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Abstract —
We present information theoretic capacity results for informa-

tion transfer in space, under the general assumption that the re-
ceiver applies a spatial filter to receive signals. Our work presents
novel applications of linear, bounded, invariant operators to com-
munication channels. We outline the procedure for calculating
the information theoretic capacity for this restricted class of oper-
ator channels and apply this result to wireless information trans-
fer.

I. I NTRODUCTION

Recently, there has been great interest in the concept of
wireless channels, where space is considered as a “continu-
ous” parameter [1–7]. This interest is motivated by an under-
standing that the capacity of a spatially constrained channel is
determined by the continuous nature of space, rather than the
number of antenna elements used in a MIMO system [7]. Such
results have been motivated by questions of the form“Is there
a limiting capacity, as the elements of a MIMO system become
dense?” It has been shown [2, 8] that standard MIMO vector
channels [9] are inappropriate in the case where the number of
“elements” are allowed to increase indefinitely.

The examination of signals which vary over continuous
fields has been examined in detail in the continuous time set-
ting as a “waveform channel” [10] and more generally as a
“continuous channel” [11, sec.24]. These examples represent
particular cases of bounded-linear operator channel in additive
white Gaussian noise. We shall use [12] to provide preliminary
steps toward answering the following question [1]:Given a
volume in spaceΩr, what is the information rate achievable
within Ωr, subject to power limit and wavefield constraints?

This paper is arranged as follows: In Section II we examine
the underlying properties of bounded-linear operators as com-
munication channels, and provide a procedure for calculating
information theoretic capacity results. We then apply this tech-
nique in two examples. In Section III we develop a capacity
result for information transfer between two concentric bodies,
abstracting an indoor environment, while in Section IV we in-
vestigate the capacity for a region of space. Section V draws
conclusions.

II Transmitting between spaces

Consider transmitting over a channel

y(rr) = Γx(rt) + s(rr) (1)
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wherey(rr) ∈ Hr with rr ∈ Rm is the receive function,
x(rt) ∈ Ht with rt ∈ Rn is the transmit function and
s(rr) ∈ Hr is an additive noise process. The spacesHt and
Hr are assumed to beℵ0 dimensional Hilbert spaces, although
we easily accommodate the case where one or both dimen-
sions is finite. The functionsx(rt), y(rr) ands(rt) are ran-
dom processes, while the operatorΓ is fixed. The function
x(rt) is power limited:

‖x‖2Ht
≤ P (2)

We shall assume that the operatorΓ defines an ergodic
channel fromHt to Hr. Γ is a fixed bounded, linear opera-
tor taking functions inHt to functions inHr:

Γ : {v(rt) ∈ Ht 7→ u(rr) ∈ Hr : u(rr) = Γv(rt)} (3)

Recall [13], a bounded operatorΓ : Ht 7→ Hr may be
represented by an infinite dimensional matrix2, ~Γ[

~Γ
]
ji

, 〈Γϑi, ϕj〉Ωr
(4)

where{ϕi}∞i=1 and {ϑj}∞j=1 are complete, orthonormal se-
quences inHr and Ht respectively. When{ϕi}∞i=1 and
{ϑj}∞j=1 are the left- and right- eigenfunctions (respectively)

of the operatorΓ, then~Γ is diagonal.
We shall assume that the spacesHt andHr have a com-

mon dimensiont, such that the random processesx(rt), y(rr)
ands(rr) are ergodic overt. We may then consider our input
parameterrt (respectivelyrr) as being composed

rt = {t, r̂t}, t ∈ T ⊆ R (5)

rr = {t, r̂r}, t ∈ T ⊆ R (6)

wheret is a dummy variable over which we shall average to
produce a capacity result3. We shall nominally assume that
T is an intervalT = [0, τ ] ⊂ R and allow the parameter
τ to increase to infinity. We shall use the symbolt to remind
ourselves that the dimension over which we average must have
similar properties to that of “time” in the standard continuous
channel [11] capacity derivation. We may write cf. [10]

CT =
1
‖T‖

[sup I(x; y)] (7)

and
C = lim

‖T‖→∞
CT (8)

2We shall use the notationΓ to denote an operator, and~Γ to denote its
matrix representation.

