
An Experimental Evaluation of
Global Caching for ALC

(System Description)

Rajeev Goré and Linda Postniece

The Australian National University



Introduction

• ALC is the basis of modern description logics

• ALC is a multi-modal version of basic modal K

• EXPTIME-complete problem:
is ϕ satisfiable w.r.t. TBox axioms (global assumptions) Γ?

• Optimisations are crucial

• Caching reuses results of subcomputations

• Global caching is a new method (Goré and Nguyen 2007)

How does global caching compare to other caching methods?



Tableau Terminology

• Closed = unsat

• Open = possibly sat (expanded and not closed)

• DFS: Depth First Search



Unsophisticated Caching Methods

NC: No caching
• DFS with ancestor equality blocking

UC: Unsat caching
• DFS with ancestor equality blocking
• All closed (unsat) nodes are cached globally



Sophisticated Caching Methods

MC: Mixed caching (Donini and Massacci 2000)
• Search consists of a sequence of runs
• Each run builds an And-tree (model)
• Or-choices give different runs (models)
• DFS with ancestor equality blocking
• All closed (unsat) nodes are cached globally
• Open (possibly sat) nodes within the current And-tree are cached
• Globally caching open nodes can lead to unsoundness

GC: Global caching (Goré and Nguyen 2007)
• Search builds an And-Or graph
• Or-choices give Or-nodes in graph
• All nodes are cached, regardless of satisfiability status
• Every node only expanded once
• sat/unsat status propagated through And-Or graph
• Any search strategy suffices



Implementation and Data Structures

• All methods implemented using same framework / optimisations

• Prototype implemented using C++ and STL

• Cache is a std :: map (red-black tree)

• Nodes are sets of formulae, stored as bitstrings

• Each formula has a unique index

• i-th bit true iff formula with index i is in the node

• Edges are pointers between nodes

• No labels or individual names, hence cannot handle ABoxes
• Expansion strategies:

• pure-DFS for NC, UC, MC, GC-DFS
• heuristic-DFS for GC-Custom



Key Optimisations

• Negation normal form

• Semantic branching for atoms

• Node normalisation (MP, subsumption, implicit And rule)

• Backjumping

• Lazy unfolding of TBox axioms



Test Data

• LWB: test formulae for modal logics K, S4, KT
• 54 formula sets (problems)
• Monomodal ALC, no TBox axioms (essentially PSPACE)

• DL98: K Tbox
• 18 formula sets (problems)
• Monomodal ALC with TBox axioms (EXPTIME)

• Hence 72 formula sets (problems)

• Each set contains formulae 1..21 of increasing complexity

• Each test is a formula with a timeout

• Tests 1..21 continue until some formula exceeds timeout

• Result for a set and timeout is highest formula number solved



Representative Result for Problem k_d4_n (PSPACE)

b b
b b

b

ut
ut ut

ut
utb

b

b

b

b

b

b b b b

ut

ut

ut ut ut

NC

UC

GC-DFS

MC

GC-Custom

Timeout, seconds

Highest formula number solved

0

2

4

6

8

10

12

14

16

18

20

22

1 2 4 8 16



Results - K (PSPACE)

• Sophisticated better than Unsophisticated (as expected)

• The best of GC-DFS and GC-Custom usually better than MC

• No clear winner between GC-DFS and GC-Custom



Representative Result for Problem k_grz_p (EXPTIME)

b

b

b

b

b

ut

ut ut

ut

ut

b

b

b

b
b

b
b

b b

b

ut

ut

ut

ut

ut
GC-Custom

NC

GC-DFS

UC,MC

Timeout, seconds

Highest formula number solved

0

2

4

6

8

10

12

14

16

18

20

22

1 2 4 8 16



Results - K TBox (EXPTIME)

• Often the difference between Sophisticated and Unsophisticated
is not as marked

• The best of GC-DFS and GC-Custom is on par or better than MC



Conclusions and Further Work

• The best of the two types of global caching is on par or better
than other caching methods on all problems except two out of 72

• Vital to investigate good heuristics for global caching, since it is
not tied to the DFS framework

• Source code and test data available at
http://users.rsise.anu.edu.au/~linda/CWB.html

http://users.rsise.anu.edu.au/~linda/CWB.html

