
Deep inference in bi-intuitionistic logic

Linda Postniece

Logic and Computation Group
College of Computer Science and Engineering

The Australian National University
Linda.Postniece@anu.edu.au

Abstract. Bi-intuitionistic logic is the extension of intuitionistic logic
with exclusion, a connective dual to implication. Cut-elimination in bi-
intuitionistic logic is complicated due to the interaction between these
two connectives, and various extended sequent calculi, including a display
calculus, have been proposed to address this problem.
In this paper, we present a new extended sequent calculus DBiInt for
bi-intuitionistic logic which uses nested sequents and “deep inference”,
i.e., inference rules can be applied at any level in the nested sequent. We
show that DBiInt can simulate our previous “shallow” sequent calculus
LBiInt. In particular, we show that deep inference can simulate the resid-
uation rules in the display-like shallow calculus LBiInt. We also consider
proof search and give a simple restriction of DBiInt which allows termi-
nating proof search. Thus our work is another step towards addressing
the broader problem of proof search in display logic.

1 Introduction

Bi-intuitionistic logic (BiInt) is the extension of intuitionistic logic with exclu-
sion −< (also known as “subtraction” and “co-implication”), a connective dual
to implication →. In a sequent calculus setting, the left-introduction rule for
exclusion is dual to the right introduction rule for implication:

A⇒ B,∆ −<L
A−<B ⇒ ∆

Γ,A⇒ B →R
Γ ⇒ A→ B

BiInt was first studied by Rauszer as a Hilbert calculus with algebraic and
Kripke semantics [13]. More recently, Crolard has investigated applications of
BiInt to type theory [3]. The duality between implication and exclusion also
makes it interesting to study BiInt purely from a proof-theoretic point of view,
since cut-elimination in BiInt is non-trivial. That is, the only cut-free calculi for
BiInt either use extended sequent mechanisms such as labels [12], variables [6]
or nested sequents [8], or display calculi that rely on residuation [5].

In this paper we follow up on our previous work on nested sequent calculi for
BiInt [8], as well as our more recent work on deep inference for tense logics [7].
Nested sequents are structures that can be seen as trees of traditional sequents,
and have been studied, among others, by Kashima [11] and Brünnler [2] in the

context of classical modal and tense logics. Nested sequent calculi allow either
“shallow” or “deep” inference: in shallow inference calculi inference rules are
applied at the top level only, and residuation rules are used to re-orient the
trees to bring the required structures to the top-level. In deep inference calculi,
inference rules can be applied at any level, and propagation rules move formulae
around the trees. We are not aware of any nested sequent calculi for intuitionistic
logics that use deep inference, although there has been work on deep inference
in the calculus of structures for intuitionistic logic [14]; see Section 6 for details.

In [7], we showed that deep inference in nested sequents for tense logic can
simulate the residuation rules of a shallow inference nested sequent calculus.
Since BiInt is the intuitionistic analog of tense logic, a natural question is whether
deep inference can be applied to BiInt. We address this question here, and show
that indeed we can simulate residuation using deep inference for BiInt.

More precisely, we show that residuation, an operation on the trees encoded
in nested sequents, can be simulated by propagation rules, which only move
formulae between the nodes rather than change the shape of the trees. Due to
the intuitionistic nature of the logic, some differences from [7] arise. Namely, we
introduce the concept of polarity, and some rules are only applicable in positive
or negative sub-structures, rather than general sub-structures as in tense logic.

The rest of the paper is organised as follows. First, in Section 2, we give
the syntax of BiInt as well as our nested sequent structures. We then present
two nested sequent calculi for BiInt in Section 3: we recall the shallow inference
calculus LBiInt [8] and give a new deep inference calculus DBiInt. In Section 4,
we show that provability in DBiInt is equivalent to provability in LBiInt,
which is the central result of our paper. The non-trivial part is showing that
the residuation rules of LBiInt can be simulated by the propagation rules and
deep inference of DBiInt. In Section 5, we give a simple restriction of DBiInt
that allows terminating backward proof search. In Section 6, we describe related
work and outline future work. The Appendix contains more detailed proofs.

2 Nested Sequents

The formulae of BiInt are built from a set of atoms Atoms according to the
following grammar, where p ∈ Atoms:

A := p | > | ⊥ | A→ A | A−<A | A ∧A | A ∨A.

A structure is defined by the following grammar, where A is a BiInt formula:

X := ∅ | A | (X,X) | X .X.

The structural connective “,” (comma) is associative and commutative and ∅
is its unit. We always consider structures modulo these equivalences. To reduce
parentheses, we assume that “,” binds tighter than “.”. Thus, we write X,Y .Z
to mean (X,Y) . Z. If X and Y are structures, then X . Y is a nested deep
sequent, and X ⇒ Y is a nested shallow sequent.

