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Abstract — wherey(r,) € H, with r, € R™ is the receive function,

We present information theoretic capacity results for informa-  z(r,) € H; with r, € R"™ is the transmit function and
tion transfer in space, under the general assumption that the re- s(r,) € H, is an additive noise process. The spakgsand
ceiver applies a spatial filter to receive signals. Our work presents 1/ are assumed to b, dimensional Hilbert spaces, although
novel applications of linear, bounded, invariant operators to com- we easily accommodate the case where one or both dimen-
munication channels. We outline the procedure for calculating sions is finite. The functions(r;), y(r,) ands(r;) are ran-

the information theoretic capacity for this restricted class of oper- - N .
. ; : . dom processes, while the operaloiis fixed. The function
ator channels and apply this result to wireless information trans- ) o
x(r¢) is power limited:

fer.

2

|. INTRODUCTION llly, < P @

Recently, there has been great interest in the concept ofVe shall assume that the operafordefines an ergodic
wireless channels, where space is considered as a “contifigannel fromH; to H,. I is a fixed bounded, linear opera-
ous” parameter [1-7]. This interest is motivated by an undd@r taking functions ir#; to functions in,.:
standing that the capacity of a spatially constrained channel is ., ) _
determined by the continuous nature of space, rather than thel + 1v(re) € My = ulrn) € 7y uer) = To(r)} - (3)
number of antenna elements used in a MIMO system [7]. SuchRecall [13], a bounded operatdr : H, — H, may be
results have been motivated by questions of the fdsithere  represented by an infinite dimensional makrix
a limiting capacity, as the elements of a MIMO system become

dense?” It has been shown [2, 8] that standard MIMO vector m 2 (T, cpj>Qr (4)
channels [9] are inappropriate in the case where the number of I
“elements” are allowed to increase indefinitely. where {¢;};~, and {ﬂj};‘;l are complete, orthonormal se-

The examination of signals which vary over continuoUguences inH, and H, respectively. When{y;}.2, and
i

ting as a “waveform channel” [10] and more generally asoa}

“continuous channel” [11, sec.24]. These examples represen he operatol’, then" s diagonal,

particular cases of bounded-linear operator channel in additive © _shaII assume that the spades and . have a com-
mon dimensiort, such that the random processgs,), y(r,)

white Gaussian noise. We shall use [12] to provide prelimina‘% ) . .

; . ) : ds(r,) are ergodic ovet. We may then consider our input
steps toward answering the following question [Qiven a arameter, (respectivelyr,) as being composed
volume in spacé),., what is the information rate achievable” t P Wr 9 P

within €2,., subject to power limit and wavefield constraints? r,={t,f;}), teTCR (5)
This paperis arranged as follows: Ir! Section Il we examine r,={t5}, teTCR (6)
the underlying properties of bounded-linear operators as com-
munication channels, and provide a procedure for calculatingneret is a dummy variable over which we shall average to
information theoretic capacity results. We then apply this techroduce a capacity reséit We shall nominally assume that
nique in two examples. In Section Il we develop a capaci®¥ is an intervalT = [0,7] C R and allow the parameter
result for information transfer between two concentric bodies.to increase to infinity. We shall use the symbab remind
abstracting an indoor environment, while in Section IV we irsurselves that the dimension over which we average must have
vestigate the capacity for a region of space. Section V dragisilar properties to that of “time” in the standard continuous

conclusions. channel [11] capacity derivation. We may write cf. [10]
1
. Cr=—[supI(z;y (7
Il Transmitting between spaces ™= iy e )
Consider transmitting over a channel and C= lim Crp ®)
[ T[|—o0

y(rr) = Ta(rs) + s(ry) 1) ﬁ
2We shall use the notatioR to denote an operator, afitlto denote its
INational ICT Australia is funded through the Australian Governmentmatrix representation.
Backing Australia’s Abilityinitiative, in part through the Australian Research  3As part of the “average” we allo{yT|| — oo so that the dimension must
Council be reasonably well behaved.




where I(x;y) is the mutual information between input andB Capacity Method
output, cf. [10]. We shall also assume that the oper&tor
is known at the transmitter and receiver ends of the communi-
cation link, so that the channel remains ergodic.