3As part of the “average” we allow‖T‖ → ∞ so that the dimension must
be reasonably well behaved.



whereI(x; y) is the mutual information between input and
output, cf. [10]. We shall also assume that the operatorΓ
is known at the transmitter and receiver ends of the communi-
cation link, so that the channel remains ergodic.

The continuous capacity results forL2(R) is extendable to
more general Hilbert space frameworks. In order to apply
the results of [10] we need to establish a valid noise model
– so we may ensure the operator capacity results remain con-
sistent with finite dimensional vector channels. We note that
the operator – both noise and channel – acting over arbitrary
Hilbert spaces, must be related back to a standard reference
frame. The natural choice of reference frame is`2 – so that we
may consider an equivalent additive-white-Gaussian operator
channel,Γ̂ : `2 7→ `2. In sub-section A we provide details
of the white noise equivalent for̀2 functions. We outline a
method for calculating the capacity of the operator channel in
sub-section B, and provide the capacity in Lemma 1.

A Noise

Although we refer tos(r) as “noise”, we note thats(r) is not
a white Gaussian noise process, since such processes are not
strictly contained within an Hilbert Space. Fortunately, the
work of [10] allows us to define white Gaussian noise as a ran-
dom processprojectedinto `2. We shall assume that the noise
corruptingy is Gaussian iǹ 2. This ensures that our capacity
result may rely on the standard Gaussian noise results [10, 11].

Definition 1 (White Gaussian Noise in`2). White Gaus-
sian noise, iǹ 2(Ωr) is given by a random processz(r) for
r ∈ Ωr ⊆ RN , such that for any functionψ(r) ∈ `2(Ωr) the
complex scalarz

z ,
∫

Ωr

z(r)ψ(r) dr = 〈z, ψ〉`2 (9)

is a zero mean, Gaussian random variable, with variance

E
{
|zi|2

}
=
N0

2

∫
Ωr

|ψ(r)|2 dr =
N0

2
(
‖ψ‖`2

)2
(10)

for constantN0 independent ofψ(r). cf. [10, eqn. 8.1.35]

If the functionsψi(r) are orthonormal, then we may write
z = {zi}∞i=1 as a vector of i.i.d. Gaussian random variables,
with zero mean and varianceN0/2. Since allℵ0 dimensional
Hilbert spaces are isomorphic tò2 [13, Thm 3.6-5], if we
define{αi}∞i=1 as a complete orthonormal sequence inHa and
{θj}∞j=1 is a complete orthonormal sequence in`2 then the
isomorphismP is given by the construction:

~Pij = 〈αi, θj〉`2 (11)

which allows us to define a Gaussian process in terms of its
effect on the integral of a function – corresponding to the inner
product in`2 – to give the noise in an arbitrary Hilbert space
H even though the noise may not be defined in terms of the
inner product inH.

Our method of calculating the capacity is summarized as
follows:

B Capacity Method

1. Provide a mappingP : `2 7→ Hr to ensure noise inHr

is related to (possibly correlated) Gaussian noise.

2. Writey = Γx+ Pz wherez ∈ `2

3. Write ŷ = P−1y whereŷ ∈ `2

4. Find capacity of “operator channel”

ŷ = Γ̂x+ z Γ̂ = P−1Γ : `2 7→ `2 (12)

(a) decompose the operatorΓ̂ into parallel, indepen-
dent discrete AWGN channels

(b) choose the inputx to be zero mean, Gaussian ran-
dom variables with variances chosen according to
the water-filling [10] algorithm.

C Decomposition of Operator

In similar manner as for the eigen-decomposition of a matrix
channel, we decompose the operator channel (1) into a set of
parallel, independent additive white Gaussian noise channels.
These channels are given by the eigenfunctions of the operator
which may be found as solutions of:

Problem 1. Given an operator̂Γ : φ = Γ̂ψ find the solutions
λi: {λ1 ≥ λ2 · · · } and function(s)ψi to:

λi = max
‖ψi‖=1

‖φi‖2 = max
‖ψi‖=1

∥∥∥Γ̂ψi
∥∥∥2

(13)

such that〈ψj(rt), ψi<j(rt)〉 = 0.

The functionsψj(rt) may be considered as the matched-
filter responses for the channel. From Parseval’s theorem [13,
pp.170] the value of‖φ‖2 is fixed, independent of the def-
inition of the inner product, for allℵ0 dimension, complete
separable Hilbert Spaces. Numerically we may perform (13)
by finding the maximum eigenvalueλ1, and associated eigen-
functionψ1, and then successively restricting our search space
to only functions which are orthogonal toψ1, etc.