2

A context is a deep sequent with a single hole, and is written Σ[]. We write
Σ[X] to denote the sequent that results from filling the hole in Σ[] with X. For
example, if Σ1[] = Z1 . [], Z2 then Σ1[X1 . Y1] = Z1 . (X1 . Y1), Z2.

A hole in a context can have either negative or positive polarity. If X, [] .Y
is a substructure of Σ, then Σ[] is a negative context and we write Σ−[]. If
X . [], Y is a substructure of Σ, then Σ[] is a positive context and we write Σ+[].
For example, Σ−[] = X1 . ([] .Y1) is a negative context and Σ+[] = (X1 . []) .Y1

is a positive context.

We define the immediate super-structure of a context as:
︷︸︸︷
Σ[] = X . Y

such that X . Y is a sub-structure of Σ and X = [], X ′ for some structure
X ′ or Y = [], Y ′ for some structure Y ′. We define the top-level formulae of a
structure as: {X} = {A | X = (A, Y) for some A and Y }. For example, if Σ[] =

A,B .C, (D, (E.F). []), then
︷ ︸︸ ︷
Σ[G] = (D, (E.F).G), and {D, (E.F)} = {D}.

While deep inference allows us to “zoom-in” to any sub-structure deep in-
side the nested sequent, the concept of an immediate super-structure acts the
opposite way in that it allows us to “zoom-out” from a context to its immediate
surrounding nested structure. This will be useful when we restrict our rules for
terminating proof-search, allowing us to impose local checks on the rules.

3 Nested Sequent Calculi

We now present the two nested sequent calculi that we will use in the rest of
the paper: the shallow inference calculus LBiInt from our previous work [8] and
a new deep inference calculus DBiInt. We repeat the rules of LBiInt here to
make the present paper self-contained, see [8] for the full details.

Fig. 1 gives the rules of the cut-free fragment of LBiInt (LBiInt has cut-
elimination). Central to this calculus is the idea that inference rules can only
be applied to formulae at the top level of nested sequents, and the structural
rules sL, sR, .L and .R are used to bring the required sub-structures to the
top level. These rules, very similar to residuation postulates in display logic,
are essential for the cut-elimination proof of LBiInt, however, they contain too
much non-determinism for effective proof search.

Note that we have changed the notation slightly from [8] for an expository
purpose: we are using . as the only structural connective, while the original
LBiInt had < in negative sub-structures and > in positive sub-structures. Also,
the .L and .R rules contained an implicit weakening which we have removed here.
We also use⇒ for the sequent turnstile, reserving ` for denoting provability. That
is, we write `LBiInt Π : X ⇒ Y to mean that there exists an LBiInt-derivation
Π of the sequent X ⇒ Y .

Fig. 2 gives the rules of our new deep inference calculus DBiInt. Here the
inference rules can be applied at any level of the nested sequent, indicated by
the use of contexts. Notably, there are no residuation rules; indeed the main goal
of our paper is to show that the residuation rules of LBiInt can be simulated by

3

Identity and logical constants:

id
X,A⇒ A, Y

⊥L
X,⊥ ⇒ Y

>R
X ⇒ >, Y

Structural rules:

X ⇒ Y wL
X,A⇒ Y

X ⇒ Y wR
X ⇒ A, Y

X,A,A⇒ Y
cL

X,A⇒ Y

X ⇒ A,A, Y
cR

X ⇒ A, Y

(X1 . Y1), X2 ⇒ Y2
sL

X1, X2 ⇒ Y1, Y2

X1 ⇒ Y1, (X2 . Y2)
sR

X1, X2 ⇒ Y1, Y2

X2 ⇒ Y2, Y1
.L

(X2 . Y2)⇒ Y1

X1, X2 ⇒ Y2
.R

X1 ⇒ (X2 . Y2)

Logical rules:

X,Bi ⇒ Y
∧L i ∈ {1, 2}

X,B1 ∧B2 ⇒ Y

X ⇒ A, Y X ⇒ B, Y ∧R
X ⇒ A ∧B, Y

X,A⇒ Y X,B ⇒ Y ∨L
X,A ∨B ⇒ Y

X ⇒ Bi, Y ∨R i ∈ {1, 2}
X ⇒ B1 ∨B2, Y

X ⇒ A, Y X,B ⇒ Y →L
X,A→ B ⇒ Y

X,A⇒ B →R
X ⇒ A→ B, Y

A⇒ B, Y −<L
X,A−<B ⇒ Y

X ⇒ A, Y X,B ⇒ Y −<R
X ⇒ A−<B, Y

Fig. 1. LBiInt: a shallow inference system for BiInt

deep inference and propagation rules in DBiInt. We write `DBiInt Π : X . Y
to mean that there exists a DBiInt-derivation Π of the sequent X . Y .

