �L rule:

Π1

A ⇒ (X . Y)
�L

�A ⇒ ◦(X . Y)

;

Π′
1

A . (X . Y)
Lemma 7.3.2

A, •(�A . ◦(X . Y)) . (X . Y)
�L1

•(�A . ◦(X . Y)) . (X . Y)
Lemma 7.3.6

•(�A . ◦(X . Y)), X . Y
Lemma 7.3.12

�A . ◦(X . Y), ◦(X . Y)
Lemma 7.3.16

�A . ◦(X . Y)

• Case when Π ends with a �L rule: analogous to the case for �L.

• Case when Π ends with a �R rule:

Π1

X ⇒ ◦(∅ . A)
�RX ⇒ �A

;

Π′
1

X . ◦(∅ . A)
Lemma 7.3.2

X . �A, ◦(∅ . A)
�RX . �A

• Case when Π ends with a �R rule: analogous to the case for �R.

• Case when Π ends with a �L rule:

Π1

•(A . ∅) ⇒ X
�L

�A ⇒ X

;

Π′
1

•(A . ∅) . X
Lemma 7.3.2

•(A . ∅), �A . X
�L

�A . X

• Case when Π ends with a ♦L rule: analogous to the case for �L.

• Case when Π ends with a �R rule:

Π1

(X . Y) ⇒ A
�R

•(X . Y) ⇒ �A

;

Π′
1

(X . Y) . A
Lemma 7.3.2

(X . Y) . ◦(•(X . Y) . �A), A
�R1

(X . Y) . ◦(•(X . Y) . �A)
Lemma 7.3.5

X . Y, ◦(•(X . Y) . �A)
Lemma 7.3.11

•(X . Y), •(X . Y) . �A
Lemma 7.3.16

•(X . Y) . �A

• Case when Π ends with a ♦R rule: analogous to the case for �R.

The cases when Π ends with other logical rules follow immediately from the induction

hypothesis and the admissibility of weakening (Lemma 7.3.2). Q.E.D.

§7.4 Proof search 173

Theorem 7.3.18. For any structures X and Y, `LBiKt Π : X ⇒ Y if and only if `DBiKt Π′ :

X . Y.

Proof. By Theorems 7.3.1 and 7.3.17. Q.E.D.

7.4 Proof search

In this section we present a proof search strategy for DBiKt, which relies on a proof

search calculus version of DBiKt that we call DBiKt1. The proof search strategy for

DBiKt1 closely follows the approaches presented in Chapters 5 and 6. Here we em-

phasize the aspects that are new/different because of the interaction between the tense

structures ◦ and • and the intuitionistic structure ..

Our proof search strategy proceeds in three stages: saturation, propagation and

realisation. The saturation phase applies the “static rules” (i.e. those that do not create

extra structural connectives) until further application do not lead to any progress.

The propagation phase propagates formulae across different structural connectives,

while the realisation phase applies the “dynamic rules” (i.e., those that create new

structural connectives, e.g., →R). In the following, we outline a proof search calculus

which eliminates redundancy in proof search.

A context Σ[] is said to be headed by a structural connective # if the topmost symbol

in Σ[] is #. A context Σ[] is said to be a factor of Σ′[] if Σ[] is a subcontext of Σ′[]

and Σ[] is headed by .. We denote with
︷︸︸︷

Σ[] the minimal factor of Σ[]. We write
︷︸︸︷

Σ[X] to denote the structure Σ1[X], if Σ1[] =
︷︸︸︷

Σ[] . We define the top-level formulae

of a structure as: {|X|} = {A | X = (A, Y) for some A and Y}. For example, if Σ[] =

(A, B . C, •(D, (E . F) . [])), then
︷︸︸︷

Σ[G] = (D, (E . F) . G), and {|D, (E . F)|} = {D}.

Let −<L1 and →R1 denote two new derived rules (section 5.3 contains their deriva-

tions):
Σ−[A, A−<B]

−<L1
Σ−[A−<B]

Σ+[A → B, B]
→R1

Σ+[A → B]

We now define a notion of a saturated structure, which is similar to that of a tradi-

tional sequent.

Definition 7.4.1. A structure X . Y is saturated if it satisfies the following:

1. {|X|} ∩ {|Y|} = ∅

2. If A ∧ B ∈ {|X|} then A ∈ {|X|} and B ∈ {|X|}

3. If A ∧ B ∈ {|Y|} then A ∈ {|Y|} or B ∈ {|Y|}

4. If A ∨ B ∈ {|X|} then A ∈ {|X|} or B ∈ {|X|}

5. If A ∨ B ∈ {|Y|} then A ∈ {|Y|} and B ∈ {|Y|}

6. If A → B ∈ {|X|} then A ∈ {|Y|} or B ∈ {|X|}

174 Putting it all together: bi-intuitionistic tense logic

7. If A−<B ∈ {|Y|} then A ∈ {|Y|} or B ∈ {|X|}

8. If A−<B ∈ {|X|} then A ∈ {|X|}

9. If A → B ∈ {|Y|} then B ∈ {|Y|}

We define structure membership for any two structures X and Y as follows: X ∈ Y

iff Y = X, X′ for some X′, modulo associativity and commutativity of comma. For

example, (A . B) ∈ (A, (A . B), ◦(C . D)); in this case X′ = A, ◦(C . D). The realisation

of formulae by a structure X is defined as follows:

• A → B (A−<B, resp.) is right-realised (resp. left-realised) by X iff there exists a

structure Z . W ∈ X such that A ∈ {|Z|} and B ∈ {|W|}.

• �A (♦A resp.) is right-realised (resp. left-realised) by X iff there exists a struc-

ture ◦(Z . W) ∈ X (resp. ◦(W . Z)) such that A ∈ {|W|}.

• �A (�A resp.) is right-realised (resp. left-realised) by X iff there exists a struc-

ture •(Z . W) ∈ X (resp. •(W . Z) ∈ X) such that A ∈ {|W|}.

We say that a structure X is left-realised iff every formula in {|X|} with top-level

connective −<, ♦ or � is left-realised by X. Right-realisation of X is defined dually.

We say that a structure occurrence X in Σ[X] is propagated iff no propagation rules

are (backwards) applicable to any formula occurrences in X. We define the super-set

relation on structures as follows:

• X1 . Y1 ⊃ X0 . Y0 iff {|X1|} ⊃ {|X0|} or {|Y1|} ⊃ {|Y0|}.

• ◦(X1 . Y1) ⊃ ◦(X0 . Y0) iff •(X1 . Y1) ⊃ •(X0 . Y0) iff X1 . Y1 ⊃ X0 . Y0.

Definition 7.4.2. Given a structure Σ[A], we say
︷︸︸︷

Σ[A] is propagated when its occurrence in

Σ[A] is propagated, and we say that A is realised by
︷︸︸︷

Σ[A] when
︷︸︸︷

Σ[A] = (X . Y) and either

• A ∈ {|X|} and A is left-realised by X, or

• A ∈ {|Y|} and A is right-realised by Y

We now present simple modifications of DBiKt to obtain a calculus DBiKt1 that

is amenable to proof search. Our approach follows that of Chapter 5 since we define

syntactic restrictions on rules to enforce a search strategy. For example, we stipulate

that a structure must be saturated and propagated before child structures can be cre-

ated using the →R rule (see condition 2 of Definition 7.4.3). Termination for DBiKt1

then follows immediately from the termination arguments for DBiInt1 (Chapter 5)

and DKt (Chapter 6), since propagation rules only add new formulae to nodes in

nested sequent trees, and the creation of new structures in the nested sequent trees is

controlled using the techniques of Chapters 5 and 6.

Definition 7.4.3. Let DBiKt1 be the system obtained from DBiKt with the following changes:

§7.4 Proof search 175

1. Add the derived rules −<L1 and →R1.

2. Restrict rules −<L, →R with the following condition: the rule is applicable only if
︷ ︸︸ ︷

Σ[A#B] is saturated and propagated, and A#B is not realised by
︷ ︸︸ ︷

Σ[A#B], for # ∈ →,−<.

3. Restrict rules .L2 and .R2 with the following condition: the rule is applicable only if

A 6∈ {|Y|}.

4. Restrict rules ♦L, �R, �L, �R with the following condition: the rule is applicable only if
︷ ︸︸ ︷

Σ[#A] is saturated and propagated and #A is not realised by
︷ ︸︸ ︷

Σ[#A], for # ∈ ♦, �, �, �.

5. Restrict rules �L2, �L2 with the following condition: the rule is applicable only if A 6∈
{|Y|}:

6. Restrict rules ♦R2, �R2 with the following condition: the rule is applicable only if A 6∈
{|Z|}.

7. Restrict rules →L, −<R, −<L1, →R1, .L1, .R1, ∧L, ∧R, ∨L, ∨R and all tense propaga-

tion rules to the following.

Let Σ[X0] be the conclusion of the rule and let Σ[X1] (and Σ[X2]) be the premise(s). The

rule is applicable only if:
︷ ︸︸ ︷

Σ[X1] ⊃
︷ ︸︸ ︷

Σ[X0] and
︷ ︸︸ ︷

Σ[X2] ⊃
︷ ︸︸ ︷

Σ[X0].

We now define a mapping from nested sequents to trees of nodes, extending the

corresponding mappings of Chapters 5 and 6.

Definition 7.4.4 (Sequents to trees). Let Γ and ∆ be sets of formulae; let a ≥ 0 for all

a ∈ {n, m, k, l, t, s} and let:

X. = (X1 . Y1), · · · , (Xn . Yn)

Z. = (Z1 . W1), · · · , (Zm . Wm)

U◦ = ◦(U1), · · · , ◦(Uk)

V• = •(V1), · · · , •(Vl)

Q◦ = ◦(Q1), · · · , ◦(Qt)

R• = •(R1), · · · , •(Rs)

Then given the sequent

Ξ = X., U◦, V•, Γ . ∆, Z., Q◦, R•

the tree tree(Ξ) represented by Ξ is rooted at node 〈Γ , ∆〉, and has the children as given in

Figure 7.4:

Figure 7.5 gives a proof search strategy for DBiKt1. Similarly to the proof search

strategies of previous chapters, the application of a rule deep inside a sequent can be

viewed as focusing on a particular node of the tree. The rules of DBiKt1 can then

176 Putting it all together: bi-intuitionistic tense logic

〈Γ , ∆〉

tree(X1 . Y1)
≥

tree(Xn . Yn)
≥

tree(U1)
R♦

tree(Uk)
R♦

tree(V1)
R−1

�

tree(Vl)
R−1

�

tree(Z1 . W1)
≤

tree(Zm . Wm)
≤

tree(Q1)
R�

tree(Qt)
R�

tree(R1)
R−1

♦

tree(Rs)
R−1

♦

Figure 7.4: Translation from DBiKt sequents to trees.

§7.4 Proof search 177

Function Prove (Sequent Ξ) : Bool

1. Let T = tree(Ξ)

2. If the id, ⊥L, or >R rule is applicable to any node in T, return True

3. Else if there is some node 〈Γ , ∆〉 ∈ T that is not saturated

(a) Let ρ be the rule corresponding to the requirement of Definition 5.3.2 that
is not met, and let Ξ1 (and Ξ2) be the premise(s) of ρ. Return

∧
Prove(Ξi).

4. Else if there is some node Θ that is not propagated

(a) Let ρ be the rule corresponding to propagation of formula that is applicable,
and let Ξ1 be the premise of ρ. Return Prove(Ξ1).

5. Else if there is some node 〈Γ , ∆〉 ∈ T that is not realised:

(a) If some C = A → B ∈ ∆ (C = A−<B ∈ Γ) is not realised then let Ξ1 be the
premise of the →R (−<L) rule applied to C ∈ ∆ (C ∈ Γ). Return Prove(Ξ1).

(b) If some C = ♦A ∈ Γ (C = �A ∈ Γ) is not realised then let Ξ1 be the premise
of the ♦L (�L) rule applied to C = ♦A ∈ Γ (C = �A ∈ Γ). Return Prove(Ξ1).

(c) If some C = �A ∈ ∆ (C = �A ∈ ∆) is not realised then let Ξ1 be the
premise of the �L (�L) rule applied to C = �A ∈ ∆ (C = �A ∈ ∆). Return
Prove(Ξ1).

6. Else return False

Figure 7.5: A proof search strategy for DBiKt1

be viewed as operations on the tree encoded in the sequent. In particular, Step 3

saturates a node locally, Step 4 propagates formulae between neighbouring nodes,

and Step 5 appends new nodes to the tree. More specifically, Step 5a appends ≤ and

≥ successors, Step 5b appends R♦ and R−1
�

successors, and Step 5c appends R� and

R−1
♦

successors.

Before showing the completeness of Prove, we show that it terminates. We define

the tense degree of a formula as the maximum number of nested modalities:

deg(p) = 0

deg(A#B) = max(deg(A), deg(B)) for # ∈ {∧,∨,→,−<}
deg(#A) = 1 + deg(A) for # ∈ {�, ♦, �, �}.

The degree of a set of formulae is the maximum degree over all its members. We

write s f (A) for the subformulae of A, and define the set of subformulae of a set Θ as

s f (Θ) =
⋃

A∈Θ s f (A). For a sequent Ξ we define s f (Ξ) as the union of the subformulae

of all the nodes in tree(Ξ).

The following theorem can be proved by a straightforward combination of the

178 Putting it all together: bi-intuitionistic tense logic

techniques from Chapters 5 and 6.

Theorem 7.4.5. For any two sets of BiKt-formulae Γ and ∆, Prove(Γ . ∆) terminates.

Proof. Let m = |s f (Γ . ∆)| and d = deg(Γ . ∆) ≤ m. To show that Prove terminates,

we will argue about the tree T = tree(X . Y), where X . Y is the parameter to the most

recent recursive call to Prove. That is, initially T = tree(Γ . ∆).

As was the case for DBiInt1 in Chapter 5, the saturation process for each node

in T is bounded by m. Therefore after at most m moves at each node, Step 3 is no

longer applicable to this node. Since formulae are only propagated to nodes that do

not already contain these formulae, after at most m propagation moves into each node,

Step 4 is no longer applicable to this node.

T is finitely branching, since new nodes are only created for unrealised →, −<, ♦,

�, �, � formulae. Therefore after at most m moves at each node, Step 5 is no longer

applicable to this node. We will now show that the depth of T is bounded by m3,

extending the argument of Theorem 5.3.9 to the tense connectives.

Notice that every time we create a tense successor node Γ1 . ∆1 for some parent

node Γ . ∆, we have deg(Γ1 ∪ ∆1) = deg(Γ ∪ ∆) − 1. Moreover, every descendant of

Γ1 . ∆1 will have a tense degree ≤ deg(Γ ∪ ∆) − 1, since there are no rules that can

increase the tense degree of a node. Therefore, after d ≤ m applications of Steps 5b

and 5c on any one branch of T, no tense successor creation rules are applicable.

Secondly, note that there are no tense propagation rules that can increase the bi-

intuitionistic degree of a node that we used in the proof of Theorem 7.4.5. Therefore

we can use the same argument as that of Theorem 7.4.5 to show that every sequence

of → and −< successor creation rules on a branch of T can be at most m2 long.

Therefore, every branch of T can be at most m3 long: in the worst case, a node may

have an m2 long chain of bi-intuitionistic descendants, followed by a tense descen-

dant, followed by another m2 long chain of bi-intuitionistic descendants, and so on at

most d ≤ m times. Q.E.D.