Lemma 1 (Capacity of Bounded Linear Invariant Opera-
tor). Consider the operator channel(12), with eigenvaluesλi,
eigenfunctionsϕi(r, t) and input power constraint

‖x‖2 = P ‖T‖ (14)

The capacity of the channel(12) is given parametrically by

CB = lim
‖T‖→∞

1
‖T‖

∑
i∈ZB

1
2

log2 (λi(‖T‖)B) (15)

PB = lim
‖T‖→∞

1
‖T‖

∑
i∈ZB

(
B − 1

λi(‖T‖)

)
(16)

andZB is the set of integers associated with the eigenvalues
λi, such thatB ≥ λi, and the parameterB is chosen to max-
imise(15). The capacityC is achieved by settingxi = 〈x, ϕi〉
to be zero mean, independent Gaussian random variables with
variance

E
{
|xi|2

}
= max

(
0, B − 1

λi

)
(17)



PSfrag replacements

R

T

∆T

Figure 1:Transmit and receive regions with dimensions

III Example: Concentric spheres

Consider a spherical receiving volumeΩr, of radiusR which
is enclosed in a spherical annulusΩt of radiusT and thickness
∆T as shown in Figure 1. We shall assume thatR is small
compared with the transmit radius (R � T ) and the transmit
annulus is thin∆T � T . Figure 1 may be considered as an
abstraction for a small wireless, sensing device inside a large
room, we consider the “transmitter” to be theentire volume
of the annulusΩt and the “receiver” to be theentire volume
of the sphereΩr. We shall not be interested in “antenna el-
ements” rather, the transmitter chooses continuous functions
f(rt) over the domainΩt. These functions produce corre-
sponding continuous receive functionsg(rr) over the domain
Ωr, nominally via free-space wave propagation. We shall not
be interested in polarity or other vector field effects in terms of
capacity. Clearly, we may impose “antenna-like” properties on
the transmit and receive fields in the same way that we might
impose particular coding or modulation properties on a signal:
we remove such constraints in an attempt to obtain insight into
the fundamental restrictions on information theoretic capacity
due to free-space wave transmission.

The field inΩt may be described in terms of a complete
orthonormal set{ψi(rt)}∞i=1 for rt ∈ Ωt, Ωt = R3 × T.
Similarly, inΩr we may describe the receive field in terms of a
(possibly different) complete orthonormal set{φi(rr)}∞i=1 for
rr ∈ Ωr, Ωr = R3 × T. Then the channel may be described
in terms of a bounded linear operatorΥ,

Υ : L2(Ωt) → L2(Ωr) (18)

g(rr) = Υf(rt) + s(rr) (19)

=
∫

Ωt

G(rr, rt)f(rt) drt + s(rr) (20)

whereg(rr) is the receive signal inΩr, f(rt) is the transmit
signal inΩt ands(rr) is noise inΩr. The orthonormal func-
tionsφi(rr) are given by cf. [14]

φi(rr) = lim
τ→∞

ı
jn(kr)Y mn (θ, ϑ)

Jn(k,R)1/2
· exp(−ıkt)√

τ/2
(21)

rr = {r, θ, ϑ, t},T = [−τ/2, τ/2] ⊂ R (22)

where ı =
√
−1, jn(z) is the nth spherical Bessel func-

tion4 andY mn (θ, ϑ) is them,nth spherical Harmonic function,

4The spherical Bessel functionjn(z) is related to theBessel Functionof

the first kind throughjn(z) =
`

π
2z

´1/2
Jn+1/2(z)

which is orthonormal on the unit sphere.Jn(k,R) is a normal-
izing constant, cf. [1], to ensure orthonormality inΩr. Using
[15, pp.658, 6.521.1]

Jn(k,R) =
∫ R

0

r2
[
jn(kr)

]2
dr =

πR2

4k
[
Jn+1+1/2(Rk)

]2
We may relate the indicesi, m andn through the following
enumeration:

i = n(n+ 1) +m (23)

The point-source solution to the (source-free) wave equa-
tion at rr, with point-source atrt, |rt| > |rr| defines
G(rr, rt), cf. [14, pp.9]