We write |Π| for the height of a derivation, i.e., the number of sequents on the
longest branch, where Π is either an LBiInt-derivation or a DBiInt-derivation.

3.1 Examples

We give two examples to illustrate the difference between shallow inference in
LBiInt and deep inference in DBiInt.

Example 1. The following is a derivation of Uustalu’s formula [12] in LBiInt:

idp⇒ q, p idp, q ⇒ q −<Rp⇒ q, p−<q
.Lp . q ⇒ p−<q
wL

p . q, r ⇒ p−<q id
(p . q), r ⇒ r ∧R

(p . q), r ⇒ (p−<q) ∧ r →R
p . q ⇒ r → ((p−<q) ∧ r)

sL
p⇒ q, r → ((p−<q) ∧ r)

4

Identity and logical constants:

id
Σ[X,A . A, Y]

⊥L
Σ−[⊥]

>R
Σ+[>]

Propagation rules:

Σ−[{X}, (X . Y)]
.L1

Σ−[X . Y]

Σ+[(X . Y), {Y }]
.R1

Σ+[X . Y]

Σ[X . (W, ({X}, Y . Z))]
.L2

Σ[X . (W, (Y . Z))]

Σ[((X . Y, {Z}),W) . Z]
.R2

Σ[((X . Y),W) . Z]

Logical rules:

Σ−[A ∨B,A] Σ−[A ∨B,B]
∨L

Σ−[A ∨B]

Σ+[A ∨B,A,B]
∨R

Σ+[A ∨B]

Σ−[A ∧B,A,B]
∧L

Σ−[A ∧B]

Σ+[A ∧B,A] Σ+[A ∧B,B]
∧R

Σ+[A ∧B]

Σ−[A−<B, (A . B)]
−<L

Σ−[A−<B]

Σ+[A→ B, (A . B)] →R

Σ+[A→ B]

Σ[X,A→ B . A, Y] Σ[X,A→ B,B . Y] →L
Σ[X,A→ B . Y]

Σ[X . Y,A−<B,A] Σ[X,B . Y,A−<B]
−<R

Σ[X . Y,A−<B]

Fig. 2. DBiInt: a deep inference system for BiInt

This example uses the rules .L and sL to bring the required sub-structures to
the top-level to apply the inference rules.

Example 2. The following is a derivation of Uustalu’s formula in DBiInt where
we abbreviate A = r → ((p−<q) ∧ r), B = (p−<q) ∧ r and X = p, r . B, p−<q
to save space. For readability, we draw a box around the structure that the
inference rule is applied to, unless it is the top-level structure:

id
p . q,A,X,B, p−<q, p id

p, q . q,A,X,B, p−<q −<R
p . q,A,X,B, p−<q

.R1

p . q,A, (p, r . B, p−<q)
id

p . q,A, (p, r . B, r)
∧R

p . q,A, (p, r . (p−<q) ∧ r)
.L2

p . q,A, (r . (p−<q) ∧ r) →R
p . q, r → ((p−<q) ∧ r)

This example uses deep inference to apply the inference rules at any level. The
formula propagation rules .R1 and .L2 ensure that the required formulae are
propagated to the appropriate sub-structure.

5

4 Soundness and Completeness of DBiInt

4.1 Soundness of DBiInt

We first show that the propagation rules of DBiInt can be derived in LBiInt
using residuation. This is not a surprising result, since the residuation rules in
display logics are used exactly for the purpose of displaying and un-displaying
sub-sequents so that inference rules can be applied to them.

Theorem 1 (Soundness). For any structures X and Y , if `DBiInt Π : X . Y
then `LBiInt Π

′ : X ⇒ Y .

Proof. By induction on |Π|. We show one interesting case. The given DBiInt-
derivation is on the left, and we obtain the LBiInt-derivation on the right, where
Π ′1 is obtained by the induction hypothesis (IH).

Π1

X . (Y1 . Y2), {Y2} .R1
X . (Y1 . Y2)

;

Π ′1
X ⇒ (Y1 . Y2), {Y2} sR
X,Y1 ⇒ Y2, {Y2} cR
X,Y1 ⇒ Y2 .R

X ⇒ (Y1 . Y2)

4.2 Completeness of DBiInt

Our aim is to show that DBiInt is complete w.r.t. LBiInt. But first we state
some basic lemmas, which can all be proved using simple induction on |Π|.

Lemma 1 (Admissibility of general weakening). For any structures X and
Y : if `DBiInt Π : Σ[X] then `DBiInt Π

′ : Σ[X,Y] such that |Π ′| ≤ |Π|.