We will now show the completeness of Prove w.r.t. DBiKt, using the same method

that we used in Chapters 5 and 6. We first give a lemma which shows that if Prove

returns false for some sequent Ξ, there is no DBiKt derivation of that sequent.

Lemma 7.4.6. Let Ξ be a sequent such that every node in tree(Ξ) is saturated, realised and

propagated. Then Ξ is not derivable in DBiKt.

Proof. We prove the statement of the lemma by contradiction. That is, we assume

every node in tree(Ξ) is saturated, realised and propagated, and that Ξ is derivable in

DBiKt. Then there exists a shortest derivation Π of Ξ. We now consider all the rule

instances that Π could end with, and in each case show that there is an even shorter

DBiKt derivation of Ξ, therefore contradicting our assumption that Π was the shortest

derivation.

• Π cannot end with the id rule, since every node in tree(Ξ) is saturated.

§7.4 Proof search 179

• Suppose Π ends with the �L1 rule, where Ξ = Σ−[A, •(�A, X . Y)] for some

Σ−[], and the last rule of Π applies to that particular occurrence of •(�A, X . Y)
in the context Σ−[]. Note that since every node of tree(Ξ) is propagated, we

know that A is also present at the node where •(�A, X . Y) is located. Then Π

must be of the form:
Π1

Σ−[A, A, •(�A, X . Y)]
�L1

Σ−[A, •(�A, X . Y)]

Now, applying Lemma 7.3.3 to Π1, we obtain a derivation Π2 of

Σ−[A, •(�A, X . Y)]

such that |Π2| = |Π1| < |Π|. But this contradicts the assumption that Π is a

shortest derivation of Ξ. Therefore Π cannot end with the rule �L1.

• All other cases involving tense propagation rules can be treated analogously to

�L1, using height preserving admissibility of formula contraction.

• Suppose Π ends with the ♦L rule, where Ξ = Σ−[♦A, ◦(X, A . Y)] for some Σ−[]
and the last rule of Π applies to that particular occurrence of ♦A in the context

Σ−[]. Since every node in tree(Ξ) is realised, we know that there is already a

structure ◦(X, A . Y) for some X and Y, present at the node where ♦A is located.

Then Π must be of the form:

Π1

Σ−[♦A, ◦(A . ∅), ◦(X, A . Y)]
♦L

Σ−[♦A, ◦(X, A . Y)]

By the distribution Lemma 7.3.14, there is a DBiKt derivation Π2 of

Σ−[♦A, ◦(X, A, A . Y)]

such that |Π2| = |Π1|. Then applying Lemma 7.3.3 to Π2 gives us a DBiKt

derivation Π3 of

Σ−[♦A, ◦(X, A . Y)]

such that |Π3| = |Π2| = |Π1| < |Π|. But this contradicts the assumption that Π

is a shortest derivation of Ξ. Therefore Π cannot end with the rule ♦L.

• All other cases involving rules �R, �L and �R can be treated analogously to ♦L,

using the distribution lemmas for ◦ and • structures (Lemmas 7.3.14 and 7.3.15)

and admissibility of formula contraction.

• Π cannot end with any of the other rules of DBiKt: the proof of Lemma 5.3.5

applies to those cases.

Since Π cannot end with any of the rules of DBiKt, this obviously contradicts the

assumption that it is a derivation in DBiKt. Therefore Ξ is not derivable in DBiInt.

180 Putting it all together: bi-intuitionistic tense logic

Q.E.D.

Theorem 7.4.7. For any X and Y, Prove(X . Y) = True if and only if `DBiKt Π : X . Y.

Proof.

• Left-to-right: obvious, since every step of Prove is a backwards application of a

DBiKt1 rule, which is either a (possibly restricted) rule of DBiKt or a derived

rule.

• Right-to-left: we show that if Prove(X . Y) returns False then X . Y is not deriv-

able in DBiKt. Since each rule of DBiKt is invertible (Lemma 7.3.4), Steps 2

to 5 of Prove preserve provability of the original sequent. If Prove(X . Y) returns

False, this can only be the case if Step 6 is reached, i.e., the systematic bottom-up

applications of the rules of DBiKt1 produce a sequent such that every node in

the tree of the sequent is saturated, realised, and propagated. By Lemma 7.4.6,

such a sequent would not be derivable in DBiKt, and since all other steps of

Prove preserve derivability, it follows that X . Y is not derivable either in DBiKt.

Q.E.D.

Theorem 7.4.8. BiKt is decidable.

Proof. By Theorems 7.3.1, 7.3.17, 7.4.7 and 7.4.5. Q.E.D.

A prototype implementation of DBiKt1 is available online at http://users.
cecs.anu.edu.au/ ˜ linda/dbikt.zip .

7.5 Semantics

Our semantics for BiKt extend Rauszer’s [100] Kripke-style semantics for BiInt (recall

Section 2.2.4.4) by clauses for the tense logic connectives.

A BiKt frame is a tuple 〈W,≤, R♦, R�〉 where W is a non-empty set (of possible

worlds) and ≤ ⊆ (W × W) is a reflexive and transitive binary relation over W, and

each of R♦ and R� are arbitrary binary relations over W with the following frame

conditions:

F1♦ if x ≤ y & xR♦z then ∃w. yR♦w & z ≤ w

F2� if xR�y & y ≤ z then ∃w. x ≤ w & wR�z.

A BiKt model extends a BiKt frame with a mapping V from Atoms to 2W obeying

persistence: ∀v ≥ w. w ∈ V(p) ⇒ v ∈ V(p).

Definition 7.5.1 (Forcing). Given a model 〈W,≤, R♦, R�, V〉, we say that w ∈ W forces

p if w ∈ V(p), and write this as w
 p. We write w 6
 p to mean (not)(w
 p); that is,

∃v ≥ w. v 6∈ V(p), and say that w rejects p. The relation
 is then extended to the verum

and falsum constants and compound formulae as given in Figure 7.6.

§7.5 Semantics 181

w
 > for every w ∈ W
w
 ⊥ for no w ∈ W

w
 A ∧ B iff w
 A and w
 B
w
 A ∨ B iff w
 A or w
 B

w
 A → B iff if ∀v ≥ w. v
 A then v
 B
w
 A−<B iff ∃v ≤ w. v
 A and v 6
 B

w
 ♦A iff ∃v. wR♦v and v
 A
w
 �A iff ∀z.∀v. if w ≤ z and zR�v then v
 A

w
 �A iff ∃v. wR−1
�

v and v
 A

w
 �A iff ∀z.∀v. if w ≤ z and zR−1
♦

v then v
 A

Figure 7.6: Semantics of BiKt

Similarly to the case of bi-intuitionistic logic, we define the concept of rejection.

Definition 7.5.2 (Rejection). Given a model 〈W,≤, R♦, R�, V〉, a world w ∈ W and a BiKt

formula A, we say that w rejects A if w 6
 A.

Now we can extend the concepts of forcing and rejection to sets of formuale.

Definition 7.5.3. Given a model 〈W,≤, R♦, R�, V〉, a world w ∈ W and sets of BiKt for-

mulae Γ and ∆, we write

1. w
 Γ iff ∀A ∈ Γ .w
 A

2. w

∆ iff ∀A ∈ ∆.w 6
 A

As usual, a BiKt-formula A is BiKt-valid if it is satisfied by every world in every

Kripke model. A nested sequent X . Y is BiKt-valid if its formula translation is BiKt-

valid.

Our semantics differ from those of Simpson [104] and Ewald [39] because we use

two modal accessibility relations instead of one. In our calculi, there is no direct re-

lationship between ♦ and � (or � and �), but ♦ and � are a residuated pair, as are

� and �. Semantically, this corresponds to R� = R−1
�

and R� = R−1
♦

; therefore the

clauses in Figure 7.6 are couched in terms of R♦ and R� only. Our frame conditions

F1♦ and F2� are also used by Simpson whose F2 captures the “persistence of being

seen by” [104, page 51] while for us F2� is simply the “persistence of �”.

We now show that LBiKt is sound with respect to BiKt semantics.

Lemma 7.5.4. If ⇒ A is LBiKt-derivable then A is BiKt-valid.

Proof. We show that for each rule of LBiKt, if its premise sequents are BiKt-valid then

its conclusion is also BiKt-valid. The cases for rules relating to the bi-intuitionistic

fragment are straightforward; we show the cases for the tense connectives. In each

case, we assume that the formula-translation of the premise is valid and show that

182 Putting it all together: bi-intuitionistic tense logic

the formula-translation of the conclusion is valid. Recall that Figure 7.1 gives the

formula-translation of LBiKt sequents. For the rules rp′′◦ and rp′′• , we actually prove

soundness of the following two simplified versions, from which the actual rules can

be easily derived using sL, sR, .L and .R:

•X ⇒ Y
rp′′◦

X ⇒ ◦Y

◦X ⇒ Y
rp′′•

X ⇒ •Y

• Rule rp′′◦ (top-to-bottom): we assume that τ−(•X) → τ+(Y) is valid and show

that τ−(X) → τ+(◦Y) is valid. That is, we assume that �τ−(X) → τ+(Y) is

valid and show that τ−(X) → �τ+(Y) is valid. Since �τ−(X) → τ+(Y) is

valid, we know that:

∀〈W,≤, R♦, R�, V〉∀w ∈ W. if w
 �τ−(X) then w
 τ+(Y) (7.5.1)

To show that τ−(X) → �τ+(Y) is valid, we will use proof by contradiction.

That is, we assume τ−(X) → �τ+(Y) is falsifiable, which gives us a BiKt model

〈W,≤, R♦, R�, V〉 and a world u ∈ W such that:

u
 τ−(X) (7.5.2)

u 6
 �τ+(Y) (7.5.3)

(7.5.3) means that there exist worlds z, v ∈ W such that:

u ≤ z (7.5.4)

zR�v (7.5.5)

v 6
 τ+(Y) (7.5.6)

Now, by the persistence property of BiKt frames, (7.5.2) and (7.5.4) imply:

z
 τ−(X) (7.5.7)

Secondly, (7.5.7) and (7.5.5) imply that v
 �τ−(X). However, we already have

v 6
 τ+(Y) by (7.5.6), which contradicts (7.5.1). Therefore our assumption that

τ−(X) → �τ+(Y) is falsifiable was incorrect, and indeed τ−(X) → �τ+(Y) is

valid.

• Rule rp′′◦ (bottom-to-top): we assume that τ−(X) → τ+(◦Y) is valid and show

that τ−(•X) → τ+(Y) is valid. That is, we assume that τ−(X) → �τ+(Y) is

valid and show that �τ−(X) → τ+(Y) is valid. The rest of the proof is similar

to the case for rp′′◦ (top-to-bottom): we attempt to create a countermodel for

�τ−(X) → τ+(Y) which contains worlds w, u such that w
 �τ−(X) and w 6

τ+(Y), and vR�w and v
 τ−(X). In this purported countermodel, we also

get v
 �τ+(Y) from the assumed validity of τ−(X) → �τ+(Y), which gives

w
 τ+(Y), thus contradicting w 6
 τ+(Y).

• Rule rp′′• : analogous to rp′′◦ .

§7.5 Semantics 183

• Rule �L: we prove the lemma for the following simplified rule:

A ⇒ Z
�′′

L�A ⇒ ◦Z

Note that the actual rule �L is an instance of �′′
L with Z = (X . Y).

We assume that A → τ+(Z) is valid and show that �A → �τ+(Z) is valid.

Since A → τ+(Z) is valid, we know that:

∀〈W,≤, R♦, R�, V〉∀w ∈ W. if w
 A then w
 τ+(Z) (7.5.8)

To show that �A → �τ+(Z) is valid, we will use proof by contradiction. That

is, we assume �A → �τ+(Z) is falsifiable, which gives us a BiKt model 〈W,≤
, R♦, R�, V〉 and a world u ∈ W such that:

u
 �A (7.5.9)

u 6
 �τ+(Z) (7.5.10)

(7.5.9) gives us that:

∀z.∀v. if u ≤ z and zR�v then v
 A (7.5.11)

While (7.5.10) gives us that:

∃z′.∃v′.u ≤ z′ and z′R�v′ and v′ 6
 τ+(Z) (7.5.12)

By (7.5.11), we also have v′
 A. But this, together with (7.5.12) contradicts

(7.5.8). Therefore our assumption that �A → �τ+(Z) is falsifiable was incor-

rect, and indeed �A → �τ+(Z) is valid.

• The cases for rules �L, ♦R and �R are analogous to the case for �L.

• The cases for rules ♦L, �L, �R, �R are obvious.

Q.E.D.

We now show the completeness of DBiKt with respect to the semantics of BiKt.

Theorem 7.5.5. If a BiKt-formula A is BiKt-valid then .A is DBiKt-derivable.

Proof. To prove completeness, we assume that .A is not derivable, that is, there is

no DBiKt derivation of .A, and extract a countermodel for A. We follow the usual

counter-model construction technique for intuitionistic and tense logics; the non-trivial

addition is showing that the resulting models satisfy the frame conditions F1♦ and

F2�. Specifically, we show that if .A is not DBiKt-derivable, then there exists a BiKt-

model that makes A false.

Since we know by Theorem 7.4.7 that Prove is complete w.r.t. DBiKt, it suffices to

show that we can extract such a model from a failed Prove attempt. Consider the tree

184 Putting it all together: bi-intuitionistic tense logic

T such that T = tree(Ξ) and Prove(Ξ) = False, and Prove(Ξ) was the last recursive

call invoked by Prove(.A). We will now show how we can turn T into a BiKt model.

We say that some tree T′ rooted at 〈Γ , ∆〉 has a BiKt model if there exists a model

M = 〈W,≤, R♦, R�, V〉 such that there exists a world w ∈ W such that w
 Γ and

w

∆.

We proceed by induction on the height of T. For the base case, T consists of one

leaf node 〈Γ , ∆〉. We create the following model:

• Let W = {w}

• Let ≤= {(w, w)}

• Let R♦ = ∅

• Let R� = ∅

• Let V(p) =

{
{w} if p ∈ Γ

∅ otherwise

The valuation V is defined so that every atom in Γ is forced by w, and every other

atom, including those in ∆, is rejected by w. Since we know that every node in T is sat-

urated, it follows from Definitions 7.4.1 and 7.5.3 that every bi-intuitionistic formula

in Γ (∆) is forced (rejected) respectively. Moreover, since every node in T is realised

and 〈Γ , ∆〉 has no successors in T, we know from Definition 7.4.2 that Γ and ∆ do not

contain any tense formulae. Therefore we have w
 Γ and w

∆.

For the induction hypothesis, we assume that for every tree T′ of height < k, there

exists a BiKt model for the root of T′. Now consider a tree of height k. Denote its root

node with 〈Γ , ∆〉.