G(rr, rt) = ık
∑
n,m

jn(k|rr|)h(1)
n (k|rt|)Y mn (r̂r)Y mn (r̂t)

(24)

whereh(1)
n (·) is the spherical Hankel function5 of order n

[15], andk is the wave-number, which we have assumed is
a scalar:k = 2π/λ = 2πf/c. We use the symbol

∑
m,n ≡∑∞

n=0

∑n
m=−n. Comparing (24) and (21) suggests the fol-

lowing orthonormal set forψi(rt):

ψi(rt) = (ı)n−1 Y mn (θ, ϑ)h(2)
n (kr)

[Hn(k, T + ∆T )−Hn(k, T )]1/2
(25)

whereHn(k, T ) is a normalising factor,

Hn(k, T ) =
∫ T

0

r2
∣∣∣h(1)
n (kr)

∣∣∣2 dr (26)

By construction, we see that{ψi(rt)}∞i=0 and{φi(rr)}∞i=0

are the left- and right- eigenfunctions respectively of theΥ
operator. We may write the eigenvaluesγi as γmn with the
enumeration (23). The eigenvalues are given by:

|γmn |
2 =

∣∣∣∣∫
Ωr

∫
Ωt

φi(rr)G(rr, rt)ψi(rt) drt drr

∣∣∣∣2 (27)

= k2Jn(k,R) [Hn(k, T + ∆T )−Hn(k, T )] (28)

where we note that there will be groups of equal magnitude
eigenvalues, with the magnitudes diminishing for increasing
n.

Given the receive functions, we may project the noise onto
{φi(rr)}∞i=1. From the orthonormality of the receive basis
functions, this projection is a zero-mean scalar random vari-

ablezi with varianceE
{
|zi|2

}
= N0/2.

A Equivalent parallel channel model

We note that the set{ψi}∞i=1 is not completeover the functions
in L2(Ωt), however, the set is complete over functions with

5The spherical Hankel functionh(1)
n (z) is related to theBessel Function

of the third kind throughhn(z) =
`

π
2z

´1/2
H

(1)
n+1/2

(z)



support inΩt, which have non-zero solutions to (24). As such,
we may expand an arbitrary functionf(rt) ∈ L2(Ωt) as:

f(rt) = f∆(rt) +
∞∑
i=1

fiψi(rt) = f∆(rt) + f̃(rt) (29)

such that

Υf = Υ
(
f̃ + f∆

)
= Υf̃ + 0 (30)

=
∑
i

λi 〈f(rt), φi(rt)〉 (31)

B Capacity

We are now in a position to consider the free-space transfer
betweenΩt andΩr in terms of an infinite set of parallel, inde-
pendent, AWGN channels. Each channeli has a noise variance
N0/2 and gain magnitude|λi| given by (28).

Theorem 1. Consider the channel(20), with transmitter shell
of radiusT and thickness∆T , and receive sphere of radiusR
such thatT � R � ∆T . The noise variance isN0/2 and
transmitter is limited to powerP .

The capacity of the channel is given by waterfilling –
Lemma 1 – with

λi = k
√

Jn(k,R)
[
Hn(k, T + ∆T )−Hn(k, T )

]
(32)

and using the enumeration(23).

Corollary 1.1 (Capacity bound for concentric shells). The
capacity is bounded from above by

C ≤ Nc log
(

1 +
2P
N0

γ2 1
Nc

)
(33)

≤ e2

4
(kR)2 log

(
1 +

2P
N0

3π2∆T
82k4R

)
(34)

whereNc (54) andNc (53) are upper and lower bounds (re-
spectively) on the number of well connected modes.

We may show by symmetry that the same result holds if
the role of the inner and outer spheres are reversed – i.e. the
transmitter is placed inside the receiver. In Figure 2 we have
plotted the upper bound from Theorem 1 with respect to the
radiusR of the inner sphere.

IV Example: Information Capacity for
region of space

Our second example is intended as an initial step toward an
information theoretic capacity for space. We shall consider a
physical arrangement corresponding to a single-frequencyfc
receiver, fixed in space. We shall again assume full transmit-
ter knowledge of the channel We wish to determine the infor-
mation theoretic capacity of such an arrangement. We shall
assume that the transmitter is power limited∫

Ωt

|f(x)|2 dx ≤ P · ‖Ωt‖ (35)
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Figure 2: CapacityC bit/s/Hz for concentric spherical channel, at
3× 108 Hz, andP = 10dB.