Lemma 2 (Invertibility). All DBiInt rules are invertible: if the conclusion
is derivable, so are all the premises.

Lemma 3 (Admissibility of formula contraction). For any structure X
and formula A: if `DBiInt Π : Σ[X,A,A] then `DBiInt Π

′ : Σ[X,A].

Corollary 1. For any structure X, if `DBiInt Π : Σ[X, {X}] then `DBiInt Π
′ :

Σ[X].

We now show that the residuation rules of LBiInt are admissible in DBiInt;
that is, they can be simulated by the propagation rules of DBiInt. Lemmas 4
to 7 are proved by induction on |Π|. We show some interesting cases, where Π
ends with a propagation rule.

Lemma 4 (Admissibility of sL). If `DBiInt Π : (X .Y), Z .W then `DBiInt

Π ′ : X,Z . Y,W .

6

Proof. SupposeΠ ends as below left. Then we obtain a derivationΠ ′1 ofX, {X}, Z.
Y,W from the IH, and a derivation Π ′′1 of X,Z .Y,W from Corollary 1 and Π ′1.
Then the derivation on the right gives the required:

Π1

{X}, (X . Y), Z . W
.L1

(X . Y), Z . W
;

Π ′′1
X,Z . Y,W

Lemma 5 (Admissibility of sR). If `DBiInt Π : X .Y, (Z .W) then `DBiInt

Π ′ : X,Z . Y,W .

Lemma 6 (Admissibility of .L). If `DBiInt Π : X . Y,Z then `DBiInt Π
′ :

(X . Y) . Z.

Lemma 7 (Admissibility of .R). If `DBiInt Π : X,Y . Z then `DBiInt Π
′ :

X . (Y . Z).

Proof. Suppose Π ends as below left. Then we obtain a derivation Π ′1 of (X1 .
X2, {Z}) . (Y . Z) from the IH, and a derivation Π ′′1 of (X1 . X2, {Z}) . ((Y .
Z), {Z}) from Lemma 1 and Π ′1. Then the derivation on the right gives the
required:

Π1

(X1 . X2, {Z}), Y . Z
.R2

(X1 . X2), Y . Z

;

Π ′′1
(X1 . X2, {Z}) . ((Y . Z), {Z})

.R2
(X1 . X2) . ((Y . Z), {Z})

.R1
(X1 . X2) . (Y . Z)

Lemma 8 (Admissibility of general contraction). For any structures X
and Y : if `DBiInt Π : Σ[X,Y, Y] then `DBiInt Π

′ : Σ[X,Y].

Proof. By induction on the size of Y . The interesting case is when Y = (Y1 .Y2).
This can be reduced to contractions on Y1 and Y2, which are admissible by the
IH; Y1 . Y2 can then be reconstructed using Lemmas 4 to 7.

Theorem 2 (Completeness). For any structures X and Y , if `LBiInt Π :
X ⇒ Y then `DBiInt Π

′ : X . Y .

Proof. By induction on |Π|. We illustrate one case where Π ends in a logical rule
application and one where Π ends in a structural rule application. The other
interesting cases use Lemmas 4 to 7.

– Suppose Π is as below left. Then we first obtain DBiInt-derivations Π ′1 and
Π ′2 of X . A, Y and X,B . Y respectively from the IH. Second, we obtain
Π ′′1 and Π ′′2 by Lemma 1 from Π ′1 and Π ′2. Finally, the required DBiInt-
derivation is as below right:

Π1

X ⇒ A, Y

Π2

X,B ⇒ Y →L
X,A→ B ⇒ Y

;

Π ′′1
X,A→ B . A, Y

Π ′′2
X,A→ B,B . Y →L

X,A→ B . Y

7

– Suppose Π is as below left. Then we first obtain a DBiInt-derivation Π ′1 of
X,Y .Z by the IH. Second, we obtain a DBiInt-derivation Π ′′1 of X.(Y .Z)
fromΠ ′1 by Lemma 7. Then the required DBiInt-derivation is as below right:

Π1

X,Y ⇒ Z
.R

X ⇒ (Y . Z)
;

Π ′′1
X . (Y . Z)

Theorem 3. For any structures X and Y , `LBiInt Π : X ⇒ Y if and only if
`DBiInt Π

′ : X . Y .

Proof. By Theorems 1 and 2.