• Let W = {w0}

• Let ≤= ∅

• Let R♦ = ∅

• Let R� = ∅

• Let V(p) =

{
{w0} if p ∈ Γ

∅ otherwise

1. For each child node 〈Γ1, ∆1〉 that is a ≥ successor of 〈Γ , ∆〉 in T: By the induction

hypothesis, we know that the tree rooted at u = 〈Γ1, ∆1〉 has a model M =
〈W ′,≤′, R′

♦, R′
�, V′〉. We connect w0 to this model as follows:

(a) Let W = W ∪ W ′

(b) Let ≤ be the reflexive, transitive closure of ≤ ∪ ≤′ ∪{(u ≤ w0)}

(c) Let R♦ = R♦ ∪ R′
♦

(d) Let R� = R� ∪ R′
�

§7.5 Semantics 185

(e) Let V = V ∪ V′

2. For each child node 〈Γ1, ∆1〉 that is a ≤ successor of 〈Γ , ∆〉 in T: perform an

analogous construction to Step 1, but let ≤ be the reflexive, transitive closure of

≤ ∪ ≤′ ∪{(w0 ≤ u)} instead.

3. For each child node 〈Γ1, ∆1〉 that is a R♦ successor of 〈Γ , ∆〉 in T: By the induction

hypothesis, we know that the tree rooted at u = 〈Γ1, ∆1〉 has a model M =
〈W ′,≤′, R′

♦, R′
�, V′〉. We connect w0 to this model as follows:

(a) Let W = W ∪ W ′

(b) Let ≤ be the reflexive, transitive closure of ≤ ∪ ≤′

(c) Let R♦ = R♦ ∪ R′
♦
∪ {(w0R♦u)}

(d) Let R� = R� ∪ R′
�

(e) Let V = V ∪ V′

4. For each child node 〈Γ1, ∆1〉 that is a R−1
�

successor of 〈Γ , ∆〉 in T: perform an

analogous construction to Step 3, but let R� = R� ∪ R′
� ∪ {(uR�w0)} instead.

5. For each child node 〈Γ1, ∆1〉 that is a R� successor of 〈Γ , ∆〉 in T: By the induction

hypothesis, we know that the tree rooted at u = 〈Γ1, ∆1〉 has a model M =
〈W ′,≤′, R′

♦, R′
�, V′〉. We connect w0 to this model as follows:

(a) Let W = W ∪ W ′

(b) Let ≤ be the reflexive, transitive closure of ≤ ∪ ≤′

(c) Let R♦ = R♦ ∪ R′
♦

(d) Let R� = R� ∪ R′
� ∪ {(w0R�u)}

(e) Let V = V ∪ V′

6. For each child node 〈Γ1, ∆1〉 that is a R−1
♦

successor of 〈Γ , ∆〉 in T: perform an

analogous construction to Step 5, but let R♦ = R♦ ∪ R′
♦
∪ {(uR♦w0)} instead.

From the above construction, notice that every node in the nested sequent tree

becomes a world in the model. Now we need to show that the resulting model M is a

model for 〈Γ , ∆〉, which involves showing that:

1. w
 Γ

2. w

∆

3. M satisfies persistence and reverse persistence

4. M satisfies the the frame conditions F1♦ and F2�

We first prove (1) and (2) by simultaneous induction on the length of formulae in

Γ and ∆. For each such formula A ∈ Γ ∪ ∆:

186 Putting it all together: bi-intuitionistic tense logic

Base case If A is an atomic formula p, then the valuation ensures that w
 p for all

p ∈ Γ . Since we know that each node is saturated, we also know that Γ ∩ ∆ = ∅
from Definition 7.4.1, then we also have that w

q for all q ∈ ∆.

Inductive case

• If A = B ∧ C ∈ Γ : Then by Definition 7.4.1, we have that B ∈ Γ and C ∈ Γ ,

and therefore by the induction hypothesis we have that w
 B and w
 C.

Therefore, by Definition 7.5.1, we have w
 B ∧ C as required.

• If A = B ∧ C ∈ ∆: Then by Definition 7.4.1, we have that either B 6∈ ∆ or

C 6∈ ∆, and therefore by the induction hypothesis we have that either w

B

or w

C. Therefore, by Definition 7.5.1, we have w

B ∧ C as required.

• If A = B ∨ C ∈ Γ : similar to the case for A = B ∧ C.

• If A = B ∨ C ∈ ∆: similar to the case for A = B ∧ C.

• If A = B → C ∈ Γ : similar to the case for A = B ∧ C.

• If A = B → C ∈ ∆: Then by Definition 7.4.2 using the rule →R, we have

that there exists a ≤ successor 〈Γ1, ∆1〉 of 〈Γ , ∆〉 in T, and B ∈ Γ1 and C ∈ ∆1.

Moreover, at Step 2 above, we have created a world u such that u
 Γ1 and

u

∆1 and w ≤ u. Therefore, by Definition 7.5.1, we have w

B → C as

required.

• If A = B−<C ∈ Γ : similar to the case for A = B → C ∈ ∆.

• If A = B−<C ∈ ∆: similar to the case for A = B ∧ C.

• If A = �B ∈ Γ : By Definition 7.5.1 and Figure 7.6, to show that w
 �B,

we need to show that ∀z.∀v. if w ≤ z and zR�v then v
 B.

1. By reflexivity, we have w ≤ w, so we first show that ∀v. if wR�v then v

B. First, note that by Definition 7.4.2 using the propagation rule �L2,

we have that every R� successor 〈Γ1, ∆1〉 of 〈Γ , ∆〉 in T has B ∈ Γ1.

Moreover, at Step 5 above, we have connected the world v = 〈Γ1, ∆1〉
to w using wR�v, and by the induction hypothesis we have v
 B.

2. We also need to show that for other every ≤-successor z = 〈Γ ′, ∆′〉 of

〈Γ , ∆〉, for every R� successor v = 〈Γ2, ∆2〉 of z, it is the case that B ∈ Γ2.

Since we know that every node is propagated, rule .L2 ensures that if

�B ∈ Γ then �B ∈ Γ ′. Additionally, propagation rule �L2 ensures that

〈Γ2, ∆2〉 has B ∈ Γ2. Again, at Step 5 above, applied to z = 〈Γ ′, ∆′〉
we have connected the world v = 〈Γ2, ∆2〉 to z using zR�v, and by the

induction hypothesis we have v
 B.

Therefore, by Definition 7.5.1, we have w
 �B.

• If A = �B ∈ ∆: By Definition 7.5.1 and Figure 7.6, to show that w

�B, we

need to show that ∃z.∃v.w ≤ z and zR�v and v

B. We use reflexivity and

take z = w, so we need to show ∃v. wR�v and v

B. By Definition 7.4.2

using the �R rule, we have that there exists an R� successor 〈Γ1, ∆1〉 of

§7.5 Semantics 187

〈Γ , ∆〉 in T, such that B ∈ ∆1. Moreover, at Step 5 above, we have connected

the world v = 〈Γ1, ∆1〉 to w using wR�v, and by the induction hypothesis

we have v

B. Therefore, by Definition 7.5.1, we have w

�B.

• If A = �B ∈ Γ : Similar to the case for A = �B ∈ Γ .

• If A = �B ∈ ∆: Similar to the case for A = �B ∈ ∆.

• If A = ♦B ∈ Γ : Similar to the case for A = �B ∈ ∆.

• If A = ♦B ∈ ∆: Similar to the case for A = �B ∈ Γ .

• If A = �B ∈ Γ : Similar to the case for A = ♦B ∈ Γ .

• If A = �B ∈ ∆: Similar to the case for A = ♦B ∈ ∆.

Showing that the resulting models satisfy persistence and reverse persistence is

easy: by Definition 7.4.2, we know that the propagation rules .L1, .R1, .L2 and .R2

have been applied to every node they are applicable to. Rules .L1 and .L2 guarantee

forward persistence, while rules .R1 and .R2 guarantee reverse persistence.

We now need to show that resulting models satisfy the frame conditions F1♦ and

F2�; we give the case for F1♦ and the other is analogous. We need to consider all

fragments of models constructed that contain three worlds x, y and z such that x ≤ y

and xR♦z. Then we need to show that there exists a w such that yR♦w and z ≤ w.

We will take z to be the required w, which means we need to show that yR♦z and

z ≤ z. The latter follows immediately because ≤ is reflexive. The former demands the

following:

1. If y 6
 ♦B then z 6
 B

2. If z
 �A then y
 A

According to our construction, there are three ways of obtaining worlds x, y and

z such that x ≤ y and xR♦z. We now show that (1) and (2) above hold in each such

case:

• The world y has an ≥-successor x, and the world x has an R♦ successor z. That

is, the sequent fragment corresponding to the model fragment is of the form

Σ[(◦(Z1 . Z2), X1 . X2), Y1 . Y2], where x = 〈X1, X2〉, y = 〈Y1, Y2〉 and z =
〈Z1, Z2〉.

1. We need to show that if ♦B ∈ Y2 then B ∈ Z2; then our construction above

will ensure that z 6
 B.

Recall that by Definition 7.4.2, we know that all propagation rules have

been applied to every node they are applicable to. Then the following

propagation rules give us the required: rule .R2 ensures that ♦B is prop-

agated to node x, and rule ♦R2 ensures that B is propagated to node Z. We

summarise the propagations in the following derivation fragment:

Σ[(◦(Z1 . Z2, B), X1 . X2, ♦B), Y1 . Y2, ♦B]
♦R2

Σ[(◦(Z1 . Z2), X1 . X2, ♦B), Y1 . Y2, ♦B]
.R2

Σ[(◦(Z1 . Z2), X1 . X2), Y1 . Y2, ♦B]

188 Putting it all together: bi-intuitionistic tense logic

2. We need to show that if �A in Z1 then A ∈ Y1. We achieve this using the

propagation rules �L1 and .L1, as illustrated in the following derivation

fragment:

Σ[A, (A, ◦(�A, Z1 . Z2), X1 . X2), Y1 . Y2] .L1
Σ[(A, ◦(�A, Z1 . Z2), X1 . X2), Y1 . Y2]

�L1
Σ[(◦(�A, Z1 . Z2), X1 . X2), Y1 . Y2]

• The world x has a ≤ successor y and a R♦ successor z. That is, the sequent

fragment corresponding to the model fragment is of the form Σ[◦(Z1 . Z2), X1 .
X2, (Y1 . Y2)]. Again, we use propagation rules as illustrated in the following

derivation fragments:

1. We need to show that if ♦B ∈ Y2 then B ∈ Z2:

Σ[◦(Z1 . Z2, B), X1 . X2, (Y1 . Y2, ♦B), ♦B]
♦R2

Σ[◦(Z1 . Z2), X1 . X2, (Y1 . Y2, ♦B), ♦B]
.R1

Σ[◦(Z1 . Z2), X1 . X2, (Y1 . Y2, ♦B)]

2. We need to show that if �A in Z1 then A ∈ Y1:

Σ[A, ◦(�A, Z1 . Z2), X1 . X2, (A, Y1 . Y2)] .L2
Σ[A, ◦(�A, Z1 . Z2), X1 . X2, (Y1 . Y2)]

�L1
Σ[◦(�A, Z1 . Z2), X1 . X2, (Y1 . Y2)]

• The world z has a R−1
�

successor x, and x has a ≤ successor y. That is, the sequent

fragment corresponding to the model fragment is of the form Σ[Z1 . Z2, •(X1 .
X2, (Y1 . Y2))]. Again, we use propagation rules as illustrated in the following

derivation fragments:

1. We need to show that if ♦B ∈ Y2 then B ∈ Z2:

Σ[Z1 . Z2, B, •(X1 . X2, (Y1 . Y2, ♦B), ♦B)]
♦R1

Σ[Z1 . Z2, •(X1 . X2, (Y1 . Y2, ♦B), ♦B)]
.R1

Σ[Z1 . Z2, •(X1 . X2, (Y1 . Y2, ♦B))]

2. We need to show that if �A in Z1 then A ∈ Y1:

Σ[Z1, �A . Z2, •(A, X1 . X2, (A, Y1 . Y2))] .L2
Σ[Z1, �A . Z2, •(A, X1 . X2, (Y1 . Y2))]

�L2
Σ[Z1, �A . Z2, •(X1 . X2, (Y1 . Y2))]

Q.E.D.

§7.6 Modularity, extensions and classicality 189

7.6 Modularity, extensions and classicality

We now show how we can obtain Ewald’s intuitionistic tense logic IKt [39], Simpson’s

intuitionistic modal logic IK [104] and regain classical tense logic Kt. We also discuss

extensions of DBiKt with axioms T, 4 and B but they do not correspond semantically

to reflexivity, transitivity and symmetry [104].

7.6.1 Modularity

Notice that the semantics of BiKt extends modularly that of intuitionistic or dual intu-

itionistic logic (i.e., the R components in the Kripke frames are irrevelant). So seman-

tically, any formula composed using only (dual-)intuitionistic connectives is (dual-

)intuitionistically valid iff it is BiKt-valid. A analogous observation applies to other

fragments obtained by, say, restricting to purely modal or purely tense connectives.

We show a couple of modularity results for intuitionistic logic and a version of intu-

itionistic modal logic.

We denote with IntK the logic extending Int with modal operators. The notions

of Int-validity and IntK-validity are defined in the obvious way.

A nested sequent is purely modal if contains no occurrences of • nor its formula

translates � and �. We write DInt for the sub-system of DBiKt containing only the

rules id, the logical rules for intuitionistic connectives, and the propagation rules for ..

The logical system DIntK is obtained by adding to DInt the deep introduction rules

for � and ♦, and the propagation rules �L2 and ♦R2.

Observe that in DBiKt, the only rules that create • upwards are �L and �R. Thus

in every DBiKt-derivation Π of an IntK formula, the internal sequents in Π are purely

modal, and hence Π is also a DIntK-derivation. The following results follow imme-

diately from the equivalence of LBiKt and DBiKt and these observations.

Theorem 7.6.1. An Int (resp. IntK) formula A is Int (resp. IntK) valid iff . A is derivable

in DInt (resp. DIntK).

7.6.2 Obtaining Ewald’s IKt

In order to obtain Ewald’s IKt [39], semantically, we need to collapse R♦ and R� into

one temporal relation R and leave out our semantic clause for −<. That is, we need

to add the following conditions to the basic semantics: R♦ ⊆ R� and R� ⊆ R♦. Proof

theoretically, this is captured by extending LBiKt with the structural rules:

X ⇒ •(Y . ∅) . •(∅ . Z)
•.R

X ⇒ •(Y . Z)

X ⇒ ◦(Y . ∅) . ◦(∅ . Z)
◦.R

X ⇒ ◦(Y . Z)

Simpson’s intuitionistic modal logic IK [104] can then be obtained from Ewald’s sys-

tem by restricting the language to the modal fragment.

A BiKt-frame is an E-frame if R� = R♦. A formula A is E-valid if it is true in all

worlds of every E-model. An IKt formula A is a theorem of IKt iff it is E-valid [39].

190 Putting it all together: bi-intuitionistic tense logic

We now show that the rules ◦.R and •.R are sound for E-frames; for simplicity we

replace the structures Y and Z with the atoms p and q.

Lemma 7.6.2. Rule ◦.R is sound iff R� ⊆ R♦.

Proof. (⇐) We show that if the frame condition holds, then the rule is sound. We

assume that: (1) R� ⊆ R♦, and (2) that the formula translation ♦(p−<⊥) → �(> →
q) of the premise is valid. We then show that the formula translation �(p → q) of the

conclusion is valid.

For a contradiction, suppose that �(p → q) is not valid. That is, assume there

exists a world u such that u 6
 �(p → q). Then (4) there exist worlds x and y such that

u ≤ x & xR�y and y 6
 p → q. Thus there exists a world z ≥ y and z
 p and z 6
 q.

Immediately, we also have z
 p−<⊥ and z 6
 > → q.