The continuous capacity results fof (R) is extendable to 2. Writey = I'z + Pz wherez € ¢2
more general Hilbert space frameworks. In order to apply L . .
the results of [10] we need to establish a valid noise model 3- Writ€y = P~y wherej € £
— so we may ensure the operator capacity results remain con4, Find capacity of “operator channel”
sistent with finite dimensional vector channels. We note that oA “~ 1 9 5
the operator — both noise and channel — acting over arbitrary g=Tz+z TI'=P T:0L (12)
Hilbert spaces, must be related back to a standard reference  (a) decompose the operatﬁrinto parallel, indepen-
frame. The natural choice of reference framé&is- so that we dent discrete AWGN channels
may consider an equivalent additive-white-Gaussian operator
channel,l" : ¢2 — ¢2. In sub-section A we provide details
of the white noise equivalent fagf functions. We outline a
method for calculating the capacity of the operator channel in
sub-section B, and provide the capacity in Lemma 1.

1. Provide a mapping : ¢? — H, to ensure noise if,.
is related to (possibly correlated) Gaussian noise.

(b) choose the input to be zero mean, Gaussian ran-
dom variables with variances chosen according to
the water-filling [10] algorithm.

C Decomposition of Operator

A Noise In similar manner as for the eigen-decomposition of a matrix
o ) channel, we decompose the operator channel (1) into a set of
Although we refer tas(r) as “noise”, we note that(r) is not parallel, independent additive white Gaussian noise channels.

a white Gaussian noise process, since such processes are-Rée channels are given by the eigenfunctions of the operator
strictly contained within an Hilbert Space. Fortunately, thghich may be found as solutions of:

work of [10] allows us to define white Gaussian noise as a ran- ) —~ ~ )
dom procesgrojectedinto 2. We shall assume that the noisé:’r_Oblem 1. Given an operatot’ : ¢ :.m’ find the solutions
corruptingy is Gaussian in2. This ensures that our capacityi: 11 = A2 -+ } and function(s)); to:

result may rely on the standard Gaussian noise results [10, 11]. 2

A = max ||¢;]®> = max HM‘
Definition 1 (White Gaussian Noise in¢2). White Gaus- Ill=1 I<l1=1

sian noise, in¢?(2,.) is given by a random processr) for such that(y; (r;), ¥;<;(r:)) = 0.

r € Q, C RV, such that for any functiog(r) € ¢3(,.) the
complex scalae

(13)

The functionsy;(r;) may be considered as the matched-
filter responses for the channel. From Parseval’s theorem [13,
N _ pp.170] the value of|¢||* is fixed, independent of the def-
z :/Q 2(r)Y(r) dr = (z,9) (9) inition of the inner product, for alk, dimension, complete
separable Hilbert Spaces. Numerically we may perform (13)
is a zero mean, Gaussian random variable, with variance by finding the maximum eigenvalug, and associated eigen-
function), and then successively restricting our search space

E {\zﬁ} - %/ﬂ () dr = %(WHP)2 (10) to only functions which are orthogonal ta, etc.

Lemma 1 (Capacity of Bounded Linear Invariant Opera-
for constantVy independent of(r). cf. [10, eqn. 8.1.35] tor). Consider the operator chann@l2), with eigenvalues;,

. .,_eigenfunctions;(r, t) and input power constraint
If the functionsy;(r) are orthonormal, then we may write g i(r,1) putp

z = {z},2, as a vector of i.i.d. Gaussian random variables, |z|* = P|IT|| (14)
with zero mean and variandg, /2. Since allX, dimensional
Hilbert spaces are isomorphic 3 [13, Thm 3.6-5], if we
define{q;};°, as a complete orthonormal sequencétinand — lim 1 }10 \(IITINB 15
{0;}52, is a complete orthonormal sequenceinthen the B 1= [T g 2 g2 (I TI)B) (19)
isomorphismP is given by the construction:

1 1
. Pgp = lim —— B———— (16)
Pij = (i, 05) 2 (11) 7 irl=o [T GZZ;S ( MIITII))

which allows us to define a Gaussian process in terms of &dZp is the set of integers associated with the eigenvalues
effect on the integral of a function — corresponding to the innas, such thatB > \;, and the parameteB is chosen to max-
product in¢? — to give the noise in an arbitrary Hilbert spacénise(15). The capacityC' is achieved by setting; = (x, ¢;)

‘H even though the noise may not be defined in terms of thde zero mean, independent Gaussian random variables with

The capacity of the chann€l2) is given parametrically by

inner product inH. variance
Our method of calculating the capacity is summarized as E {\MQ} — max <07 B_ 1) (17)
follows: Ai



which is orthonormal on the unit sphetk, (k, R) is a normal-
izing constant, cf. [1], to ensure orthonormality{da. Using

” [15, pp.658, 6.521.1]
' TR?