5 Proof Search

Naive proof search in DBiInt does not terminate. Consider the following proof
attempt fragment, where X = (A→ B)→ C, (D → E)→ F and we only show
the left premise of each →L rule instance:

...
X . G,A→ B, (X,A . B,D → E, (X,A,D . E,A→ B, (A . B))) →R

X . G,A→ B, (X,A . B,D → E, (X,A,D . E,A→ B))
→L

X . G,A→ B, (X,A . B,D → E, (X,A,D . E))
.L2

X . G,A→ B, (X,A . B,D → E, (D . E))
→R

X . G,A→ B, (X,A . B,D → E)
→L

X . G,A→ B, (X,A . B)
.L2

X . G,A→ B, (A . B) →R
X . G,A→ B →L

(A→ B)→ C, (D → E)→ F . G

There is an interaction between the →R, .L2 and →L rules that causes non-
termination, even for the intuitionistic fragment of the logic. This well-known
problem occurs in traditional sequent calculi as well, and it is caused by the
implicit contraction in the →L rule. For intuitionistic logic, this problem has
been addressed by contraction-free calculi [4] and history-based loop-checks [10].
However, these methods are less suitable for BiInt where the interaction between
→ and −< formulae needs to be considered. Here we address termination using
a saturation process and two derived rules that speed up proof search. The
approach is similar to our previous work [8], but here we apply it to deep inference
and contexts instead of top-level sequents only.

Let −<L1 and →R1 denote two rules derived as below, where a dashed infer-
ence line means the conclusion is derived from the premise using Lemma 1:

8

Σ−[A,A−<B]
Lemma 1

Σ−[A−<B,A, (A . B)]
.L1

Σ−[A−<B, (A . B)]
−<L

Σ−[A−<B]

;
Σ−[A,A−<B]

−<L1
Σ−[A−<B]

Σ+[A→ B,B]
Lemma 1

Σ+[A→ B, (A . B), B]
.R1

Σ+[A→ B, (A . B)] →R
Σ+[A→ B]

;
Σ+[A→ B,B] →R1
Σ+[A→ B]

Let Σ[Z] be any sequent. Then let X.Y =
︷ ︸︸ ︷
Σ[Z]. We say that Σ[Z] is saturated

iff all the following conditions are met:

1. {X} ∩ {Y } = ∅
2. If A ∧B ∈ {X} then A ∈ {X} and B ∈ {X}
3. If A ∧B ∈ {Y } then A ∈ {Y } or B ∈ {Y }
4. If A ∨B ∈ {X} then A ∈ {X} or B ∈ {X}
5. If A ∨B ∈ {Y } then A ∈ {Y } and B ∈ {Y }
6. If A→ B ∈ {X} then A ∈ {Y } or B ∈ {X}
7. If A−<B ∈ {Y } then A ∈ {Y } or B ∈ {X}
8. If A→ B ∈ {Y } then B ∈ {Y }
9. If A−<B ∈ {X} then A ∈ {X}

Let X and Y be two structures. We say that a formula A → B is realised by
X.Y iff there exists a structure Z.W ∈ Y such that A ∈ Z and B ∈W . We say
that a formula C−<D is realised by X.Y iff there exists a structure Z.W ∈ X
such that C ∈ Z and D ∈ W . We define the super-set relation on sequents as
follows: X1 . Y1 ⊃ X0 . Y0 iff {X1} ⊃ {X0} or {Y1} ⊃ {Y0}. Then the following
simple modifications of DBiInt ensure termination using only local checks:

Definition 1. Let DBiInt1 be the system obtained from DBiInt with the fol-
lowing changes:

1. Add the derived rules −<L1 and →R1.
2. Replace rules −<L, →R by the following:

Σ−[A−<B, (A . B)]
−<L

Σ−[A−<B]

where Σ−[A−<B] is saturated and A−<B is not realised by
︷ ︸︸ ︷
Σ−[A−<B]

Σ+[A→ B, (A . B)] →R
Σ+[A→ B]

where Σ+[A→ B] is saturated and A→ B is not realised by
︷ ︸︸ ︷
Σ+[A→ B]

9

3. Replace rules .L2 and .R2 by the following:

Σ[X . (W, ({X}, Y . Z))]
.L2 where {X} ⊃ {Y }

Σ[X . (W, (Y . Z))]

Σ[((X . Y, {Z}),W) . Z]
.R2 where {Z} ⊃ {Y }

Σ[((X . Y),W) . Z]
4. Replace rules →L, −<R, .L1, .R1, ∧L, ∧R, ∨L, ∨R with the following re-

stricted versions:
(a) Let γ0 be the conclusion of the rule let γ1 (and γ2) be the premises. The

rule is applicable only if:
︷︸︸︷
γ1 ⊃

︷︸︸︷
γ0 and

︷︸︸︷
γ2 ⊃

︷︸︸︷
γ0 .

Theorem 4. For any structures X and Y , `DBiInt Π : X . Y if and only if
`DBiInt1 Π

′ : X . Y .

Theorem 5. For any X and Y , backward proof search in DBiInt1 for X . Y
terminates.