The pattern xR�y ≤ z implies there is a world w with x ≤ wR�z by F2�. The

frame condition (1) then gives wR♦z too, meaning that w
 ♦(p−<⊥). From (2) we

get w
 �(> → q), which gives us z
 > → q, giving us the contradiction we seek.

Therefore the premise �(p → q) is valid and the rule is sound.

(⇒) We show that if the rule is sound, then the failure of the frame condition gives

a contradiction. So suppose that the rule is sound. The soundness of the rule implies

that (♦(p−<⊥) → �(> → q)) → (�(p → q)) is valid. For a contradiction, suppose

we have a frame with R� 6⊆ R♦. That is, (5): there exist x and y such that xR�y but

not xR♦y. The following model 〈W,≤, R♦, R�, V〉 satisfies (5), and has

u
 ♦(p−<⊥) → �(> → q)

but

u 6
 �(p → q)

• W = {u, w, x, y, z}

• < = {(u, x), (x, w), (y, z)}

• ≤ is the reflexive, transitive closure of <

• R♦ = ∅

• R� = {(x, y), (w, z)}

• V(p) = {z}, V(q) = ∅

Thus, we have falsified (♦(p−<⊥) → �(> → q)) → (�(p → q)); however, this

contradicts the soundness of the rule. Therefore our assumption was incorrect and the

frame condition must hold. Q.E.D.

Lemma 7.6.3. Rule •.R is sound iff R♦ ⊆ R�.

Proof. R♦ ⊆ R� means R� ⊆ R�; the rest of the proof is analogous to the proof of

Lemma 7.6.2. Q.E.D.

§7.6 Modularity, extensions and classicality 191

Theorem 7.6.4. If A is derivable in LBiKt+◦.R + •.R then A is E-valid.

Proof. Straightforward from the soundness of LBiKt w.r.t. BiKt-semantics (which

subsumes Ewald’s semantics) and Lemma 7.6.2 and Lemma 7.6.3. Q.E.D.

Completeness of the extended LBiKt w.r.t. IKt and IK can be shown by deriving

the axioms of IKt and IK.

Theorem 7.6.5. System LBiKt + •.R + ◦.R is complete with respect to Ewald’s IKt and

Simpson’s IK.

Proof. We show the non-trivial cases; the rest are analogous or easier. The following

is a derivation of Simpson’s axiom 2 and Ewald’s axiom 5:

id
A ⇒ A .L

(A . ∅) ⇒ A
wR

(A . ∅) ⇒ A, •(∅ . ♦B)

id
B ⇒ B .L

B . ∅ ⇒ B
♦R

◦(B . ∅) ⇒ ♦B
rp•

B ⇒ •(∅ . ♦B)
wL

B, (A . ∅) ⇒ •(∅ . ♦B)
→L

A → B, (A . ∅) ⇒ •(∅ . ♦B)
.R

A → B ⇒ (A . ∅) . •(∅ . ♦B)
�L

�(A → B) ⇒ ◦((A . ∅) . •(∅ . ♦B))
.L

(�(A → B) . ∅) ⇒ ◦((A . ∅) . •(∅ . ♦B))
rp′◦•(�(A → B) . ∅) ⇒ (A . ∅) . •(∅ . ♦B)

sR
(A . ∅), •(�(A → B) . ∅) ⇒ •(∅ . ♦B)

.R
A . ∅ ⇒ •(�(A → B) . ∅) . •(∅ . ♦B)

•.R
A . ∅ ⇒ •(�(A → B) . ♦B)

rp′•◦(A . ∅) ⇒ (�(A → B) . ♦B)
♦L

♦A ⇒ (�(A → B) . ♦B)
sR

�(A → B), ♦A ⇒ ♦B
→R ×2

⇒ �(A → B) → (♦A → ♦B)

The following is a derivation of Ewald’s axiom 7:

192 Putting it all together: bi-intuitionistic tense logic

id
A ⇒ A .L

(A . ∅) ⇒ A
wR

(A . ∅) ⇒ A, •(∅ .⊥)
⊥L

⊥, (A . ∅) ⇒ •(∅ .⊥)
→L

A → ⊥, (A . ∅) ⇒ •(∅ . ⊥)
.R

A → ⊥ ⇒ (A . ∅) . •(∅ .⊥)
�L

�(A → ⊥) ⇒ ◦((A . ∅) . •(∅ . ⊥))
.L

�(A → ⊥) . ∅ ⇒ ◦((A . ∅) . •(∅ .⊥))
rp′◦•(�(A → ⊥) . ∅) ⇒ (A . ∅) . •(∅ . ⊥)
sR

(A . ∅), •(�(A → ⊥) . ∅) ⇒ •(∅ .⊥)
.R

A . ∅ ⇒ •(�(A → ⊥) . ∅) . •(∅ .⊥)
•.R

A . ∅ ⇒ •(�(A → ⊥) . ⊥)
rp′•◦(A . ∅) ⇒ �(A → ⊥) . ⊥
♦L

♦A ⇒ �(A → ⊥) .⊥
sR

�(A → ⊥), ♦A ⇒ ⊥
→R ×2

⇒ �(A → ⊥) → (♦A → ⊥)

Q.E.D.

7.6.3 Regaining classical tense logic Kt

To collapse BiKt to classical tense logic we add the rules •.R and ◦.L, giving Ewald’s

IKt with R♦ = R� via Lemmas 7.6.2-7.6.3, and then add following two rules:

X1, X2 ⇒ Y1, Y2 s−1
L(X1 . Y1), X2 ⇒ Y2

X1, X2 ⇒ Y1, Y2 s−1
RX1 ⇒ Y1, (X2 . Y2)

We can now derive the law of the excluded middle and the law of (dual-)contradiction

as shown below:

p ⇒ p,⊥
s−1

L(∅ . p), p ⇒ ⊥
→R

(∅ . p) ⇒ (p → ⊥)
sL

⇒ p, (p → ⊥)
∨R

⇒ p ∨ (p → ⊥)

p,> ⇒ p
s−1

R> ⇒ p, (p . ∅)
−<L

(>−<p) ⇒ (p . ∅)
sR

p, (>−<p) ⇒
∧L

p ∧ (>−<p) ⇒

7.6.4 Axioms T, 4 and B

By utilising the power of deep inference for tense logic from our previous work in

Chapter 6, we can enforce the axioms T, 4, and B by adding numerous propagation

rules to DBiKt. Below we show the case for B but we need many other nesting com-

binations for full completeness:

§7.6 Modularity, extensions and classicality 193

Σ−[A, ◦(�A, X . ∅)]
B�L

Σ−[◦(�A, X . ∅)]

id
p, ◦(�p . ∅) . p

B�L
◦(�p . ∅) . p

♦L
♦�p . p

→R
. ♦�p → p

We show the cases for T and 4 below:

Σ−[A, �A]
T�

Σ−[�A]

id
p, �p . p

T�
�p . p

→R
. �p → p

Σ[�A, X . ◦(�A, Y . Z), W]
4�L

Σ[�A, X . ◦(Y . Z), W]

id
�p . ◦(�p . �p)

4�L
�p . ◦(∅ . �p)

�R
�p . ��p

→R
. �p → ��p

Dual rules allow derivations of p → ♦p and ♦♦p → ♦p.

194 Putting it all together: bi-intuitionistic tense logic

Chapter 8

Related work

In this chapter, we survey existing sequent calculi for bi-intuitionistic logic and tense

logics, and some extended sequent calculi mechanisms that could potentially be ap-

plied to these logics.

8.1 Non cut-free sequent calculi

Although Rauszer presented a sequent calculus for bi-intuitionistic logic [99] and

“proved” it cut-free, Pinto and Uustalu have recently given a counter-example [95]

to her cut-elimination theorem: the formula p → (q ∨ (r → ((p−<q) ∧ r)) is valid in

bi-intuitionistic logic, but cannot be derived in Rauszer’s calculus without the cut rule.

Similarly, Pinto and Uustalu’s counterexample shows that Crolard’s sequent calculus

[27] for bi-intuitionistic logic is not cut-free. Pinto and Uustalu’s counterexample fails

in both Rauszer’s and Crolard’s calculi because they limit certain sequent rules to sin-

gleton succedents or antecedents in the conclusion, and the rules do not capture the

interaction between implication and exclusion in a cut-free manner.

8.2 Deep inference

The concept of deep inference in nested sequent calculi has been developed indepen-

dently by several authors over the last 40 years: Mints [87; 88], Dunn [35], Kashima [73]

and more recently Brünnler [17; 19; 20] and Poggiolesi [97].

Note that deep inference in the calculus of structures is a slightly different con-

cept and was pioneered by Guglielmi [60]. In his work, inference rules can be applied

deep inside formulae, not just deep inside nested sequent structures. There has also

been work on deep inference in the calculus of structures for intuitionistic logic [110].

Moreover, computational linguists use a certain kind of deep inference to apply se-

quent rules deep inside the antecedents of their sequents, which are trees of formulae

due to the non-associativity of comma in the Lambek calculus [3; 13].

We now survey three very similar extended sequent mechanisms, which all use

nested sequent calculi and deep inference.

195

196 Related work

8.2.1 Kashima’s calculi

Kashima [73] proposes two kinds of nested sequent calculi for tense logics and some

extensions: a shallow inference calculus SKt where rules are only applicable to top-

level sequents, and a deep inference sequent calculus S2Kt where rules are applicable

at any level. Kashima’s first system SKt contains structural connectives (proxies) for

♦ and �, and explicit “turn” rules to capture the interactions between them. Thus,

it is similar to display calculi for tense logic [75; 51]. However, unlike in the case of

display calculi for tense/modal logics, Kashima does not prove cut-admissibility for

this system SKt. Instead, he:

1. shows that SKt is sound with respect to the Kripke semantics for tense logic;

2. gives another calculus S2Kt which allows rules to be applied at arbitrary depth.

This calculus has “enter” and “exit” rules which allow formuale to be moved

between nodes in the nested sequent tree, similar to our propagation rules of

DKt;

3. shows that if a sequent has a cut-free proof in S2Kt then it has a cut-free proof in

SKt;

4. shows that S2Kt minus cut is complete w.r.t. the Kripke semantics of tense logic.

All of the above together imply the completeness of SKt minus cut. Thus, Kashima

achieves a cut-free deep inference nested sequent calculus S2Kt for tense logic. How-

ever, unlike our work in Chapter 6, he arrives at S2Kt using a mix of syntactic and

semantic methods. In particular, he does not prove syntactic cut-elimination for SKt,

nor does he show that S2Kt is syntactically complete w.r.t. SKt.

8.2.2 Brünnler’s work on nested sequent calculi

Brünnler [17; 19; 20] and Brünnler and Straßburger [21] have developed two kinds of

deep inference nested sequent calculi for the basic modal logic K and several exten-

sions. Both kinds of calculi share the same rule for introducing �-formulae, and differ

by the additional rules for capturing frame axioms such as reflexivity and transitiv-

ity. In [17] and [19], frame axioms are captured using different ♦-propagation rules,

while in [21] frame axioms are captured using different structural rules. Brünnler’s

habilitation thesis [20] covers both approaches.

The benefit of the propagation rule approach is that the calculi obtained this way

have semantic completeness proofs and terminating proof search procedures. How-

ever, note that Brünnler obtains termination by using essentially a global loop check.

More specifically, his proof search procedure blocks the application of rules to “cyclic”

nodes in the tree of nested sequents, where a leaf of a sequent is defined as cyclic if

there is an inner node in the sequent that carries the same set of formulas [20].

On the other hand, the structural rule approach yields modular sequent calculi,

meaning that each combination of these rules gives a calculus that is sound and com-

plete for the corresponding modal logic. Brünnler and Straßburger show that both

§8.3 Hypersequents and other extended sequent calculi 197

approaches are inter-derivable: [19] shows that the structural rules are admissible

given the propagation rules, while [21] shows that the propagation rules are admissi-

ble given the structural rules.

Both kinds of calculi enjoy cut-elimination, although contraction needs special

care. In particular, [19] eliminates a multicut rule, even though many logical rules

have built-in formula contractions and structural contraction is admissible. On the

other hand, structural contraction is not admissible in [21]. Instead, structural con-

traction is replaced with formula contraction plus some logical rules with built-in

contraction and an additional structural rule called “medial”; then a multicut rule is

eliminated. The medial rule is essentially a distribution principle which allows to de-

rive Σ[◦{Γ , ∆}] from Σ[◦{Γ}, ◦{∆}], where ◦ is the structural proxy for �. Recall that

in our deep inference nested sequent calculus for tense logic DKt, we show instead

that this distribution principle is admissible (see Lemmas 6.2.5 and 6.2.6).

8.2.3 Poggiolesi’s tree hypersequents

Poggiolesi [97] has developed deep inference nested sequent calculi for the basic modal

logic K and several extensions; she uses the term “tree hypersequents” and a slightly

different syntax than Brünnler. However, the more important differences relate to

Poggiolesi’s cut rule, cut-elimination procedure and her treatment of contraction.

Poggiolesi’s cut rule is multiplicative rather than additive. This approach is more

in line with traditional proof theory, however, it presents significant challenges when

nested sequents are considered. Poggiolesi defines a product relation on two sequents

as a tree merge operation, and then eliminates cut using a “merge” rule similar to the

“medial” rule in Brünnler and Straßburger’s work [21]. Poggiolesi has admissible

formula contraction, but her structural contraction rule is not admissible: it can be

defined in terms of formula contraction and the “merge” rule.

8.3 Hypersequents and other extended sequent calculi

Avron’s hypersequents have been used for many modal [5], intuitionistic and interme-

diate logics [7; 25]. Similarly, Dosen’s “higher level” sequents [33] can cater for many

different logics in one (cut-free) setting: for example, both intuitinistic logic, classical

logic and modal logics S4 and S5. But we know of no actual work which uses either

framework for tense or intuitionistic logics with a “converse” modality/connective

like Kt or BiInt.

Other examples of extended sequent calculi include Trzesicki’s calculus for tense

logic [113] and Indrzejczak’s multiple sequent calculus [72].

Trzesicki’s calculus is an extension of the traditional Gentzen calculus whereby

some formulae in the sequent may be tagged, and the sequent itself may be either

untagged, or tagged with an � or � tag. Tagged formulae are in a sense “hidden” in

the current sequent, but may be untagged (brought to the surface) by applications of

certain rules to tagged sequents. Thus Trzesicki’s mechanism has some similarities to

display calculi and shallow inference nested sequent calculi, however, his tagging of

198 Related work

formulae is not as expressive as the structures used in nested sequent calculi or display

calculi. Similarly to display logic, Trzesicki’s calculus involves a large degree of non-

determinism, which is problematic for proof search: he remarks that “it is not always

immediately visible which rule was used as the last in the proof of a formula” [113].

Indrzejczak’s multiple sequent calculus for tense logic is another extension of a

traditional Gentzen calculus, where the left and right hand side of the sequent is in-

dexed by a number. This indexing system is effectively a syntactic representation of

the underlying Kripke model [72], and as such has similarities to labelled sequent cal-

culi [89]. Indrzejczak’s calculus lacks a natural notion of a cut rule and cut-elimination:

his cut rule is only defined for traditional sequents where both premises and the con-

clusion are indexed by 0.