R 2 2
Jn(k,R):/O 7% [n (k)] dr:ﬂ[JnHH/g(Rk)]

We may relate the indices m andn through the following
Figure 1:Transmit and receive regions with dimensions enumeration:
i=nn+1)+m (23)

n E le: C . h The point-source solution to the (source-free) wave equa-
xampie. oncentric spheres tion at r,, with point-source atr;, |r:|] > |r,| defines

f. [14, pp.9
Consider a spherical receiving volurf®, of radiusR which Glrr,xo), cf. [14, pp.9]
is enclosed in a spherical annulasof radiusi and thickness o . (1) SN ey
Ar as shown in Figure 1. We shall assume tRais small Glrr 1) = Zk;:nj”(k'rr‘)h" (e Y™ (x5 )Y ()
compared with the transmit radiug (<« 7") and the transmit ' (24)
annulus is thimMAr < T. Figure 1 may be considered as an

abstraction for a small wireless, sensing device inside a la%ﬁere h(l)( ) is the spherical Hankel functirof order n

room, we consider the “transmitter” to be tkatire volume [15], and is the wave-number, which we have assumed is
of the annulug?; and the “receiver” to be thentire volume ’ '
ascalark = 2w /\ = 2nf/c. We use the symbdl_, , =

of the sphere,.. We shall not be interested in “antenna el:

ements” rather, the transmitter chooses continuous functighi—o 2-m——»- COMparing (24) and (21) suggests the fol-

f(r;) over the domairf2,. These functions produce correloWing orthonormal set fop; (r,):

sponding continuous receive functiog@:,.) over the domain
- i - Y (0,9)h%) (kr)

Q,., nominally via free-space wave propagation. We shall not Wi(ry) = (1) n (O V)hn (25)
be interested in polarity or other vector field effects in terms of H, (k, T+ AT) — H, (k, T)]l/2
capacity. Clearly, we may impose “antenna-like” properties on _ o
the transmit and receive fields in the same way that we migMereH,, (k, T') is a normalising factor,
impose particular coding or modulation properties on a signal: -
we remove such cons_tre}ints in a.n attempt to obtain .insight ir_1to H,(k,T) = / 2 ‘hgf) (kr) ’2 dr (26)
the fundamental restrictions on information theoretic capacity 0
due to free-space wave transmission. ] - -

The field in©, may be described in terms of a complete BY construction, we see thgthi(r:)},=, and{¢;(r,)},=,
orthonormal sef{¢);(r;)}, for r, € Q;, Q, = R® x T. are the left- and right- eigenfunctions respectively of the
Similarly, in 2, we may describe the receive field in terms of @Perator. We may write the eigenvalugsas~,* with the
(possibly different) complete orthonormal get; (r,,)}>, for €numeration (23). The eigenvalues are given by:
r, € Q,, Q, = R? x T. Then the channel may be described 9

in terms of a bounded linear operafdy P = / i(ry)G(ry,10) i (re) dry dry (27)
.72 2 / Qr S
T L) = L(8) (18) = K23, (k, R) [H, (k. T + AT) — H, (k. T)] (28)
g(ry) =T f(re) 4 s(ry) (19)
where we note that there will be groups of equal magnitude
= /Q G(rp,re) f(re) dre + s(ry) (20)  gigenvalues, with the magnitudes diminishing for increasing

n.
whereg(r,) is the receive signal ifi,, f(r;) is the transmit  Given the receive functions, we may project the noise onto
signal in{2, ands(r,) is noise in(2,.. The orthonormal func- {¢,(r,)1°,. From the orthonormality of the receive basis

tions ¢; (r,-) are given by cf. [14] functions, this projection is a zero-mean scalar random vari-
Gn(kr)Y(0,9)  exp(—ikt) ablez; with variancell {|zi|2} = NO0/2.
' .

v, ={r0,9,t},T =[-7/2,7/2] CR 22) A Equivalent parallel channel model

where: = /—1, jn(z) is the n'h spherical Bessel func- We note that the s€t); }5°, is not completever the functions
tion* andY;™ (0, 9) is them, n' spherical Harmonic function, in L2(€2;), however, the set is complete over functions with