6 Related Work, Future Work and Conclusion

Deep inference: Deep inference in the calculus of structures was pioneered by
Guglielmi [9]. In his work, inference rules can be applied deep inside formulae,
not just deep inside nested sequent structures as in our case. This method has
also been applied to intuitionistic logic [14]. The works of Kashima [11] and
Brünnler [2] are closer to ours since their deep inference rules are applied to
nested structures (Brünnler calls them deep sequents). However, both [11] and [2]
only cover classical modal and tense logics, while we have extended the notion
of deep inference to bi-intuitionistic logic using polarised contexts.
Taming display logic: Areces and Bernardi [1] appear to be the first to have
noticed the connection between deep inference and residuation in display logic in
the context of categorial grammar. However, they do not give an explicit proof
of this correspondence as we have done here for our calculi.
Extensions and restrictions: Since BiInt is a conservative extension of in-
tuitionistic logic, our calculi are also sound and complete for the intuitionistic
fragment of BiInt: we simply need to ignore all rules for −<. We are also inter-
ested in extending our technique to similar logics such as Lambek-Grishin logic.
Since many of our proofs use associativity and commutativity, it is not obvious
that our technique will be immediately applicable to substructural logics.
Our contributions: The main contribution of our paper is showing that deep
inference in nested sequent calculi for bi-intuitionistic logic can mimic residuation
in display-like calculi. Thus our work is another step towards addressing the
broader problem of proof search in display logic. Secondly, our calculus DBiInt
and its restriction DBiInt1 are interesting calculi for proof search in BiInt in
their own right. We leave the details of an efficient implementation of DBiInt1
for future work.
Acknowledgements: We would like to thank Rajeev Goré, Alwen Tiu and the
anonymous reviewers for their comments on an earlier version of this paper.

10

References

1. C. Areces and R. Bernardi. Analyzing the core of categorial grammar. Journal of
Logic, Language, and Information, 13(2):121–137, 2004.

2. K. Brünnler. Deep sequent systems for modal logic. In G. Governatori et al, editor,
Advances in Modal Logic 6, pages 107–119. College Publications, 2006.

3. T. Crolard. A formulae-as-types interpretation of Subtractive Logic. Journal of
Logic and Computation, 14(4):529–570, August 2004.

4. R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. The Journal
of Symbolic Logic, 57(3):795–807, September 1992.

5. R. Goré. Substructural logics on display. LJIGPL, 6(3):451–504, 1998.

6. R. Goré and L. Postniece. Combining derivations and refutations for cut-free com-
pleteness in bi-intuitionistic logic. Journal of Logic and Computation. To appear,
Advance Access: http://logcom.oxfordjournals.org/cgi/content/abstract/exn067.

7. R. Goré, L. Postniece, and A. Tiu. Taming displayed tense logics using nested
sequents with deep inference. To appear in Proceedings of TABLEAUX 2009.

8. R. Goré, L. Postniece, and A. Tiu. Cut-elimination and proof-search for bi-
intuitionistic logic using nested sequents. In Advances in Modal Logic 7, pages
43–66. College Publications, 2008.

9. A. Guglielmi. A system of interaction and structure. ACM Trans. Comput. Log.,
8(1), 2007.

10. A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward
proof search in some non-classical propositional logics. In Proceedings of Tableaux,
volume 1071 of LNAI, pages 210–225, 1996.

11. R Kashima. Cut-free sequent calculi for some tense logics. Studia Logica, 53:119–
135, 1994.

12. L. Pinto and T. Uustalu. Proof search and counter-model construction for bi-
intuitionistic propositional logic with labelled sequents. To appear in Proceedings
of TABLEAUX 2009.

13. C. Rauszer. An algebraic and Kripke-style approach to a certain extension of
intuitionistic logic. Dissertationes Mathematicae, 168, 1980.

14. A. Tiu. A local system for intuitionistic logic. In Proceedings of LPAR, vol 4246,
LNCS, pages 242–256, 2006.

A Proofs

Proof of Theorem 1:

Proof. By induction on |Π|. We show the interesting cases. In each case the
given DBiInt-derivation is on the left, and we obtain the LBiInt-derivation on
the right, where Π ′1 is obtained by the IH.