8.4 Labelled sequent calculi

Pinto and Uustalu have given a cut-free labelled sequent-calculus for bi-intuitionistic

logic [95]. Their calculus uses labelled formulae, thereby utilising some semantic as-

pects, such as explicit worlds and accessibility, directly in the rules. It is also possible

to give proof calculi for many modal and tense logics using semantic methods such as

labelled sequent calculi [89] and graph calculi [23; 62], but in this thesis we focus on

purely syntactic methods.

We restrict our attention to purely syntactic methods for three reasons:

1. There is a certain proof-theoretic tradition of keeping proof calculi independent

of semantics: see, for example, Avron’s discussion on “good” proof systems [5].

2. We want to answer the question of whether purely syntactic methods allow us

to achieve cut-free completeness for bi-intuitionistic and tense logic, and if so,

what extended sequent mechanisms are required to do so.

3. A purely syntactic sequent calculus opens the door for further investigations

into the computational content of bi-intuitionistic logic, and brings us one step

closer to finding a Curry-Howard isomorphism for it.

However, Pinto and Uustalu’s recent work [96] on relating their labelled sequent

calculus [95] to our nested sequent calculus LBiInt1 for bi-intuitionistic logic shows

that the two methods are not entirely different. Specifically, [96] gives translations

between derivations in the two calculi, thus illustrating that nested sequent calculi

and labelled sequent calculi are somewhat related. Of course, this is not entirely sur-

prising, since nested sequent calculi can be seen just as syntactic encodings of Kripke

trees.

8.5 Tableaux methods for description logics with inverse roles

Description logics are a family of knowledge representation languages [6] with appli-

cations in the semantic web [66]. These logics are syntactic variants of multi-modal

§8.6 Bellin’s work on logic for pragmatics 199

logics. In recent years, there have been significant advances in efficient reasoning in

very expresive description logics.

For example, Horrocks et al. [69] have developed an efficient decision procedure

for ALCIR+ , a description logic with transitive and inverse roles. Since ALCIR+ is

a syntactic variant of the multi-modal version of tense logic Kt.S4, it is also closely

related to bi-intuitionistic logic. Indeed, we could obtain a decision procedure for

bi-intuitionistic logic by translating it into the tense logic Kt.S4 [121], and using Hor-

rocks’ work. However, a translation into Kt.S4 provides no insights into bi-intuitionistic

logic itself, as it compiles away the constructive aspects of bi-intuitionistic logic.

8.6 Bellin’s work on logic for pragmatics

As part of their research in logic for pragmatics, Bellin and his colleagues have stud-

ied term calculi for dual intuitionistic logic [10] and proof calculi for logics they call

“bi-intuitionistic logic” and “polarized bi-intuitionistic logic” [11; 9]. However, nei-

ther their “bi-intuitionistic logic” nor “polarized bi-intuitionistic logic” corresponds

to Rauszer’s bi-intuitionistic logic, since Bellin’s logics do not have any interaction

between the Int and DualInt parts of the logic. Bellin’s logics can be embedded

into S4 and bi-modal S4 respectively, rather than Kt.S4 as is the case for Rauszer’s

bi-intuitionistic logic.

200 Related work

Chapter 9

Further work and conclusions

In this chapter, we first outline some directions for further work. We then conclude

the thesis by summarising our methodological and technical contributions.

9.1 Further work

9.1.1 Proof search for reflexive-transitive tense logic Kt.S4

Recall that we gave a deep inference nested sequent calculus DS4 for Kt.S4 in Sec-

tion 6.3.1. While DS4 calculus is free of contraction and residuation rules, it is still not

immediately suitable for proof search. The problem occurs even for the modal frag-

ment S4 and has been solved using history-based loop checks [63] as well as dynamic

blocking in a labelled tableaux calculus for description logic [69]. Naive backward

proof search in S4 (and hence also Kt.S4) can loop due to the interaction of ♦ and �

connectives (and similarly, � and �). The following DS4 derivation fragment illus-

trates the problem:

...
♦�A, �A, ◦{A, ♦�A, �A, ◦{A}}

�
♦�A, �A, ◦{A, ♦�A, �A}

Tb
♦�A, �A, ◦{A, ♦�A}

4c
♦�A, �A, ◦{A}

�
♦�A, �A

Tb
♦�A

As can be seen above, we can keep applying the rules Tb, � and 4c backwards ad

infinitum, creating a infinitely deep nested structure, where each node contains the

formulae A, ♦�A, �A. We now briefly comment on several potential solutions to this

problem.

Dynamic blocking Essentially the same problem we described above has already

been solved in a labelled tableaux calculus for the description logic ALCIR+ [69],

which is a multimodal variant of tense logic with transitive frames. Their solution

uses a technique called dynamic blocking. When deciding whether an expansion rule

201

202 Further work and conclusions

is applicable to a particular node in a tableau, they examine every node on the rele-

vant branch of the tableau, and check whether some other node already contains the

relevant formula. A key feature of their approach is that a particular node may be

blocked and later become unblocked, as new formulae are propagated to this node.

Unfortunately, it is not immediately obvious how to adapt this technique to a purely

syntactic framework, unless we impose some side conditions on our rules that refer

to whole branches of the nested sequent tree.

Histories Heuerding has given a terminating sequent calculus for S4, which uses

histories for loop-checking [63]. Histories are sets of formulae stored in each sequent

that keep relevant information about sequents previously encountered in backward

proof search; the � rule is then blocked if the histories already contain the relevant

�-formula. Rather than storing the entire branch of nodes as in the case of dynamic

blocking, Heuerding’s approach only stores certain �− and ♦-formulae that are needed

for loop-checking. Heuerding’s approach is very elegant, since he can syntactically

prove its completeness w.r.t. a sound and complete, but non-terminating history-free

calculus for S4.

We conjecture that it is possible to extend Heuerding’s approach to Kt.S4, by aug-

menting the histories with additional sets of formulae that also record the �− and

�-formulae that are needed for loop-checking. We made some investigations in this

direction, but found it difficult to extend Heuerding’s syntactic completeness proof to

the tense logic case, when used in a nested sequent calculus rather than a traditional

sequent calculus.

Global loop-check Brünnler obtains termination for his nested sequent calculi for

modal logics by using essentially a global loop check. More specifically, his proof

search procedure blocks the application of rules to “cyclic” nodes in the tree of nested

sequents, where a leaf of a sequent is defined as cyclic if there is an inner node in the

sequent that carries the same set of formulas [20].

We conjecture that it is possible to extend Brünnler’s approach to tense logics,

since it is the most general of all the approaches we have outlined in this section, and

has been designed for nested sequent calculi. We made some initial investigations

in this direction and again found it difficult to prove purely syntactically that such

an approach is complete. This is perhaps not surprising, given that Brünnler himself

proves the completeness of his approach semantically.

9.1.2 Proof search for display logic

We have only scratched the surface with our work on taming proof search for display

logic. It remains to be seen whether deep inference can be used to tame other display

calculi with more complex binary residuation principles like those in substructural

logics [3]. Our ultimate goal is to obtain a systematic way to “sequentialize” a given

display calculus to one with nested sequents, and derive a proof search strategy for

the latter. A promising first step in this direction could be to extend our results to the

§9.1 Further work 203

primitive extensions of modal tense logic in a more systematic way than was done in

Chapter 6.

9.1.3 First-order bi-logics

In this thesis, we have only considered propositional bi-logics. An interesting ques-

tion is how many of our techniques can easily be applied in a first-order setting. An

approach to this might be to consider quantifiers as modal operators, with appropriate

display postulates, such as the ones developed in [118].

9.1.4 Global assumptions

In this thesis, we have focused on the derivability of sequents and the corresponding

semantic notion of validity. However, derivability of a formula from a set of global

assumptions, which semantically corresponds to logical consequence, is also a very

important problem. To cater for deciding derivability of a formula from a set of as-

sumptions in our nested sequent framework, we would need to extend our notion

of nested sequents so that the nested structures also contain the global assumptions.

Additionally, we would need to take the global assumptions into account whenever

we create new nodes inside the nested structures.

9.1.5 Curry-Howard correspondence for bi-logics

As mentioned in Section 2.2.4, bi-intuitionistic logic has potential applications in the

area of type theory. Now that we have developed purely syntactic cut-free sequent

calculi for bi-intuitionistic logic, finding a Curry-Howard isomorphism for our calculi

is the next obvious step in this direction. Pinto and Uustalu suggest that our nested

sequent structures would be suitable for this task [95]. We conjecture that using our

nested sequent calculi to further develop Crolard’s work on co-routines [28] might be

a good starting point.

Wansing has given a correspondence between intuitionistic tense logic and a lambda

calculus with set-theoretic operators [119]. His treatment of tense logic may prove use-

ful when we want to develop a Curry-Howard isomorphism for bi-intuitionistic logic,

since both of these logics have strong similarities.

9.1.6 Optimised decision procedures

Finally, whilst we have developed very simple proof-of-concept implementations of

all the proof search calculi presented in this thesis, there is a lot of scope for optimisa-

tion in each of the implementations.

As a first step, it would be interesting to investigate how many of the traditional

optimisations for tableaux calculi for classical modal logics [64] are still applicable in

the case of intuitionistic logic. Empirical observations suggest that our deep inference

nested sequent calculi perform much better than either GBiInt or LBiInt2; we would

204 Further work and conclusions

therefore suggest that DBiInt might be a promising basis for an efficient theorem

prover for BiInt.

Secondly, a technique called global caching has shown promise in efficient rea-

soning for some description logics [54; 91], including those with inverse roles [59].

This technique allows to significantly reduce the number of nodes to explore during

proof search by avoiding the redundant expansion of a node that has already been

expanded in another part of the search tree. It should be possible to apply this tech-

nique for efficient proof search in bi-intuitionistic logic, however, the persistence and

reverse persistence properties may cause some side-effects.

9.2 Conclusions

In this thesis we have studied several bi-logics from the perspectives of proof theory

and proof search: in particular, bi-intuitionistic logic, tense logic and some extensions

of it, and finally bi-intuitionistic tense logic.

Our work was originally motivated by the open problem of finding a cut-free se-

quent calculus for bi-intuitionistic logic, which we first solved using a framework of

derivations and refutations. We then considered the broader problem of proof search

in display logic, and developed nested sequent calculi for all our bi-logics that come

in “shallow” and “deep” flavours.

Our methodological contributions are:

1. In Part I, we developed a framework of derivations and refutations as first class

citizens, and gave sequent calculi rules that allow to combine derivations and

refutations in order to achieve cut-free completeness in logics where traditional

calculi fail.

2. In Part II, we addressed the problem of taming proof search in display calculi

by using bi-logics as a case study. Specifically, we showed that for a range of bi-

logics, residuation rules and contraction on structures can be shown admissible

using deep inference in nested sequent calculi. Since residuation rules and con-

traction on structures are two of the biggest sources of non-determinism in back-

ward proof search for display calculi, our work is a significant first step towards

proof search in general display calculi. Our work is the first which establishes

a direct correspondence between proofs in a display-like calculus (with explicit

residuation rules) and proofs in a contraction-free deep-inference calculus (with

no explicit residuation rules).

Our technical contributions are:

1. In Chapter 3, we gave the first cut-free sequent calculus GBiInt for bi-intuitionistic

logic that is amenable to proof search. We showed GBiInt to be sound and com-

plete with respect to Rauszer’s semantics of BiInt, and gave a decision proce-

dure based on GBiInt.

§9.2 Conclusions 205

2. In Chapters 4 and 5, we gave nested sequent calculi LBiInt and DBiInt for bi-

intuitionistic logic. LBiInt enjoys cut-elimination, while DBiInt can be derived

from LBiInt, is amenable to proof search and syntactically complete with re-

spect to DBiInt.

3. In Chapter 6, we gave a syntactic cut-elimination procedure for Kashima’s shal-

low inference nested sequent calculus SKt for tense logic, and a new nested deep

sequent calculus DKt for tense logic and some of its extensions. DKt is the first

sequent calculus that is amenable to proof search and shown to be syntactically

complete with respect to a calculus that has cut-elimination.

4. In Chapter 7, we gave the first cut-free sequent calculus for bi-intuitionistic tense

logic. We gave deep and shallow versions of it: the shallow calculus is derived

from display logic and enjoys cut-elimination; the deep calculus is complete

with respect to the shallow calculus and is free of contraction and display pos-

tulate structural rules. We gave a decision procedure for bi-intuitionistic tense

logic based on the deep calculus, and showed that the deep calculus is complete

with respect to the semantics of bi-intuitionistic tense logic. We also showed

how to capture well-known logics like Ewald’s intuitionistic tense logic and

Simpson’s intuitionistic modal logic.

206 Further work and conclusions

Appendix A

Display calculi

In this chapter, we review the basics of display calculi. We then describe Goré’s dis-

play calculus δBiInt for bi-intuitionistic logic, and compare it to our nested sequent

calculus LBiInt1 for bi-intuitionistic logic. Finally, we discuss proof search in display

logic.

A.1 Goré’s display calculus for bi-intuitionistic logic

Belnap’s Display Logic [12] (we prefer the term display calculi) is an extremely general

proof-theoretical framework. Display calculi can be seen as extensions of Gentzen’s

sequent calculi: while the only structural connective in traditional sequent calculi is

the comma, which is interpreted as a conjunction on the left and a disjunction on

the right, in display calculi there is typically a set of structural connectives associ-

ated with each family of logical connectives. For example, Goré’s display calculus for

bi-intuitionistic logic [53] contains Gentzen’s comma, but also two binary structural

connectives “>” and “<”. Here > is a structural proxy for →, and < is a structural

proxy for −<. Figure A.1 shows the rules of Goré’s calculus, and the bottom four rules

highlight the relationship between > and →, and < and −< respectively.

A display calculus obeys the display property: any sequent containing a particular

formula occurrence A can be transformed into another sequent in which the occur-

rence of A is either the whole of the antecedent or the whole of the succedent, using

only a subset of the rules called the display postulates. The occurrence of A is then said

to be displayed. The display property of a display calculus relies on residuation prin-

ciples, which are relationships between different structural connectives. For example,

Goré’s display postulate rules (see Figure A.1) for the connectives > and < implement

residuation between comma and > as well as between comma and <.

The most pleasing property of display calculi is that if the rules of the display cal-

culus enjoy eight easily checked conditions, then the calculus is guaranteed to obey

cut-admissibility [12]. That is, one single cut-admissibility proof suffices for all display

calculi. This modularity makes it an excellent framework for designing sequent cal-

culi for logics, particularly when we wish to mix and match the intuitionistic, modal,

207

208 Display calculi

or substructural1 aspects of different logics into a new logic. This approach has been

used e.g. by Wansing [116] and Goré [51] to develop display calculi frameworks for

a range of modal and substructural logics respectively. Indeed, Goré’s display calcu-

lus δBiInt for bi-intuitionistic logic [53] is a specific instance of his general display

framework where a display calculus can be obtained for any substructural logic in a

systematic and modular way [51].

We now review a syntactic variant of δBiInt and compare it to our nested sequent

calculi we introduced in earlier chapters. Formally, a δBiInt structure is defined by

the following grammar, where A is a BiInt formula:

X := ∅ | A | (X, X) | X > X | X < X.

A δBiInt sequent is of the form X ⇒ Y, where X and Y are δBiInt structures. The

set of δBiInt rules is given in Figure A.1.