4The spherical Bessel functigiy, (z) is related to theBessel Functiomf 5The spherical Hankel functiol'zlsl1> (2) is related to thBessel Function

the first kind throughin (2) = (22)"/? T 41 /2(2) of the third kind througth, () = (££)"/* H'})| ,(2)



support inQ2;, which have non-zero solutions to (24). As such,
we may expand an arbitrary functigitr;) € L*(Q;) as:

EN

fre) = fa(e) + > fibi(re) = falr) + f(r)  (29) -}_%,345—
=t £ 3
x
such that %2_57
x 5 o
Tf:T(erfA):Tero (30) g
_ Z Ao (f(re), da(ry)) (31) -l
C 1r
@)
0.5r
B Capacity o : : : . .
We are now in a position to consider the free-space transfer Rm

betweer); and2,. in terms of an infinite set of parallel, inde-Figure 2: CapacityC bit/s/Hz for concentric spherical channel, at
pendent, AWGN channels. Each chanitehs a noise variance3 x 10® Hz, andP = 10dB.
Ny /2 and gain magnitudp\;| given by (28).

Theorem 1. Consider the channgR0), with transmitter shell
of radiusT and thicknes&\T', and receive sphere of radiu We shallnot constrain the “transmit” field to satisfy the
such thatl’ > R > AT. The noise variance i8/,/2 and wave equation, so that any valicf(€2;) function is accepted.

transmitter is limited to powepP. We assume that the field has zero power outSigeWe note
The capacity of the channel is given by waterfilling that for fields resulting from radiating sources, then (35) sim-
Lemma 1 — with ply imposes the well known /D? path loss constraint of the

field, and$2; may be considered as a “large” sphere encom-
passing the “sources” and the receive redipn So that the
effective power limit of Section Il is” - 2773,

We shall allowf?, and€2; to mtersect — so that the source
Corollary 1.1 (Capacity bound for concentric shells). The = fie|d may overlap the receive region: if the field does not in-
capacity is bounded from above by tersect(, then no information can be passed to the receiver!

_ 2P .1 Some care must be taken here, since this does not necessar-
C < N.log (1 + N72N> (33) ily imply that there are “sources” withif2,., simply that the
0 c . . I
—_ energy from the transmitter is detectable witbip

(34) We shall assume that the receiver does not use independent
sources to measure the field §.. This is a more general
constraint than assuming there are no sources withir- a
source freef?, satisfies this assumption. We may consider
the assumption in terms of the receiver applying a particular

We may show by symmetry that the same result holdsatched filter to the received field: the Helmholtz Scalar Wave
the role of the inner and outer spheres are reversed — i.e. thgjection operator:

transmitter is placed inside the receiver. In Figure 2 we have

plotted the upper bound from Theorem 1 with respect to tiefinition 2 (Helmholtz Projection Operator Py, cf. [1]).
radiusR of the inner sphere. Py projects functions with support ift,., u(r,) € L?(,)
onto functions with support if2,- which satisfy the Helmholtz
Wave Equation

N = k3 (k. R) [Hy (kT + AT) — H,, (k. T)]  (32)

and using the enumeratiq@23).

2 2
< %(kRF log (1 , 2bsm AT)

No 82KkAR

where N, (54) and N, (53) are upper and lower bounds (re-
spectively) on the number of well connected modes.

IV Example: Information Capacity for

region of space (V?+kI) g(r,) =0 (36)
Our second example is intended as an initial step toward an 9(r) = Puf(r,) = > _ (f(rr), ¢i(rn))q é(r)  (37)
information theoretic capacity for space. We shall consider a i=1

physical arrangement corresponding to a single-frequgncy _ o L
receiver, fixed in space. We shall again assume full transn}vjéhere{@(rr) 2, are a complete orthonormal set, satisfying
ter knowledge of the channel We wish to determine the info

mation theoretic capacity of such an arrangement. We shall

2 2 This projection operator generates a fig{d,. ) forr, € Q,.
assume that the transmitter is power limited prol b g gld;)

which satisfies (36) which is the closest (in an RMS mean
sense) to the actual field within,., [1, 3, 4]. Note that this fil-