We shallnot constrain the “transmit” field to satisfy the
wave equation, so that any validL2(Ωt) function is accepted.
We assume that the field has zero power outsideΩt. We note
that for fields resulting from radiating sources, then (35) sim-
ply imposes the well known1/D2 path loss constraint of the
field, andΩt may be considered as a “large” sphere encom-
passing the “sources” and the receive regionΩr. So that the
effective power limit of Section III isP · 4

3πT
3.

We shall allowΩr andΩt to intersect – so that the source
field may overlap the receive region: if the field does not in-
tersectΩr then no information can be passed to the receiver!
Some care must be taken here, since this does not necessar-
ily imply that there are “sources” withinΩr, simply that the
energy from the transmitter is detectable withinΩr.

We shall assume that the receiver does not use independent
sources to measure the field inΩr. This is a more general
constraint than assuming there are no sources withinΩr – a
source freeΩr satisfies this assumption. We may consider
the assumption in terms of the receiver applying a particular
matched filter to the received field: the Helmholtz Scalar Wave
Projection operator:

Definition 2 (Helmholtz Projection Operator PH , cf. [1]).
PH projects functions with support inΩr, u(rr) ∈ L2(Ωr)
onto functions with support inΩr which satisfy the Helmholtz
Wave Equation(

∇2 + kI
)
g(rr) = 0 (36)

g(rr) = PHf(rr) =
∞∑
i=1

〈f(rr), φi(rr)〉Ωr
φ(rr) (37)

where{φi(rr)}∞i=1 are a complete orthonormal set, satisfying
(36).

This projection operator generates a fieldg(rr) for rr ∈ Ωr
which satisfies (36) which is the closest (in an RMS mean
sense) to the actual field withinΩr, [1, 3, 4]. Note that this fil-
ter isinformation lossythat is, there are fields withinΩr which



cannot be uniquely determined by examiningg(rr). The oper-
atorPH is the spatial equivalent of the (low-pass) linear filter
representation of [10, ch. 8]. We will show shortly that this
constraint does not cause significant problems. We shall also
use the following Truncation projection operator cf. [1]:

Definition 3 (Truncation operator ΠΩr
). The Truncation op-

erator forces a field to zero, outside a regionΩ:

ΠΩg(rr) =

{
g(rr) rr ∈ Ω
0 else

(38)

The channel is then given by

g(rr) = Γf(rt) + s(rr) (39)

= PHΠΩr
ΠΩt

f(rt) + s(rr) (40)

For any functionf(rt), ‖g(rr)‖2 is maximised when
ΠΩrΠΩt = ΠΩt , ie, whenΩt ⊆ Ωr. We may interpret this by
noting that there is no benefit in expending energy to generate
a field (or component of a field) which is outside the region of
measurementΩr. We therefore wish to find eigenfunctions to
the operator problem:

Problem 2 (Eigenfunctions forΩr). Find ordered solution(s)
λi andφi(rt) to:

λi = max
‖PHΠΩrΠΩtψi(rt)‖

2

‖ψi(rt)‖Ωt
= 1

(41)

= max
‖ψi(rt)‖Ωr

=1
‖PHΠΩrφi(rt)‖

2 (42)

For an arbitrary receive bodyΩr, the solution to Problem 2
is intractable analytically. However, we may apply a bounding
argument toΩr, such that any solutionψi(rt) must have sup-
port within a sphereS(Ωr) which enclosesΩr. We may then
apply a Gram-Schmidt orthonormalization on any (spherical-
based) result, for approaches in the case of arbitrary bodiesΩr
see [1, 6]. For the following, we shall consider the case where
Ωr is a sphere of radiusR.

From Section III we already know the eigenfunction so-
lutions to (42) are given by (21). Using a similar argu-
ment as previously, we note that while the “transmit” function
f(rt) ∈ L2(Ωt) need not satisfy the wave-equation, only those
components off(rt) which project onto wave-equation solu-
tions have non-zero eigenvaluesλi. Consequently, a transmit-
ter with full channel knowledge will choose only those func-
tions f̂(rt) ∈ Ht ⊂ L2(Ωr) which have non-zero projections
underPH (corresponding toλi > 0). This places our work
in close correspondence to [1, Problem 1]. We may write the
transmit and receive functions in terms of (21):

x(rt) =
∑
i

φi(rt)xi + x∆(rt) (43)

y(rr) =
∑
i

φi(rr)yi + s∆(rr) (44)

=
∑
i

φi(rr) (λixi + zi) + s∆(rr) (45)

wheres∆(rr) is a noise component orthogonal to allφi(rr)
andx∆(rt) is the component of the transmit function which
is orthogonal to allφi(rr). We use the enumeration of (23) to
map betweeni andm,n for the basis functions. Applying (21)
to (42) we see thatλi = 1.