As can be observed in the rules of δBiInt, the connectives > and < allow us to

form structures by nesting them inside one another, and the display postulates allow

us to reorganise the structures so as to bring sub-structures to the top level or hide

them. For example, the <L rule in Figure A.1 can be read downwards as: given a

structure Z < Y on the LHS, bring Z to the top level (display Z) while forming the

structure X, Y on the RHS. The same rule can be read upwards as: given a structure

X, Y on the RHS, display X by hiding away Y in Z < Y on the LHS.

We now illustrate the use of δBiInt by showing a derivation of Uustalu’s se-

quent [95] (see also Example 2.2.4).

Example A.1.1. The following is a cut-free derivation of Uustalu’s sequent in δBiInt. As

before, the axioms contain the atoms p, q and r. When read backwards from the root, the

derivation uses the structural rule >L to “hide” the structure q > p while the rules for

implication and conjunction on the right are applied. It then uses >L, <L and commutativity

to transform q > p into p < q, so that finally the rule for exclusion on the right can be applied.

p ⇒ p q ⇒ q
−<Rp < q ⇒ p−<q

<Lp ⇒ p−<q, q
comRp ⇒ q, p−<q
>Lq > p ⇒ p−<q r ⇒ r

∧R
(q > p), r ⇒ (p−<q) ∧ r

comL
r, (q > p) ⇒ (p−<q) ∧ r

>R
q > p ⇒ r > ((p−<q) ∧ r)

→R
q > p ⇒ r → ((p−<q) ∧ r)

>L
p ⇒ q, r → ((p−<q) ∧ r)

1Briefly, substructural logics are characterised by the lack of one or more structural rules that are
present in the Gentzen calculus for classical logic - see e.g. Restall [101] for details. For example, relevant
logic is characterised by lack of weakening [2], and linear logic is characterised by a lack of weakening
and contraction [47].

§A.1 Goré’s display calculus for bi-intuitionistic logic 209

Display postulates and cut:

Z < Y ⇒ X
<L

Z ⇒ X, Y
>L

X > Z ⇒ Y

X ⇒ Z < Y
<R

X, Y ⇒ Z
>R

Y ⇒ X > Z

X ⇒ A A ⇒ Y
cut

X ⇒ Y

Basic structural rules:

∅ ⇒ X
Ver∅

Y ⇒ X
X ⇒ ∅

E f q∅
X ⇒ Y

X, ∅ ⇒ Y
∅+
−LX ⇒ Y ∅+
−L∅, X ⇒ Y

X ⇒ ∅, Y
∅+
−RX ⇒ Y ∅+
−R

X ⇒ Y, ∅

Further structural rules:

X ⇒ Z gwL
X, Y ⇒ Z

Y ⇒ Z gwL
X, Y ⇒ Z

Z ⇒ X gwR
Z ⇒ X, Y

Z ⇒ Y gwR
Z ⇒ X, Y

X, X ⇒ Z gcL
X ⇒ Z

Z ⇒ X, X gcR
Z ⇒ X

X, (Y, Z) ⇒ W
assL

(X, Y), Z ⇒ W

W ⇒ (X, Y), Z
assR

W ⇒ X, (Y, Z)

Y, X ⇒ Z
comL

X, Y ⇒ Z

Z ⇒ Y, X
comR

Z ⇒ X, Y

Logical introduction rules:

⊥ ⇒ ∅ ⊥L
Z ⇒ ∅

⊥RZ ⇒ ⊥
p ⇒ p id

∅ ⇒ Z
>L> ⇒ Z

∅ ⇒ > >R

A, B ⇒ Z
∧L

A ∧ B ⇒ Z
X ⇒ A Y ⇒ B ∧R

X, Y ⇒ A ∧ B

A ⇒ X B ⇒ Y ∨L
A ∨ B ⇒ X, Y

Z ⇒ A, B
∨R

Z ⇒ A ∨ B

A < B ⇒ Z −<L
A−<B ⇒ Z

A ⇒ X Y ⇒ B −<R
X < Y ⇒ A−<B

X ⇒ A B ⇒ Y →L
A → B ⇒ X > Y

Z ⇒ A > B →R
Z ⇒ A → B

Figure A.1: A syntactic variant of Goré’s display calculus δBiInt for bi-intuitionistic logic [53].

Double lines indicate that the rule may be used both reading from top to bottom and vice

versa. Note that Goré’s calculus uses a semicolon instead of a comma for the structural proxy

for conjunction/disjunction, but we have kept Gentzen’s comma in order to make the pre-

sentation of display calculi more consistent with other sequent calculi discussed in this thesis.

Also, Goré uses ` for the sequent turnstile, while we use ⇒ and reserve ` for meta-level deriv-

ability. Finally, we use the connectives ∧ and ∨ for conjunction and disjunction, rather than

Goré’s ⊗ and ⊕ respectively.

210 Display calculi

A.1.1 Belnap’s conditions

In this section we review Belnap’s eight conditions for cut-elimination [12]. As Belnap

proves, any display calculus that satisfies these conditions is guaranteed to obey cut-

elimination. We start by stating Belnap’s definitions of parameter and congruence.

Definition A.1.2 (Parameter). Given an instance of a sequent rule, the constituents of the

rule that remain constant when passing from the premises to the conclusion are called param-

eters.

Note that in the case of a traditional Gentzen calculus, the parameters are the side

formulae.

Definition A.1.3 (Congruence). Given an instance of a sequent rule, the constituents oc-

cupying similar positions in occurrences of structures assigned to the same structure-variable

are called congruent.

We now describe each of Belnap’s conditions, using δBiInt as an illustration.

C1 Preservation of formulas. This condition requires that for each rule instance, each

formula which is a constituent of some premise is a subformula of some formula

in the conclusion. This condition is easily verified by inspection of δBiInt rules.

For example, in the ∧R rule, the formula B is a constituent of the right premise,

and is also a subformula of A ∧ B which occurs in the conclusion.

C2 Shape-alikeness of parameters. This condition requires that congruent parameters

are occurrences of the same structure, and as Belnap points out [12], it follows

immediately from Definition A.1.3 regardless of the sequent rules.

C3 Non-proliferation of parameters. This condition requires that each parameter is con-

gruent to at most one constituent in the conclusion of each rule instance. This

holds for δBiInt because each structure variable occurs exactly once in the con-

clusion of each rule. For example, the gcL rule contains the structure X twice in

the premise and once in the conclusion. Note that an inverse of the contraction

rule would break this condition.

C4 Position-alikeness of parameters. This condition requires that congruent parameters

are either all antecedent or all succedent parts of the respective sequents. This

condition is also easily verified by inspection of δBiInt rules.

C5 Display of principal constituents. This condition requires that for each rule, the prin-

cipal formula is either the entire antecedent or the entire succedent of the con-

clusion. This is perhaps one of the most striking differences between display

calculi and other sequent calculi formalisms, since this condition demands that

there can be no side formulae/structures in the antecedent of left introduction

rules, or in the succedent of the right introduction rules. This condition is also

easily verified by inspection of δBiInt rules. For example, the ∧L rule demands

that A ∧ B occupies the entire antecedent of the conclusion.

§A.1 Goré’s display calculus for bi-intuitionistic logic 211

Note that this condition may seem limiting, however, the display property en-

sures that any sequent can be transformed into a sequent where the desired sub-

structure is either the whole antecedent or the whole succedent.

C6 Closure under substitution for succedent parameters. This condition requires that each

rule is closed under simultaneous substitution of arbitrary structures for congru-

ent formulas which are succedent parts. In other words, it requires that all struc-

tural rules e.g. contraction are expressed in terms of general structures, rather

than just formulae. This is another significant difference between display calculi

and traditional sequent calculi, where structural rules are generally expressed in

terms of formulae. This condition is also easily verified by inspection of δBiInt

rules.

C7 Closure under substitution for antecedent parameters. Same as C6, but applies to the

antecedent of each rule.

C8 Eliminability of matching principal constituents. This condition requires that for ev-

ery two rule instances with conclusions (1) X ⇒ M and (2) M ⇒ Y with M

principal in both, either:

• (3) X ⇒ Y is identical to (1) or (2), or

• it is possible to derive (3) from (1) and (2) using the rules of the calculus

plus the following rule, where X′ and Y′ are arbitrary but M′ is restricted

to proper subformulas of M:

X′ ⇒ M′ M′ ⇒ Y′

X′ ⇒ Y′

Showing that a calculus obeys C8 effectively amounts to showing how to reduce

a cut on some formula to one or more cuts on its subformulae, in the case where

the cut formula is principal in both derivations above cut. We need to check

the cases for all logical connectives of δBiInt; here we just illustrate the case for

implication and refer the reader to [51; 53] for details. Suppose M = A → B and

the given derivation ends as follows:

X ⇒ A > B
X ⇒ A → B

Y ⇒ A B ⇒ Z
A → B ⇒ Y > Z

cut
X ⇒ Y > Z

We then obtain the following derivation which uses cuts on the subformulae A

and B:

Y ⇒ A

X ⇒ A > B >R
A, X ⇒ B B ⇒ Z

cut
A, X ⇒ Z

<R
A ⇒ Z < X

cut
Y ⇒ Z < X <R

Y, X ⇒ Z
>R

X ⇒ Y > Z

212 Display calculi

A.1.2 Relating Goré’s δBiInt to our LBiInt1

The differences between our calculus LBiInt1 presented in Chapter 4 and Goré’s

δBiInt fall into two groups: differences in structures (items (1) to (3) below) and dif-

ferences in logical rules (item (4) below). We now describe these differences in detail.

1. δBiInt has explicit rules for associativity and commutativity of comma (assL ,

assR , comL, comR), as well as manipulating the empty structure (Ver∅, E f q∅, ∅+
−L,

∅+
−R). On the other hand, in LBiInt1 we simply stated that we consider struc-

tures modulo associativity of comma and assume the empty structure is unitary.

As a result, LBiInt1 lacks the rules assL , assR , comL, comR, Ver∅, E f q∅, ∅+
−L, ∅+

−R

that are present in δBiInt.

2. As Goré points out [53], in the presence of commutativity of the comma (semi-

colon in his notation), we only require one of < and >. That is, Y < X may be

replaced by X > Y and vice versa without losing provability. Now, notice that

other than the display postulates, the only δBiInt rules which create > and <
rules (when viewed backwards) are the introduction rules for → on the right

and −< on the left. Specifically, these rules manipulate < on the left and > on

the right. So in LBiInt1 we simplified the structures further and replaced both

< and > by .. We then interpret . as a < or −< in a negative context and we

interpret . as a > or → in a positive context - recall Figure 4.1.

3. The LBiInt1 rules .L and .R are one half of the display postulates of δBiInt.

LBiInt1 then has additional rules called sL and sR, which can be seen as more

general versions of the other half of display postulates. These rules can also be

derived in δBiInt, as we show shortly in Lemma A.1.4.

4. Every logical rule in δBiInt requires the principal formula to be displayed, that

is, it must occupy either the entire right hand side or the entire left hand side

of the sequent - recall Belnap’s C5 above. However, in LBiInt1 we allow side

structures for all our logical rules, in order to bring LBiInt1 closer to traditional

Gentzen systems. The logical rules of LBiInt1 can all be derived in δBiInt.

For example, the following is a δBiInt derivation of the LBiInt1 rule for con-

junction on the right, where we “wrap” a δBiInt ∧R rule instance between dis-

play/undisplay rules, and we use contraction on structures because disjunction

is additive in LBiInt1 but multiplicative in δBiInt:

X ⇒ A, Y
<L

X < Y ⇒ A

X ⇒ B, Y
<L

X < Y ⇒ B ∧R
(X < Y), (X < Y) ⇒ A ∧ B

gcL
(X < Y) ⇒ A ∧ B

<L
X ⇒ A ∧ B, Y

Similar δBiInt derivations may be obtained for other logical rules of LBiInt1.

§A.2 Proof search in display logic 213

...
A ⇒ B > C gwR

A ⇒ C, (B > C)
<L

(A < (B > C)) ⇒ C
gwL

B, (A < (B > C)) ⇒ C
>R

A < (B > C) ⇒ B > C
<L

A ⇒ (B > C), (B > C)
gcR

A ⇒ B > C →R
A ⇒ B → C

Figure A.2: Non-terminating backward proof search attempt in δBiInt

Lemma A.1.4. The following rules can be derived δBiInt:

(X1 < Y1), X2 ⇒ Y2 sL
X1, X2 ⇒ Y1, Y2

X1 ⇒ Y1, (X2 > Y2) sR
X1, X2 ⇒ Y1, Y2

Proof. We show the case for sL; the case for sR is symmetric.

(X1 < Y1), X2 ⇒ Y2 >R
X2 ⇒ (X1 < Y1) > Y2 gwR

X2 ⇒ ((X1 < Y1) > Y2), Y1 gwL
X1, X2 ⇒ ((X1 < Y1) > Y2), Y1 <L

(X1, X2) < Y1 ⇒ (X1 < Y1) > Y2 >R
(X1 < Y1), ((X1, X2) < Y1) ⇒ Y2 <R
X1 < Y1 ⇒ Y2 < ((X1, X2) < Y1) <L
X1 ⇒ (Y2 < ((X1, X2) < Y1)), Y1 gwL

X1, X2 ⇒ (Y2 < ((X1, X2) < Y1)), Y1 <L
(X1, X2) < Y1 ⇒ Y2 < ((X1, X2) < Y1) <R
((X1, X2) < Y1), ((X1, X2) < Y1) ⇒ Y2 gcL

(X1, X2) < Y1 ⇒ Y2 <L
X1, X2 ⇒ Y2, Y1 comR
X1, X2 ⇒ Y1, Y2

Q.E.D.

A.2 Proof search in display logic

While display calculi are very powerful because of their generality, they have a num-

ber of disadvantages for backward proof search. Firstly, the display postulates can

and must create large structures during the process of displaying a particular formula

occurrence. More specifically, the invertible display postulate rules (for example, >L,

>R, <L and <R of δBiInt presented previously) allow “pointless” shuffling of struc-

214 Display calculi

tures and easily lead to non-termination of proof search if applied naively. Since these

rules are at the heart of display calculi and guarantee the display property, eliminating

them without losing the display property is not obvious.

Another issue is the presence of explicit contraction and weakening rules in dis-

play calculi which are couched in terms of structures rather than formulae. Replac-

ing these rules with ones based on formulae can break Belnap’s condition (C6/C7)

that “each rule is closed under simultaneous substitution of arbitrary structures for

congruent formulas” [75]. Absorbing them completely to obtain a “contraction-free”

calculus is thus not an obvious step.

Figure A.2 illustrates both problems. Reading this derivation attempt backwards,

we start with the formula B → C in the succedent, which we then transform into the

structure B > C. We then apply contraction and a number of display postulate rules,

as well as weakening, and arrive at the sequent A ⇒ B > C. Since the latter is the

same as the second lowest sequent in the derivation, we could potentially repeat this

series of steps (and many others) ad inifinitum.

To sum up, a disciplined proof-theoretic methodology for transforming a display

calculus into a more manageable traditional “contraction-free” and “display postulate

free” calculus whilst preserving cut-admissiblity is an important goal. Although dis-

play calculi were not designed for automated proof-search there is a surprising lack

of interest in the study of proof search for display logics: the only exceptions are the

works of Wansing [117] and Restall [101].

Appendix B

Additional proofs

B.1 Proofs for Chapter 5

Lemma 5.2.6 Admissibility of sR

For any context Σ[], if`DBiInt Π : Σ[X . Y, (Z . W)] then `DBiInt Π′ : Σ[X, Z . Y, W]
such that |Π′| ≤ |Π|.