2
[F()" dx < P €] (39)  terisinformation lossythat is, there are fields withifd, which



cannot be uniquely determined by examinirig,.). The oper- wheresa(r,.) is a noise component orthogonal to all(r,.)
ator Py is the spatial equivalent of the (low-pass) linear filteandx A (r;) is the component of the transmit function which
representation of [10, ch. 8]. We will show shortly that thigs orthogonal to alb;(r,.). We use the enumeration of (23) to
constraint does not cause significant problems. We shall ateap betweemandm, n for the basis functions. Applying (21)

use the following Truncation projection operator cf. [1]: to (42) we see that; = 1.
Definition 3 (Truncation operator Il ). The Truncation op- Theorem 2. Consider the channgl0) for a spherical re-
erator forces a field to zero, outside a regiin ceive region with radiusk, and signal transmit frequency
f, with wavenumbek = 2rf /¢, noise varianceN,/2 and
_Jo(ry) 1 €Q power limit P - 47 R3 /3 the capacity of the channel is given by
HQg(r'r) - (38) .
0 else Lemma 1, with\; = 1.
The channel is then given by The capacity of this channel is bounded by noting that the
eigenvalues are unity, and the number of parallel channels is
g(ry) =T f(re) + s(ry) (39) bounded by (53) and (54):
= Pgllg, Ilg, f(r¢) + s(r;) (40)

Corollary 2.1. The capacityC' of the channe{40)is bounded

For any function f(r;), |lg(r,)|” is maximised when by
IIg, g, = Ig,, ie, whenQ2, C Q... We may interpret this by P 4 1
noting that there is no benefit in expending energy to generateC' < nlog <1 + M37TR3>
a field (or component of a field) which is outside the region of o/ "
measuremeri2,. We therefore wish to find eigenfunctions to .
the operator problem: V Conclusions

2
|

P%ﬂ'RS
<

loge (46)

Problem 2 (Eigenfunctions for(2,). Find ordered solution(s) \we have examined an abstraction of standard vector channel
A; andg; (r¢) to: MIMO results, to incorporate bounded invariant linear opera-

tors acting over isomorphisms 6f. We have provided capac-
| Py Lo, o, v (re) || ¥ ; P P

A; = max (41) ity results for such operators.
i (re)llg, =1 The operator framework has been used to provide capacity
=  max ||Pyllg, ¢;(r,)|? (42) results for otherwise intractable MIMO problems. We have
¥:(re)lle, =1 shown two spatial examples, where we have calculated the

For an arbitrary receive body,, the solution to Problem 2 fundamental limits to transmlssmn of spatially detectgbl.e in-
formation between concentric shells, and found the limits to

is intractable analytically. Howeverz we may apply a bounO"n|ﬂ1‘ormation capacity of a spherical region of space. Such re-
argum_enlt td2,, such that any solutiog; (r,) must have sup- sults are extendible analytically to other simple geometries,
port within a sphere'(2,.) which encloses$),.. We may then nd numerically to non-trivial aeometries
apply a Gram-Schmidt orthonormalization on any (sphericéa}- y g '
based) result, for approaches in the case of arbitrary béYjies
see [1, 6]. For the following, we shall consider the case whefg  Proofs
Q,. is a sphere of radiug.
From Section Il we already know the eigenfunction so-
lutions to (42) are given by (21). Using a similar arguProof of Lemma 1.The operator cihannel is bounded, so that

ment as previously, we note that while the “transmit” functiof may be written in matrix fornT. Any transmit function
f(r) € L?(9;) need not satisfy the wave-equation, only thosg(r,) € H, may be written as:

components off (r;) which project onto wave-equation solu-

tions have non-zero eigenvalugs Consequently, a transmit- f(re) = fa(ry) + Z fipi(re)

ter with full channel knowledge will choose only those func- p

tions f(r;) € H, c L2(Q,) which have non-zero projections

under Py (corresponding to\; > 0). This places our work Wherefa(r;) is orthogonal to allp;. Sincey; are eigenfunc-
in close correspondence to [1, Problem 1]. We may write tigns T is diagonal, so every receive functigfr,.) € H, may

transmit and receive functions in terms of (21): be written as
a(re) =D di(re)zs + wa(r) 43)  g(r,) = galrr) + D> Nifips(re) +0- fa(r) + Y zipi(r,)
y(rr) = Z #i(rr)yi + salrr) (44) wherega (r,) is an orthogonal noise component. The channels

g; = \ifi + z; are independent (due to the orthogonalitypf
= ¢ilr,) (Niwi + 2) + salr,) (45)  and we use the parallel AWGN channel result of [10]. W
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