Π1

{X1}, (X1 . X2) . Y
.L1

(X1 . X2) . Y
;

Π ′1
{X1}, (X1 . X2)⇒ Y

sL{X1}, X1 ⇒ X2, Y cL
X1 ⇒ X2, Y .L

(X1 . X2)⇒ Y

11

Π1

X . (W, ({X}, Y1 . Y2))
.L2

X . (W, (Y1 . Y2))
;

Π ′1
X ⇒W, ({X}, Y1 . Y2)

.L
X .W ⇒ {X}, Y1 . Y2 sR
(X .W), {X}, Y1 ⇒ Y2 .R
(X .W), {X} ⇒ Y1 . Y2 .R
X .W ⇒ {X} . (Y1 . Y2)

sL
X ⇒W, ({X} . (Y1 . Y2))

sR
X, {X} ⇒W, (Y1 . Y2)

cL
X ⇒W, (Y1 . Y2)

Π1

((X . Y, {Z}),W) . Z
.R2

((X . Y),W) . Z
;

Π ′1
(X . Y, {Z}),W ⇒ Z

.R
X . Y, {Z} ⇒W . Z

sL
X ⇒ Y, {Z}, (W . Z)

.L
X . Y ⇒ {Z}, (W . Z)

.L
(X . Y) . {Z} ⇒W . Z

sR
(X . Y) . {Z},W ⇒ Z

sL
(X . Y),W ⇒ {Z}, Z

cR
(X . Y),W ⇒ Z

Each of the following proofs is by induction on |Π|. Π ′1 is obtained from Π1

using the IH. A dashed inference line labeled W means that the conclusion is
obtained from the premise using Lemma 1. A dashed inference line labeled C
means that the conclusion is obtained from the premise using Corollary 1. Proof
of Lemma 4:

Proof.

Π1

Σ[(X . ({X}, Y1 . Y2)), Z . W]
.L2

Σ[(X . (Y1 . Y2)), Z . W]
;

Π ′1
Σ[X,Z . ({X}, Y1 . Y2),W]

W
Σ[X,Z . ({X,Z}, Y1 . Y2),W]

.L2
Σ[X,Z . (Y1 . Y2),W]

Π1

Σ[(X . Y), Z . (W1 . W2), {W2} .R1
Σ[(X . Y), Z . (W1 . W2)

;

Π ′1
Σ[X,Z . Y, (W1 . W2), {W2}] .R1

Σ[X,Z . Y, (W1 . W2)]

Π1

Σ[(X . Y, {W}), Z . W]
.R2

Σ[(X . Y), Z . W]
;

Π ′1
Σ[X,Z . Y, {W},W]

C
Σ[X,Z . Y,W]

12

Proof of Lemma 5:

Proof.

Π1

Σ[{X1}, (X1 . X2) . Y, (Z .W)]
.L1

Σ[(X1 . X2) . Y, (Z .W)]
;

Π ′1
Σ[{X1}, (X1 . X2), Z . Y,W]

.L1
Σ[(X1 . X2), Z . Y,W]

Π1

Σ[X . Y, ({Z1}, (Z1 . Z2) . W)]
.L1

Σ[X . Y, (Z1 . Z2 . W)]
;

Π ′1
Σ[X, {Z1}, (Z1 . Z2) . Y,W]

.L1
Σ[X, (Z1 . Z2) . Y,W]

Π1

Σ[X . Y, ({X}, Z . W)]
.L2

Σ[X . Y, (Z .W)]
;

Π ′1
Σ[X, {X}, Z . Y,W]

C
Σ[X,Z . Y,W]

Π1

Σ[X . Y, (Z .W), {W}]
.R1

Σ[X . Y, (Z .W)]
;

Π ′1
Σ[X,Z . Y,W, {W}]

C
Σ[X,Z . Y,W]

Π ′1
Σ[X . Y, ((Z1 . Z2, {W}) . W)]

.R2
Σ[X . Y, ((Z1 . Z2) . W)]

;

Π ′1
Σ[X, (Z1 . Z2, {W}) . Y,W]

.R2
Σ[X, (Z1 . Z2) . Y,W]

Proof of Lemma 6:

Proof.

Π1

Σ[{X1}, (X1 . X2) . Y, Z]
.L1

Σ[(X1 . X2) . Y, Z]
;

Π ′1
Σ[({X1}, (X1 . X2) . Y) . Z]

.L1
Σ[((X1 . X2) . Y) . Z]

Π1

Σ[X . ({X}, Y1 . Y2), Z]
.L2

Σ[X . (Y1 . Y2), Z]
;

Π ′1
Σ[(X . ({X}, Y1 . Y2)) . Z]

.L2
Σ[(X . (Y1 . Y2)) . Z]

Π1

Σ[X . Y, ({X}, Z1 . Z2)]
.L2

Σ[X . Y, (Z1 . Z2)]
;

Π ′1
Σ[(X . Y) . ({X}, Z1 . Z2)]

W
Σ[{X}, (X . Y) . ({X}, Z1 . Z2)]

.L2
Σ[{X}, (X . Y) . (Z1 . Z2)]

.L1
Σ[(X . Y) . (Z1 . Z2)]

13

Π1

Σ[X . (Y1 . Y2), {Y2}, Z]
.R1

Σ[X . (Y1 . Y2), Z]
;

Π ′1
Σ[(X . (Y1 . Y2), {Y2}) . Z]