Proof.

• First we show the base case when Σ[] = []. We use a sub-induction on the height

of the derivation Π, and obtain Π′
1 (resp. Π′

2) from Π1 (resp. Π2) using the sub-

induction hypothesis.

– Cases when Π ends with a propagation rule that moves formulae within

the structures Z and W:

Π1

X . Y, (A, (A, Z1 . Z2) . W)
.L1

X . Y, ((A, Z1 . Z2) . W)

;

Π′
1

X, A, (A, Z1 . Z2) . Y, W
.L1

X, (A, Z1 . Z2) . Y, W

Π1

X . Y, (Z . (W1 . W2, A), A)
.R1

X . Y, (Z . (W1 . W2, A))

;

Π′
1

X, Z . Y, (W1 . W2, A), A
.R1

X, Z . Y, (W1 . W2, A)

– Cases when Π ends with a propagation rule that moves formulae between

the structures X, Y, Z, W:

Π1

A, X . Y, (A, Z . W)
.L2

A, X . Y, (Z . W)

;

Π′
1

A, A, X, Z . Y, W
Lemma 5.2.3

A, X, Z . Y, W

215

216 Additional proofs

Π′
1

X . Y, ((Z1 . Z2, A) . W, A)
.R2

X . Y, ((Z1 . Z2) . W, A)

;

Π′
1

X, (Z1 . Z2, A) . Y, W, A
.R2

X, (Z1 . Z2) . Y, W, A

– Case when Π ends with the logical rule →L where the principal formula is

in Z:
Π1

X . Y, (A → B, Z1 . A, W)

Π2

X . Y, (A → B, B, Z1 . W)
→L

X . Y, (A → B, Z1 . W)

;

Π′
1

X, A → B, Z1 . A, Y, W

Π′
2

X, A → B, B, Z1 . Y, W →L
X, A → B, Z1 . Y, W

– Case when Π ends with the logical rule −<R where the principal formula

is in W:
Π1

X . Y, (Z . W1, A−<B, A)

Π2

X . Y, (Z, B . W1, A−<B)
−<R

X . Y, (Z . W1, A−<B)

;

Π′
1

X, Z . Y, W1, A−<B, A

Π′
2

X, Z, B . Y, W1, A−<B
−<R

X, Z . Y, W1, A−<B

– The cases involving other rules follow immediately from the sub-induction

hypothesis, since they do not move formulae across .-structures.

• For the inductive cases, we have either (1) Σ[] = Σ1[([], U) . V] or (2) Σ[] =
Σ1[U . (V, [])] for some (possibly empty) structures U and V and some context

Σ1[].

We first show case (1) when Σ[] = Σ1[([], U) . V]. We consider sub-cases when

a formula is either propagated out from the context Σ[] to U, or from V into

the context Σ[]. In each case below, we obtain Π′
1 from Π1 using the induction

hypothesis, applied to the context Σ1[].

– Case when Π ends with a propagation rule that moves a formula out from

Σ[] to U:
Π1

Σ1[((X1, A . Y, (Z . W)), A, U) . V]
.L1

Σ1[((X1, A . Y, (Z . W)), U) . V]

;

Π′
1

Σ1[((X1, A, Z . Y, W), A, U) . V]
.L1

Σ1[((X1, A, Z . Y, W), U) . V]

– Case when Π ends with a propagation rule that moves a formula from V

into Σ[]:

§B.1 Proofs for Chapter 5 217

Π1

Σ1[((X . Y, (Z . W), A), U) . V1, A]
.R2

Σ1[((X . Y, (Z . W)), U) . V1, A]

;

Π′
1

Σ1[(X, Z . Y, W, A), U . V1, A]
.R2

Σ1[(X, Z . Y, W), U . V1, A]

– The cases when formulae are propagated within the context can be proven

identically to the case when Σ[] = [].

We now show case (2) when Σ[] = Σ1[U . (V, [])]. We consider sub-cases when

a formula is either propagated out from the context Σ[] to V, or from U into

the context Σ[]. In each case below, we obtain Π′
1 from Π1 using the induction

hypothesis, applied to the context Σ1[].

– Case when Π ends with a propagation rule that moves a formula from Σ[]
into V:

Π1

Σ1[U . (V, (X . Y1, (Z . W), A), A)]
.R1

Σ1[U . (V, (X . Y1, (Z . W), A))]

;

Π′
1

Σ1[U . (V, (X, Z . Y1, W, A), A)]
.R1

Σ1[U . (V, (X, Z . Y1, W, A))]

– Case when Π ends with a propagation rule that moves a formula from U

into Σ[]:
Π1

Σ1[U1, A . (V, (A, X . Y, (Z . W)))]
.L2

Σ1[U1, A . (V, ((X . Y, (Z . W)))]

;

Π′
1

Σ1[U1, A . (V, (A, X, Z . Y, W))]
.L2

Σ1[U1, A . (V, (X, Z . Y, W))]

Q.E.D.

Lemma 5.2.8 Admissibility of .R

For any context Σ[] such that either Σ[] = [] or Σ[] is a positive context, if `DBiInt

Π : X, Y . Z then `DBiInt Π′ : X . (Y . Z).

Proof.

• First we show the base case when Σ[] = []. We use a sub-induction on the height

of the derivation Π, and obtain Π′
1 (resp. Π′

2) from Π1 (resp. Π2) using the sub-

induction hypothesis.

218 Additional proofs

– Cases when Π ends with a propagation rule that moves formulae between

the structures Y and Z:

Π1

X, A, Y1 . (A, Z1 . Z2) .L2
X, A, Y1 . (Z1 . Z2)

;

Π′
1

X . (A, Y1 . (A, Z1 . Z2)) .L2
X . (A, Y1 . (Z1 . Z2))

Π1

X, (Y1 . Y2, A) . Z1, A
.R2

X, (Y1 . Y2) . Z1, A

;

Π′
1

X . ((Y1 . Y2, A) . Z1, A)
.R2

X . ((Y1 . Y2) . Z1, A)

– Cases when Π ends with a propagation rule that moves formulae between

the structures X and Z:

Π1

A, X1, Y . (A, Z1 . Z2) .L2
A, X1, Y . (Z1 . Z2)

;

Π′
1

A, X1 . (Y . (A, Z1 . Z2))
Lm. 5.2.2

A, X1 . (A, Y . (A, Z1 . Z2)) .L2
A, X1 . (A, Y . (Z1 . Z2)) .L2

A, X1 . (Y . (Z1 . Z2))

Π1

(X1 . X2, A), Y . Z1, A
.R2

(X1 . X2), Y . Z1, A

;

Π′
1

(X1 . X2, A) . (Y . Z1, A)
Lm. 5.2.2

(X1 . X2, A) . (Y . Z1, A), A
.R2

(X1 . X2) . (Y . Z1, A), A
.R1

(X1 . X2) . (Y . Z1, A)

– Cases when Π ends with a propagation rule that moves formulae within

the structures Y and Z:

Π1

X, A, (A, Y1 . Y2) . Z
.L1

X, (A, Y1 . Y2) . Z

;

Π′
1

X . (A, (A, Y1 . Y2) . Z)
.L1

X . ((A, Y1 . Y2) . Z)

Π1

X, Y . (Z1 . Z2, A), A
.R1

X, Y . (Z1 . Z2, A)

;

Π′
1

X . (Y . ((Z1 . Z2, A), A))
.R1

X . (Y . (Z1 . Z2, A))

– Case when Π ends with a →L rule where the principal formula is in X:

§B.1 Proofs for Chapter 5 219

Π1

X1, A → B, Y . A, Z

Π2

X1, A → B, B, Y . Z →L
X1, A → B, Y . Z

;

Π′
1

X1 . (A → B, Y . A, Z)

Π′
2

X1 . (A → B, B, Y . Z)
→L

X1 . (A → B, Y . Z)
Lemma 5.2.2

X1, A → B . (A → B, Y . Z)
.L2

X1, A → B . (Y . Z)

– Case when Π ends with a →L rule where the principal formula is in Y:

Π1

X, A → B, Y1 . A, Z

Π2

X, A → B, B, Y1 . Z →L
X, A → B, Y1 . Z

;

Π′
1

X . (A → B, Y1 . A, Z)

Π′
2

X . (A → B, B, Y1 . Z)
→L

X . (A → B, Y1 . Z)

– Case when Π ends with a −<R rule where the principal formula is in Z:

Π1

X, Y . Z1, A−<B, A

Π2

X, Y, B . Z1, A−<B
−<R

X, Y . Z1, A−<B

;

Π′
1

X . (Y . Z1, A−<B, A)

Π′
2

X . (Y, B . Z1, A−<B)
−<R

X . (Y . Z1, A−<B)

– The cases involving other rules follow immediately from the induction hy-

pothesis, since they do not move formulae across .-structures.

• For the inductive case, we have Σ[] = Σ1[U . (V, [])] for some (possibly empty)

structures U and V and some context Σ1[]. We now consider sub-cases when

a formula is either propagated out from the context Σ[] to V, or from U into

the context Σ[]. In each case below, we obtain Π′
1 from Π1 using the induction

hypothesis, applied to the context Σ1[].

– Case when Π ends with a propagation rule that moves a formula out from

Σ[] to V:

Π1

Σ1[U . V, (X, Y . Z1, A), A]
.R1

Σ1[U . V, (X, Y . Z1, A)]

;

Π′
1

Σ1[U . V, (X . (Y . Z1, A)), A]
Lemma 5.2.2

Σ1[U . V, (X . (Y . Z1, A), A), A]
.R1

Σ1[U . V, (X . (Y . Z1, A), A)]
.R1

Σ1[U . V, (X . (Y . Z1, A))]

220 Additional proofs

– Case when Π ends with a propagation rule that moves a formula from U

into Σ[]:
Π1

Σ1[U1, A . V, (A, X, Y . Z)]
.L2

Σ1[U1, A . V, (X, Y . Z)]

;

Π′
1

Σ1[U1, A . V, (A, X . (Y . Z))]
.L2

Σ1[U1, A . V, (X . (Y . Z))]

– The cases when formulae are propagated within the context can be proven

identically to the case when Σ[] = [].

Q.E.D.

Bibliography

[1] G. Amati and F. Pirri. A uniform tableau method for intuitionistic modal logics. I.

Studia Logica, 53(1):29–60, 1994.

[2] A. R. Anderson and N. D. Belnap, Jr. Entailment: The Logic of Relevance and Necessity,

volume 1. Princeton University Press, Princeton, New Jersey, 1975.

[3] C. Areces and R. Bernardi. Analyzing the core of categorial grammar. Journal of

Logic, Language, and Information, 13(2):121–137, 2004.

[4] Z. M. Ariola, H. Herbelin, and A. Sabry. A type-theoretic foundation of delimited

continuations. Higher Order and Symbolic Computation, 22(3):233–273, Sept. 2009.

[5] A. Avron. The method of hypersequents in the proof theory of propositional non-

classical logics. In W. H. et al., editor, Logic: from foundations to applications. Proc.

Logic Coll., Keele, UK, 1993, pages 1–32. Oxford Univ. Press, New York, 1996.

[6] F. Baader and C. Lutz. Description logic. In P. Blackburn, J. van Benthem, and

F. Wolter, editors, Handbook of Modal Logic, pages 757–819. Elsevier, 2007.

[7] M. Baaz, A. Ciabattoni, and C. G. Fermüller. Hypersequent calculi for Gödel logics

- a survey. Journal of Logic and Computation, 13:1–27, 2003.

[8] D. Batens, C. Mortensen, G. Priest, and J. P. V. Bendegem, editors. Frontiers of Para-

consistent Logic. Number 8 in Studies in Logic and Computation. Research Stud-

ies Press, 2000.

[9] G. Bellin. Natural deduction and term assignment for co-Heyting algebras in polar-

ized bi-intuitionistic logic. Submitted to the Proceedings of the Natural Deduc-

tion Conference, Rio de Janeiro, July 2-6, 2001. Accessed from http://profs.
sci.univr.it/ ˜ bellin/nat/nat.pdf on 5th March 2010.

[10] G. Bellin. A term assignment for dual intuitionistic logic. Intuitionistic Modal

Logics and Applications Workshop (IMLA ’05), 2005. Accessed from http:
//profs.sci.univr.it/ ˜ bellin/chicago/chicago.pdf on 5th March

2010.

[11] G. Bellin and C. Biasi. Towards a logic for pragmatics. assertions and conjectures.

Journal of Logic and Computation, 14(4):473–506, 2004.

[12] N. D. Belnap, Jr. Display logic. Journal of Philosophical Logic, 11(4):375–417, 1982.

[13] R. Bernardi and M. Moortgat. Continuation semantics for symmetric categorial

grammar. In D. Leivant and R. J. G. B. de Queiroz, editors, WoLLIC, volume

4576 of Lecture Notes in Computer Science, pages 53–71. Springer, 2007.

221

222 Bibliography

[14] P. Blackburn, J. Benthem, and F. Wolter. Handbook of Modal Logic, Volume 3 (Studies

in Logic and Practical Reasoning). Elsevier Science Inc., New York, NY, USA, 2006.

[15] L. Brouwer. Brouwer’s Cambridge lectures on intuitionism. Cambridge University

Press, 1981. Edited by D. van Dalen.

[16] K. Brünnler. Atomic cut elimination for classical logic. In M. Baaz and J. A.

Makowsky, editors, CSL, volume 2803 of Lecture Notes in Computer Science, pages

86–97. Springer, 2003.

[17] K. Brünnler. Deep sequent systems for modal logic. In G. G. et al, editor, Advances

in Modal Logic, page 107. College Publications, 2006.

[18] K. Brünnler. Deep sequents for modal logic. Unpublished, 2007.

[19] K. Brünnler. Deep sequent systems for modal logic. Arch. Math. Log., 48(6):551–577,

2009.

[20] K. Brünnler. Nested sequents. CoRR, abs/1004.1845, 2010.

[21] K. Brünnler and L. Straßburger. Modular sequent systems for modal logic. In

M. Giese and A. Waller, editors, TABLEAUX 09: Automated Reasoning with Ana-

lytic Tableaux and Related Methods, number 5607 in LNAI, pages 152–166, 2009.

[22] L. Buisman (Postniece) and R. Goré. A cut-free sequent calculus for bi-intuitionistic

logic. In N. Olivetti, editor, Automated Reasoning with Analytic Tableaux and Re-

lated Methods, volume 4548 of LNAI, pages 90–106. Springer, 2007.

[23] M. A. Castilho, L. F. D. Cerro, O. Gasquet, and A. Herzig. Modal tableaux with

propagation rules and structural rules. Fundamenta Informaticae, 32(3/4):281–

297, 1997.

[24] A. Church. A set of postulates for the foundation of logic. Annals of Mathematics,

33:346–366, 1932.

[25] A. Ciabattoni and M. Ferrari. Hypersequent calculi for some intermediate logics

with bounded Kripke models. Journal of Logic and Computation, 11(2):283–294,

2001.

[26] W. Craig. Three uses of the Herbrand-Genzen theorem in relating model theory and

proof theory. Journal of Symbolic Logic, 22:269–285, 1957.

[27] T. Crolard. Subtractive logic. Theoretical Computer Science, 254(1–2):151–185, Mar.

2001.