Theorem 2. Consider the channel(40) for a spherical re-
ceive region with radiusR, and signal transmit frequency
f , with wavenumberk = 2πf/c, noise varianceN0/2 and
power limitP ·4πR3/3 the capacity of the channel is given by
Lemma 1, withλi = 1.

The capacity of this channel is bounded by noting that the
eigenvalues are unity, and the number of parallel channels is
bounded by (53) and (54):

Corollary 2.1. The capacityC of the channel(40) is bounded
by

C ≤ n log
(

1 +
P

N0/2
4
3
πR3 1

n

)
≤
P 4

3πR
3

N0
log e (46)

V Conclusions

We have examined an abstraction of standard vector channel
MIMO results, to incorporate bounded invariant linear opera-
tors acting over isomorphisms of`2. We have provided capac-
ity results for such operators.

The operator framework has been used to provide capacity
results for otherwise intractable MIMO problems. We have
shown two spatial examples, where we have calculated the
fundamental limits to transmission of spatially detectable in-
formation between concentric shells, and found the limits to
information capacity of a spherical region of space. Such re-
sults are extendible analytically to other simple geometries,
and numerically to non-trivial geometries.

A Proofs

Proof of Lemma 1.The operator channel is bounded, so that

Γ̂ may be written in matrix form~̂Γ. Any transmit function
f(rt) ∈ Ht may be written as:

f(rt) = f∆(rt) +
∑
i

fiϕi(rt)

wheref∆(rt) is orthogonal to allϕi. Sinceϕi are eigenfunc-

tions,~̂Γ is diagonal, so every receive functiong(rr) ∈ Hr may
be written as

g(rr) = g∆(rr)+
∑
i

λifiϕi(rr)+0 · f∆(rr)+
∑
i

ziϕi(rr)

whereg∆(rr) is an orthogonal noise component. The channels
gi = λifi+ zi are independent (due to the orthogonality ofϕi
and we use the parallel AWGN channel result of [10]. �



Proof of Corollary 1.1.We note that while there are an infi-
nite number of channels, only a finite subsetNc have non-
negligible gains, ie.|λi| > ε, i < Nc, and|λi| < ε, i > Nc.
Our aim is to estimateNc. From [16]:

∣∣Jn+1+1/2(Rk)
∣∣ ≤ (Rk)n+3/2

2n+3/2Γ(n+ 5/2)
(47)

and forkT � 1, andT � ∆T ,

Hn(k, T + ∆T )−Hn(k, T ) ≈ π∆T
4k2

(48)

Using (47), (48) and (28):

|γmn |
2 ≤ πR2

4k

(
(Rk)n+3/2

2n+3/2Γ(n+ 5/2)

)2
π∆T

4
(49)

This gives a hard cut-off in eigenvalue magnitudes, al-
though the result is difficult to interpret in terms of the original
geometry. We may apply the following bound, as the operator
‖Υ‖2 is compact, and has norm given by:

‖Υ‖2 =
∑
n,m

|γmn |
2 ≈ ΩrΩt

(4πT )2
≤ R3∆T

3
(50)

We note for|Rk| � n, andT � ∆T , and using (48)

Jn(k,R) ≤ R

2k2
(51)

γmn ≤
√
πR∆T

8k2
(52)

and bothJn(k,R) andHn(k,R) diminish for largen (with
fixed k,R,∆T ). Combining (52) with (50), gives a (lower)
bound on the number of well-connected modes:

Nc ≥ Nc =
8
3π

(kR)2 (53)

From [16] Jn(k,R) is exponentially decreasing forn ≥
(ekR)2/4, andHn(k, T + ∆T ) − Hn(k, T ) is bounded by
(48). This provides us with an upper bound onN

Nc ≤ Nc =
e2

4
(kR)2 (54)

�
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