.R1
Σ[(X . (Y1 . Y2)) . Z]

Π1

Σ[X . Y, (Z1 . Z2), {Z2}] .R1
Σ[X . Y, (Z1 . Z2)]

;

Π ′1
Σ[(X . Y) . (Z1 . Z2), {Z2}] .R1
Σ[(X . Y) . (Z1 . Z2)]

Π1

Σ[(X1 . X2, {Y, Z}) . Y, Z]
.R2

Σ[(X1 . X2) . Y, Z]
;

Π ′1
Σ[((X1 . X2, {Y,Z}) . Y) . Z]

W
Σ[((X1 . X2, {Y, Z}) . Y, {Z}) . Z]

.R2
Σ[((X1 . X2) . Y, {Z}) . Z]

.R2
Σ[((X1 . X2) . Y) . Z]

Proof of Lemma 7:

Proof.

Π1

Σ[{X1}, (X1 . X2), Y . Z]
.L1

Σ[(X1 . X2), Y . Z]
;

Π ′1
Σ[(X1 . X2) . ({X1}, Y . Z)]

W
Σ[({X1}, (X1 . X2)) . ({X1}, Y . Z)]

.L2
Σ[({X1}, (X1 . X2)) . (Y . Z)]

.L1
Σ[(X1 . X2) . (Y . Z)]

Π1

Σ[X, {Y1}, (Y1 . Y2) . Z]
.L1

Σ[X, (Y1 . Y2) . Z]
;

Π ′1
Σ[X . ({Y1}, (Y1 . Y2) . Z)]

.L1
Σ[X . ((Y1 . Y2) . Z)]

Π1

Σ[X,Y . ({X,Y }, Z1 . Z2)]
.L2

Σ[X,Y . (Z1 . Z2)]
;

Π ′1
Σ[X . (Y . ({X,Y }, Z1 . Z2))]

W
Σ[X . ({X}, Y . ({X,Y }, Z1 . Z2))]

.L2
Σ[X . ({X}, Y . (Z1 . Z2))]

.L2
Σ[X . (Y . (Z1 . Z2))]

Π1

Σ[X,Y . (Z1 . Z2), {Z2}] .R1
Σ[X,Y . (Z1 . Z2)]

;

Π ′1
Σ[X . (Y . ((Z1 . Z2), {Z2}))] .R1

Σ[X . (Y . (Z1 . Z2))]

Proof of Lemma 8:

14

Proof. By induction on the size of Y . The interesting case is when Y = (Y1 .
Y2). We show how this can be reduced to contractions on Y1 and Y2, which
are admissible by the IH. A dashed inference line means that the conclusion is
obtained from the premise using the respective Lemma or the IH. Suppose we
have Y in a negative context, the other case is symmetric:

Σ[(Y1 . Y2), (Y1 . Y2) . Z]
Lemma 4

Σ[Y1, (Y1 . Y2) . Y2, Z]
Lemma 4

Σ[Y1, Y1 . Y2, Y2, Z]
IH

Σ[Y1 . Y2, Y2, Z]
IH

Σ[Y1 . Y2, Z]
Lemma 6

Σ[(Y1 . Y2) . Z]

Proof of Theorem 4:

Proof. For the left-to-right direction, use induction on |Π|. The interesting cases
are when |Π| ends with rule instance that does not meet one of the restrictions 2
to 4 imposed by Definition 1.

– Suppose restriction 2 of the rule →R is not met, so that Σ+[A→ B] is not
saturated. Then we use Lemma 2 and the IH to permute the offending rule
instance upwards.

– Suppose restriction 2 of the rule →R is not met, so that A → B is in fact

realised by
︷ ︸︸ ︷
Σ+[A→ B]. Then Π is as below:

Π1

Σ+[A→ B, (A . B), (X,A . B, Y)] →R
Σ+[A→ B, (X,A . B, Y)]

Then by the IH, there exists a DBiInt1-derivation Π2 of Σ+[A → B, (A .
B), (X,A . B, Y)]. By Lemma 1, there exists a DBiInt1-derivation Π3 of
Σ+[A→ B, (X,A . B, Y), (X,A . B, Y)]. Finally, by Lemma 8, there exists
a DBiInt1-derivation Π ′′1 of Σ+[A→ B, (X,A . B, Y)].

The right-to-left direction is obvious, since every rule of DBiInt1 is a rule of
DBiInt, or can be derived in DBiInt.

Proof sketch of Theorem 5:
We can define a translation from DBiInt1 sequents to trees, similar to the

one in [7]. We then show that the depth of the trees is bounded (using re-
striction 2 of Definition 1) and that the size of the nodes is bounded (using
restrictions 3 and 4 of Definition 1).

15