[28] T. Crolard. A formulae-as-types interpretation of Subtractive Logic. Journal of Logic

and Computation, 14(4):529–570, August 2004.

[29] P.-L. Curien and H. Herbelin. The duality of computation. In ICFP ’00: Proceedings of

the fifth ACM SIGPLAN international conference on Functional programming, pages

233–243, New York, NY, USA, 2000. ACM Press.

[30] J. Czermak. A remark on Gentzen’s calculus of sequents. Notre Dame Journal of For-

mal Logic, 18(3):471–474, 1977.

Bibliography 223

[31] R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of the

ACM, 48(3):555–604, May 2001.

[32] E. Donovan. Automated proof search in bi-intuitionistic logic using sequent calculi.

Honours thesis, Australian National University, 2005.

[33] K. Dosen. Sequent-systems for modal logic. The Journal of Symbolic Logic, 50(1):149–

168, 1985.

[34] A. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory, volume 68 of

Translations of Mathematical Monographs. Cambridge Univ. Press, 1988.

[35] M. Dunn. A ‘Gentzen’ system for positive relevant implication. (abstract). The Jour-

nal of Symbolic Logic, 38:356–357, 1974.

[36] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The Journal of

Symbolic Logic, 57(3):795–807, September 1992.

[37] U. Egly. A polynomial translation of propositional s4 into propositional intuitionis-

tic logic. Unpublished, 1997.

[38] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, New York,

1972.

[39] W. B. Ewald. Intuitionistic tense and modal logic. The Journal of Symbolic Logic,

51(1):166–179, 1986.

[40] S. Feferman, editor. Gödel’s Collected Works. Oxford University Press, Oxford, 1980.

[41] D. Fernandez. A polynomial translation of s4 into intuitionistic logic. The Journal of

Symbolic Logic, 71:989–1001, 2006.

[42] M. Ferrari. Cut-free tableau calculi for some intuitionistic modal logics. Studia Log-

ica, 59(3):303–330, 1997.

[43] A. Filinski. Declarative continuations: an investigation of duality in programming

language semantics. In D. H. Pitt, D. E. Rydeheard, P. Dybjer, A. M. Pitts, and

A. Poigné, editors, Category Theory and Computer Science, volume 389 of Lecture

Notes in Computer Science, pages 224–249, Berlin, 1989. Springer-Verlag.

[44] M. Fitting. Modal proof theory. In P. Blackburn, J. van Benthem, and F. Wolter, edi-

tors, Handbook of Modal Logic, pages 86–138. Elsevier, 2007.

[45] J. H. Gallier. Logic for Computer Science, Foundations of Automated Theorem Proving.

Computer Science and Technology Series. Harper & Row, 1986.

[46] G. Gentzen. Untersuchungen über das Logische Schliessen. Mathematische

Zeitschrift, 39:176–210 and 405–431, 1935. English translation in [108].

[47] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

[48] K. Gödel. Eine interpretation des intuitionistischen aussagenkalkuls. Ergebnisse

eines Mathematischen Kolloquiums., 4:39–40, 1933. English translation in [40].

[49] N. D. Goodman. The logic of contradiction. Zeitschrift für mathematische Logik und

Grundlagen der Mathematik, 27(2):119–126, 1981.

224 Bibliography

[50] V. Goranko. Refutation systems in modal logic. Studia Logica, 53(2):299–324, 1994.

[51] R. Goré. Substructural logics on display. Logic Journal of the IGPL, 6(3):451–504, 1998.

[52] R. Goré. Tableau methods for modal and temporal logics. In R. H. Mar-

cello D’Agostino, Dov M. Gabbay and J. Posegga, editors, Handbook of Tableau

Methods, pages 297–396. Kluwer, 1999.

[53] R. Goré. Dual intuitionistic logic revisited. In R. Dyckhoff, editor, TABLEAUX, vol-

ume 1847 of Lecture Notes in Computer Science, pages 252–267. Springer, 2000.

[54] R. Goré and L. A. Nguyen. EXPTIME tableaux with global caching for description

logics with transitive roles, inverse roles and role hierarchies. In N. Olivetti,

editor, TABLEAUX, volume 4548 of Lecture Notes in Computer Science, pages 133–

148. Springer, 2007.

[55] R. Goré and L. Postniece. Combining derivations and refutations for cut-free com-

pleteness in bi-intuitionistic logic. J. Log. and Comput., 20(1):233–260, 2010.

[56] R. Goré, L. Postniece, and A. Tiu. Cut-elimination and proof search for bi-

intuitionistic tense logic. In Advances in Modal Logic 2010. To appear.

[57] R. Goré, L. Postniece, and A. Tiu. Cut-elimination and proof-search for bi-

intuitionistic logic using nested sequents. In C. Areces and R. Goldblatt, editors,

Advances in Modal Logic, pages 43–66. College Publications, 2008.

[58] R. Goré, L. Postniece, and A. Tiu. Taming displayed tense logics using nested se-

quents with deep inference. In M. Giese and A. Waaler, editors, TABLEAUX,

volume 5607 of Lecture Notes in Computer Science, pages 189–204. Springer, 2009.

[59] R. Goré and F. Widmann. Sound global state caching for ALC with inverse roles.

In M. Giese and A. Waaler, editors, TABLEAUX, volume 5607 of Lecture Notes in

Computer Science, pages 205–219. Springer, 2009.

[60] A. Guglielmi. A system of interaction and structure. ACM Trans. on Computational

Logic, 8(1):1–64, Jan. 2007.

[61] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate gen-

eration: A frequent-pattern tree approach. Data Mining and Knowledge Discovery,

8(1):53–87, 2004.

[62] A. Heuerding. Sequent Calculi for Proof Search in some Modal Logics. PhD thesis,

Institute for Applied Mathematics and Computer Science, University of Bern,

Switzerland, 1998.

[63] A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for back-

ward proof search in some non-classical propositional logics. In Analytic

Tableaux and Related Methods, volume 1071 of LNAI, pages 210–225, 1996.

[64] I. Horrocks. Implementation and optimisation techniques. In F. B. et al., editor, The

Description Logic Handbook: Theory, Implementation, and Applications, chapter 9,

pages 306–346. Cambridge University Press, 2003.

[65] I. Horrocks, U. Hustadt, U. Sattler, and R. Schmidt. Computational modal logic. In

P. B. et al., editor, Handbook of Modal Logic, pages 181–245. Elsevier, 2007.

Bibliography 225

[66] I. Horrocks, P. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF to

OWL: The making of a web ontology language. Journal of Web Semantics, 1(1):7–

26, 2003.

[67] I. Horrocks and P. F. Patel-Schneider. Optimizing description logic subsumption. J.

Log. Comput, 9(3):267–293, 1999.

[68] I. Horrocks, U. Sattler, and S. Tobies. A PSpace-algorithm for deciding ALCNIR+-

satisfiability. Technical Report LTCS-98-08, LuFG TCS, RWTH Aachen, 1998.

[69] I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for very expressive de-

scription logics. Logic Journal of the IGPL, 8(3):239–264, 2000.

[70] W. A. Howard. The formulas-as-types notion of construction. In J. P. Seldin and J. R.

Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and

Formalism, pages 479–490. Academic Press, 1980.

[71] J. M. Howe. Proof search issues in some non-classical logics. PhD thesis, University of

St Andrews, 1998.

[72] A. Indrzejczak. Multiple sequent calculus for tense logics. International Conference

on Temporal Logic, Leipzig 2000, 2000. 93–104.

[73] R. Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53:119–

135, 1994.

[74] D. E. Knuth. Semantics of Context-Free Languages, volume 2, pages 127–145. Springer-

Verlag, New York, June 1968.

[75] M. Kracht. Power and weakness of the modal display calculus. In H. Wansing, edi-

tor, Proof Theory of Modal Logics, pages 92–121. Kluwer, 1996.

[76] S. A. Kripke. A completeness theorem in modal logic. The Journal of Symbolic Logic,

24, 1959.

[77] S. A. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica,

16:83–94, 1963.

[78] S. A. Kripke. Semantical analysis of intuitionistic logic. In J. Crossley and M. A. E.

Dummett, editors, Formal Systems and Recursive Functions, pages 92–130. North-

Holland, Amsterdam, 1965.

[79] P. Landin. Correspondence between ALGOL 60 and Church’s lambda-notation:

part I. Commun. ACM, 8(2):89–101, 1965.

[80] D. Larchey-Wendling. Combining proof-search and counter-model construction for

deciding Gödel-Dummett logic. In A. Voronkov, editor, Automated Deduction –

CADE-18, volume 2392 of LNCS, pages 94–110, 2002.

[81] J. Łukasiewicz. Aristotle’s syllogistic from the standpoint of modern formal logic. Claren-

don Press, Oxford, 2nd edition, 1957.

[82] P. Łukowski. Modal interpretation of Heyting-Brouwer logic. Bulletin of the Section

of Logic, 25(2):80–83, 1996.

226 Bibliography

[83] S. Maehara. Eine darstellung der intuitionistischen logik in der klassischen. Nagoya

Mathematical Journal, pages 45–64, 1954.

[84] A. Masini. 2-sequent calculus: Intuitionism and natural deduction. J. Log. Comput,

3(5):533–562, 1993.

[85] R. P. McArthur. Tense Logic. D. Reidel Publishing Co., Dordrecht, Holland, 1976.

[86] K. L. McMillan. Applications of Craig interpolants in model checking. In N. Halb-

wachs and L. D. Zuck, editors, TACAS, volume 3440 of Lecture Notes in Computer

Science, pages 1–12. Springer, 2005.

[87] G. Minc. Cut-elimination theorem in relevant logics. In J. V. Matijasevic and

O. A. Silenko, editors, Isslédovaniá po konstructivnoj mathematiké i matematičeskoj

logike V, pages 90–97. Izdatél’stvo “Nauka”, 1972. (English translation in “Cut-

Elimination Theorem in Relevant Logics” [88]).

[88] G. Minc. Cut-elimination theorem in relevant logics. The Journal of Soviet Mathemat-

ics, 6:422–428, 1976. (English translation of the original article [87]).

[89] S. Negri. Proof analysis in modal logic. Journal of Philosophical Logic, 34(5):507–544,

2005.

[90] A. Nerode and R. A. Shore. Logic for applications. Graduate texts in computer science.

Springer, New York, 2nd edition, 1997.

[91] L. A. Nguyen. An efficient tableau prover using global caching for the description

logic ALC. Fundam. Inform, 93(1-3):273–288, 2009.

[92] F. Pfenning and H.-C. Wong. On a modal λ-calculus for S4. In S. Brookes and

M. Main, editors, Proceedings of the Eleventh Conference on Mathematical Foun-

dations of Programming Semantics, New Orleans, Louisiana, Mar. 1995. Electronic

Notes in Theoretical Computer Science, Volume 1, Elsevier.

[93] B. Pierce. Types and Programming Languages. The MIT Press, Cambridge, MA, 2002.

[94] L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for intuitionis-

tic propositional logic. In M. B. et al., editor, Symposia Gaussiana, pages 225–232,

Berlin and New York, 1995. Walter de Gruyter & Co.

[95] L. Pinto and T. Uustalu. Proof search and counter-model construction for bi-

intuitionistic propositional logic with labelled sequents. In M. Giese and

A. Waaler, editors, TABLEAUX, volume 5607 of Lecture Notes in Computer Sci-

ence, pages 295–309. Springer, 2009.

[96] L. Pinto and T. Uustalu. Relating sequent calculi for bi-intuitionistic propositional

logic. In S. van Bakel, S. Berardi, and U. Berger, editors, 3rd Workshop on Classical

Logic and Computation CL&C 2010, 2010. To appear.

[97] F. Poggiolesi. The tree-hypersequent method for modal propositional logic. Trends

in Logic: Towards Mathematical Philsophy, pages 9–30, 2009.

[98] L. Postniece. Deep inference in bi-intuitionistic logic. In H. Ono, M. Kanazawa, and

R. J. G. B. de Queiroz, editors, WoLLIC, volume 5514 of Lecture Notes in Computer

Science, pages 320–334. Springer, 2009.

Bibliography 227

[99] C. Rauszer. A formalization of the propositional calculus of H-B logic. Studia Logica,

33:23–34, 1974.

[100] C. Rauszer. An algebraic and Kripke-style approach to a certain extension of intu-

itionistic logic. Dissertationes Mathematicae, 168, 1980. Institute of Mathematics,

Polish Academy of Sciences.

[101] G. Restall. An Introduction to Substructural Logics. Routledge, London, 2000.

[102] E. Saarinen, editor. Game-Theoretical Semantics: Essays on Semantics. D. Reidel Pub-

lishing Co., Dordrecht, 1979.

[103] S. Schwendimann. A new one-pass tableau calculus for PLTL. In Analytic Tableaux

and Related Methods, volume 1397 of LNAI, pages 277–292, 1998.

[104] A. K. Simpson. The proof theory and semantics of intuitionistic modal logic. PhD thesis,

University of Edinburgh, 1994.

[105] E. Spaan. The complexity of propositional tense logics. In M. de Rijke, editor, Di-

amonds and Defaults, pages 287–307. Kluwer Academic Publishers, Dordrecht,

1993.

[106] R. Statman. Intuitionistic propositional logic is polynomial-space complete. Theo-

retical Computer Science, 9(1):67–72, July 1979.

[107] V. Śvejdar. On sequent calculi for intuitionistic propositional logic. Commentationes

Mathematicae Universitatis Carolinae, 47(1):159–173, 2006.

[108] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. Studies in Logic and the

foundations of Mathematics. North-Holland, Amsterdam, 1969.

[109] S. Thompson. Haskell: The Craft of Functional Programming (2nd edition). Addison

Wesley, Reading, Mass., 1999.

[110] A. Tiu. A local system for intuitionistic logic. In M. Hermann and A. Voronkov,

editors, LPAR, volume 4246 of Lecture Notes in Computer Science, pages 242–256.

Springer, 2006.

[111] A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University

Press, 1996.

[112] A. S. Troelstra and D. van Dalen. Constructivism in mathematics: an introduction, vol-

ume 1. Elsevier Science Publishers, Amsterdam, 1988.

[113] K. Trzesicki. Gentzen-style axiomatization of tense logic. Bulletin of the Section of

Logic, 13(2):75–83, 1984.

[114] I. Urbas. Dual-intuitionistic logic. Notre Dame Journal of Formal Logic, 37(3):440–451,

Summer 1996.

[115] Y. Venema. Algebras and co-algebras. In P. Blackburn, J. van Benthem, and F. Wolter,

editors, Handbook of Modal Logic, pages 331–426. Elsevier, 2007.

[116] H. Wansing. Sequent calculi for normal modal proposisional logics. Journal of Logic

and Computation, 4(2):125–142, Apr. 1994.

228 Bibliography

[117] H. Wansing. Modal tableaux based on residuation. J. Log. Comput, 7(6):719–731,

1997.

[118] H. Wansing. Displaying Modal Logic. Kluwer Academic Publishers, 1998.

[119] H. Wansing. Formulas-as-types for temporal logic. Technical Report, Dresden Uni-

versity of Technology, Institute of Philosophy, 2000.

[120] H. Wansing. Constructive negation, implication, and co-implication. Journal of Ap-

plied Non-classical Logics, 18(2–3):341–364, 2008.

[121] F. Wolter. On logics with coimplication. Journal of Philosophical Logic, 27(4):353–387,

1998.

